Database degli esercizi β book index
English
- \(\overline A\) , see closure .
- \(\partial A\) , see boundary .
- \(A^c\) , see set, complement of .
- \(B(x,r)\) , see ball , 0NW .
- \( C^k\) , 2D0 .
- \(C\) , see function, continuous .
- \(β \) , see complex numbers , 00B .
- \(C^0\) , see function, continuous .
- \(C^k\) , 1GZ .
- \( C_b\) , 0ZM , 14D .
- \(D(x,r)\) , see disk .
- \(\Delta \) , see set, symmetric difference , 23S .
- \(F_\sigma \) , see F-sigma .
- \( G_\delta \) , see G-delta .
- \( π \) , see identity matrix .
- \(β \) , see natural numbers , 00B .
- \(β _\text {ZF}\) , 26K .
- \(β \) , see rational numbers , 00B .
- \( \overline β \) , see extended line .
- \( β /2\pi \) , 0Y4 .
- \(β \) , see real numbers , see also real line , 00B .
- \( S^1\) , see circle .
- \(S(x,r)\) , see sphere .
- \(T_2\) , see Hausdorff .
- \(β€ \) , see integer numbers , 00B .
- \(\Leftrightarrow \) , 00D .
- \(\Vert \cdot \Vert \) , see also norm .
- \( \Vert \cdot \Vert _\infty \) , in \( C_b\) , 0ZM , 14D .
- \( \Vert \cdot \Vert _\infty \) , in \( β ^n\) , 2CK and following , 10C .
- \( \Vert \cdot \Vert _p\) , in \( β ^n\) , 2CK and following , 10C .
- \(\approx \) , 1NX , 1P1 .
- \( \underline \bigcap \) , 252 , 0J1 .
- \(\bigcap \) , 1W1 .
- \( \underline \bigcup \) , 026 , 25Z , 0KS , 0KZ .
- \(\bigcup \) , 1Y2 .
- \(\cap \) , 1W1 .
- \(\cup \) , 1Y2 , 026 .
- \(β§Ί \) , see concatenation , 21W .
- \(\lci \) , 2FG .
- \(\lfloor x \rfloor \) , see floor .
- \(\loi \) , 2FG .
- \(\lv \) , 2FG , 071 .
- \(\neg \) , 00D .
- \(\rci \) , 2FG .
- \(\roi \) , 2FG .
- \(\rv \) , 2FG , 071 .
- \(\setminus \) , see set difference .
- \(\sim \) , 1NW , 1P1 , 1PN .
- \(\sim _f\) , 1PN .
- \(\subset \) , 1W0 .
- \(\subseteq \) , 1W0 .
- \(\subsetneq \) , 1W0 .
- \(\vee \) , 2DM , 00D .
- \(\wedge \) , 2DM , 00D .
- \( \searrow \) , 1HS .
- \( \partial f\) , see subdifferential .
- = , see equality .
- \(e\) , see Euler's number .
- sin(1/x) , 0RP .
- (partial) , 24W .
- Abel , 1KJ , 1T3 .
- Abel identity , 1T3 .
- ArzelΓ , 1HQ , 1K4 .
- Ascoli , 1HQ , 1K4 .
- Babylonian method , 0DN .
- Baire , 0VV .
- Baire category , 0VZ , 152 .
- Baire's, theorem , 0VV .
- Banach , see also theorem, Hahn--Banach β .
- Banach, space , 0ZM , 118 , 144 , 14D .
- Bessel , 1KM .
- Borel , 2CB , 0V3 .
- C , see function, continuous .
- CH, , see continuum hypothesis .
- Cantor, intersection theorem , 0BF , 0J6 , 0VP .
- Cantor, set , 2FB , 0XC , 0ZJ , 19Y , 0W4 .
- Cartan , 1M1 .
- Cartesian product , 2FG , 242 , 024 , 02H , 1WY , 05T , 05X , 0M3 , 0M5 , 0QM .
- Cartesian product, and topology , 2F7 .
- Cartesian product, of balls , 0QM .
- Cartesian product, of groups , 0X8 .
- Cauchy , 1QB .
- Cauchy, condensation test , 21D .
- Cauchy, product , 0FH , 1KQ .
- Cauchy, sequence , see sequence, Cauchy .
- Cohen , 2F2 .
- Darboux property , 1C8 .
- Darboux, example , 1CP .
- Dedekind , 04G , 04M .
- Dedekind-infinite , 04G , 04M .
- Descartes, rule of signs , 1D7 .
- Dini , 19S , 1HS .
- Dirichlet criterion , 21F .
- Dirichlet criterion, for integrals , 1TX .
- Dirichlet's approximation theorem , 0C1 .
- Edelstein , 0TH .
- Euclidean division , 28J .
- Euler , 1M3 , 1M7 .
- Euler's number , 1M3 .
- Euler, identity , 1M7 .
- Euler-Mascheroni constant , 0D6 .
- F-sigma , 0QC , 2CX , 16N , 16Q , 16S .
- F-sigma, \( β \setminus β \) , 152 .
- FaΓ Di Bruno , 1DJ .
- Fraenkel , 01J , 241 .
- Frobenious , 11H .
- G-delta , 0QC .
- Gamma function , 1BM .
- Gronwall , 1QB .
- GΓΆdel , 2F2 .
- Hadamard , 1F1 .
- Hahn , see also theorem, Hahn--Banach β .
- Hamel basis , 02D , 057 .
- Hausdorff , 0G8 , 0J5 , 0J6 , 0J8 , 0P5 .
- Heine , 2CB , 0V3 .
- Hermite , 1F7 .
- Hilbert , 1P5 .
- Hoelder , 1J3 .
- Hospital , see HΓ΄pital .
- Hurwitz , 1ZW .
- HΓ΄pital rule , 1C5 .
- HΓΆlder , 162 , 163 .
- HΓΆlder inequality , 10M .
- \( π \) , see identity matrix .
- Jacobi , 1G8 , 1V2 .
- Jacobi, formula , 1MT , 1V2 , 1V4 .
- Jacobi, matrix , 1G8 , 1GQ .
- Jensen inequality , 1C3 .
- Jordan , 2FW .
- Karush , 1HH .
- Koch , 0ZG .
- Kuhn , 1HH .
- Lagrange , 1H8 , 1HB .
- Lagrange multiplier , 10F , 10M , 1H8 , 1HB .
- Lagrange's theorem , 1C5 .
- Landau symbols , 1FB , 1FD , 1FF , 1FG , 1FJ .
- Laplace , 1V2 .
- Laplace expansion , 1V2 .
- Leibniz , 1DG .
- Leibniz's formula , 1DG .
- Leibniz, test , 0CN , 238 .
- LindelΓΆf , 1QB .
- Lipschitz , 162 , 163 , 1QB .
- Mazur , 2CH .
- Mertens , 0FM .
- Minkowski , 0RC , 0YJ .
- Minkowski sum , 0BC , 0RC , 2CP , 11R .
- Minkowski, dimension , 0YJ .
- Napier , 1M3 .
- Napier's constant , see Euler's number .
- Newton , 205 .
- ODE , 1QB and following , β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β
- Osgood uniqueness condition , 1QR .
- Peano , 1XB , 1P5 .
- Picard , 1QB .
- Raabe , 0DR .
- Ricci , 0MM .
- Riemann , see also Riemann integral , see also Riemann integrable function .
- Riemann integral , 14T , 19K and following , β β β β β β β β β β β β β β β β β β β β β β β β β β β 1FZ .
- S-saturated , 24X .
- \(T_2\) , see Hausdorff .
- Taylor , 1C5 .
- Taylor's theorem , 1C5 , 2D2 and following , β β β β β β 1FJ , β β β β
- Taylor's theorem, in \( β ^n\) , 1G8 , 1GB .
- Taylor's theorem, with integral remainder , 1BR , 1FR .
- Taylor, series , 1C2 , 1KZ , 1NC .
- Tucker , 1HH .
- Tychonoff , 0MP .
- UC , see function, uniformly continuous .
- Ulam , 2CH .
- Von Neumann , 26D .
- Young inequality , 10M , 194 , 1V7 .
- ZF , see formal set theory , 2DX , 2F2 , 04M .
- ZFC , 2DX , 2F2 , 04M .
- Zermelo , 01J , 241 , 23R .
- Zorn , 23R , 17J .
- \( \Gamma \) , see Gamma function .
- \( \Vert \cdot \Vert _\infty \) , in \( β ^n\) , β β β β β β β β β β β
- \( \Vert \cdot \Vert _p\) , in \( β ^n\) , β β β β β β β β β β β
- accumulation point , 0HJ , 0HT , 0QP , 2F3 , 138 , 13W , 13Y .
- accumulation point, in a topological space , 0GY .
- accumulation point, in metric spaces , 2C2 and following , β β β β β β β β β β β β β β β β β β β β β β β β β β β β 0QN , β β β β β β β β β 0S8 , 0SB .
- accumulation point, in the real line , 0BG , 0B3 , 0BH , 0SD , 1JS .
- adherent point , 0QP , 0QP .
- adherent point, in a topological space , 0GX .
- adherent point, in metric space , 0NX .
- adjugate matrix , 1V2 .
- algebraic number , 0C7 .
- alternating series test , see Leibniz test .
- analytic function , 1N4 and following , β β β β β β β
- anti-discrete topology , see indiscrete topology .
- antireflexiv, relation , 23X , 224 , 24K .
- antisymmetric, relation , 23X , 224 , 24K .
- arc , 1NV .
- archimedean , 1ZK .
- associative, addition , 27Q .
- atom , 1YS , 00G , 01J .
- axiom, first --- of countability , 0MC , 13Y .
- axiom, of choice , 23R , 02H , 02H , 2GF .
- axiom, of empty set , 014 .
- axiom, of extensionality , 1Y8 , 241 .
- axiom, of foundation , 01R , 25G .
- axiom, of infinity , 241 , 01Y , 243 .
- axiom, of pairing , 1Y3 .
- axiom, of power set , 1Y1 , 022 .
- axiom, of regularity , 241 , 01R , 25G .
- axiom, of replacement , 241 .
- axiom, of specification , 1Y0 .
- axiom, of union , 1Y2 , 026 .
- axiom, second --- of countability , 0MD , 0MH , 0Q5 , 0Q7 , 0T4 .
- axioms, Peano's --- , 1XB .
- axioms, ZermeloβFraenkel , see formal set theory .
- axioms, ZermeloβFraenkel , 01J .
- ball , 0NW , 0P1 , 0SM , 106 .
- ball packing , 0YS .
- ball, in ultrametric , 0WR .
- ball, inclusion , 0NZ .
- base, (induction) , 1XC .
- base, (topology) , 0HR , 2B5 and following , 0KK , β β β β β β β β β β β β β β 2F5 , β β 0QJ .
- base, (vector spaces) , see basis .
- basis, (induction) , 1XC .
- basis, (topology) , see base .
- basis, (vector spaces) , 02D , 057 .
- belonging , 1X2 .
- biconditional , 00D .
- big O , see Landau symbols .
- binomial , see also theorem, binomial .
- binomial, coefficient , 205 , 1FP .
- binomial, series , 1FP .
- boundary , 0G7 , 0H7 , 0HM , 174 .
- boundary, repeatedly , 0H9 .
- bounded above , 22R .
- bounded below , 22R .
- bounded, totally , 0V3 , 0VG , 2GB .
- box , 0Z7 .
- cancellation , 27V , 28B , 28R .
- cardinality , 1YW and following , β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β
- cardinality, comparison , 1YW .
- cardinality, continuum --- , 1YW , 0MZ .
- cardinality, countable , 1YW .
- cardinality, finite --- , 1YW , 1B1 .
- cardinality, of the continuum , 2F3 .
- cardinality, of the continuum , 03V .
- category , see also Baire's theorem , see also set, first/second β .
- category, Baire , 0VZ , 152 .
- chain , 01P .
- characteristic, function , 05R , 05S , 0BP , 2BP , 19Y .
- circle , 0Y3 , 0Y4 .
- closed , see set, closed β .
- closed curve , see curve, closed .
- closed simple curve , see curve, closed simple .
- closed topologist's sine curve , 0RP .
- closure , 0G7 , 0HM , 0KS , 0P8 , 0PP , 0PQ , 0Q8 , 176 , 178 , 0PN .
- closure, and interior , 0GJ , 0SG .
- closure, in metric space , 0NX .
- closure, repeated , 0GH .
- cluster point, in a metric space , 0QX , 0SN .
- codiscrete topology , see indiscrete topology .
- cofactor matrix , 1V2 .
- cofinal , 06P , 2B6 .
- commutative, group , 1ZF .
- commutative, ringβ , 1ZG .
- compact set , 0J3 , 0J6 , 2CB , 0V3 , 0VP .
- compact set, and net , 0K8 .
- compact set, and ultrametric , 0X6 .
- compact, sequentially , 0V3 .
- comparable , 229 .
- complement, of a set , see set, complement of .
- complement, set , see set,complement .
- complete , 0X4 .
- complex numbers , 1ZD , 0FH , 19M , 1K9 , 1SN .
- concatenation , 21W .
- concrete topology , see indiscrete topology .
- conjunction , 00D .
- connected component , 0JT .
- connected set , 2BR .
- connection, in metric spaces , 2C5 and following , 0RR .
- constant, Euler-Mascheroni , 0D6 .
- continuity modulus , 156 , 15F , 161 , 163 , 1HR , 1J3 , 1JG .
- continuous function , 2B8 and following , 2B9 , 2DP and following , β β β β β β β β β β β β β
- continuum hypothesis , 2F2 , 2F3 .
- continuum, cardinality of the β , 03V , 2F3 .
- contrapositive , 00N .
- convergence, of a sequence , 0MT .
- convergence, of a series , 0CN and following , β β β β β β β β β β β β β β β β β β β β β β β β β β β β β 0DW , β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β
- convergence, pointwise --- , 0MP , 1HQ and following , 2DT , β β β β β β β β β β β β β β β β β
- convergence, total --- , 116 , 118 , 1T1 .
- convergence, uniform --- , 1HQ and following , 2DT , β β β β β β β β β β β β β β β β β
- convex combination , 16W .
- convex envelope , 130 , 2G4 .
- convex function , 0ZX , 16V and following , β β β β β β β β β β β β β β β β β β β β β β β β β 17Y , β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β 1J3 .
- convex hull , see convex envelope .
- convex set , 2F0 and following , β β 16X , β
- convex set, strictly --- , 19D .
- countable , 04J , 2DD .
- countably infinite , 2DD .
- counterimage , 091 .
- criterion, total convergence --- , 118 .
- curve , 1NT and following , β 1NV , β β β β β β β β β β β β β β β β β β β β
- curve, Hilbert β , 1P5 .
- curve, Koch , 0ZG .
- curve, Peano β , 1P5 .
- curve, closed , 1PB .
- curve, embedded , 1NV , 1P0 .
- curve, immersed --- , 1NV .
- curve, parametric β , 1NV , 1PB .
- curve, polygonal β , 2G6 , 2FN .
- curve, simple , 1NV .
- curve, simple closed , 2FW , 2G6 , 1PB .
- curve, trace , 1NV .
- decreasing , 2DJ .
- deleted neighborhood , 0B2 , 0BG , 20D .
- deleted neighborhood, in a topological space , 0GY .
- dense , see set, dense .
- dense, in metric space , 0NX .
- derivative , 0HM .
- derivative, partial --- , 2D3 and following , β β β β β β β
- derivative, total --- , 2D3 and following , β β β β β β β
- determinant , see matrix, determinant .
- diffeomorphism , 1NX .
- differential , 2D3 and following , β β β β β β β
- differential equation , see ODE .
- dilation , 124 .
- dimension, Minkowski , 0YJ .
- dimension, box --- , 0Z7 .
- directed set , see order, directed , 2B2 .
- disconnected set , 2BR .
- discrete topology , 2F6 , 2FD , 2F9 , 0QF .
- discrete, distance , 2C1 .
- discrete, topology , 2C1 .
- disjunction , 00D .
- disk , 0NW , 0P1 , 0PY , 0Q0 , 0SM , 0VD , 106 .
- disk, in ultrametric , 0WR .
- distance , 0MS .
- distance function , 2C4 and following , 0R8 .
- distance function, and convex sets , 198 , 19B .
- distance, discrete --- , 2C1 .
- distance, p-adic --- , 0XF .
- \(e\) , see Euler's number .
- ear , 0JN .
- embedded curve , see curve, embedded --- .
- empty set , 242 , 014 .
- enumeration , 2DF , 1T9 .
- epigraph , 13D , 181 .
- equality , 1YS .
- equality, in set theory , 1Y8 .
- equations, Bessel's --- , 1KM .
- equicontinuous family , 1HR , 1JG .
- equicontinuous functions , 1J3 .
- equinumerous , 22B .
- equipotent , 22B .
- equivalence relation , see relation, equivalence .
- equivalent, norms , 107 , 109 .
- erosion , 124 .
- evaluation, of well-formed formula , 00J , 00N .
- eventually , 02M , 06Y , 064 , 018 , 0B3 , 20D , 20G , 20N , 0DJ , 02F , 21B , 21C , 0DR , 2B6 .
- exchanging limits , 0CX .
- expansion, Taylor's --- , see Taylor's theorem .
- exponential , 1M3 , 1SD .
- exponential, matrix --- , 1MF .
- exponentiation , 228 .
- exponentiation, in a field , 202 .
- exponentiation, of natural numbers , 280 .
- extended line , 09X , 0HP .
- fattened set , 0RC .
- field , 1ZH .
- field, ordered β , 1ZX .
- field, ordered β, \(β \) , 08V .
- filtering property , see order, with filtering property .
- finite , see set, finite .
- finite linear combination , 02D .
- first axiom of countability , 0MC , 13Y .
- first category set , 0VW .
- fixed point , 16J , 16K .
- floor , 0BS , 0BY , 0D6 .
- formal set theory , 01J , 241 and following , β β β β β β β β β β β β β β β β β β β β β β β β β β
- formula, Leibniz's --- , see Leibniz's formula .
- formula, Taylor's --- , see Taylor's theorem .
- formula, atomic , 00G .
- formula, exists and is unique , 013 .
- formula, well-formed β , 1YS , 1YS , 00G , 1YK , 00K , 00R , 013 , 252 , 05Z .
- formula, well-formed β, evaluation , 00J , 00N .
- formula, well-formed β, in set theory , 01J .
- formula, well-formed β, with quantifiers , 00Q , 00V .
- fractional part , 0BT .
- free variable , 00Q .
- frequently , 06Y , 064 , 018 , 0B3 .
- function , 1Y6 .
- function, Gamma , 1BM .
- function, HΓΆlder --- , 2DR and following , 162 , β β 163 , β β β β β β β 16F , β β β 1GX , 1J3 .
- function, Lipschitz --- , 0NH , 0R9 , 0Y0 , 156 , 2DR and following , 162 , β β 163 , β β β β β β β 16F , β β β 17W , 18J , 1GX , 1GZ .
- function, Riemann integrable --- , 14T , 19K and following , β β β β β β β β β β β β β β β β β β β β β β β β β β β 1J3 .
- function, absolutely homogeneous , 0ZV .
- function, analytic , see analytic function .
- function, bi--Lipschitz , 0Y0 .
- function, bounded --- , 142 , 1J3 .
- function, characteristic , 05R , 05S , 0BP , 2BP , 19Y .
- function, continuous , see continuous function .
- function, continuous --- , 2DN .
- function, convex , see convex function .
- function, discontinuous , 152 .
- function, indicator , see characteristic function .
- function, left inverse , 2BZ .
- function, liminf of β , see liminf .
- function, limsup of β , see limsup .
- function, monotonic , 1J3 .
- function, monotonic --- , 147 .
- function, partial , 23X , 01P .
- function, piecewise constant --- , 144 .
- function, piecewise smooth --- , 1QK .
- function, positively homogeneous , 0ZW , 0ZX .
- function, proper --- , 0T3 .
- function, regulated , see regulated function .
- function, right continuous --- , 147 .
- function, semi continuous , see upper/lower semicontinuous .
- function, strictly convex , see strictly convex function .
- function, uniformly continuous --- , 2DQ and following , β 155 , β β β β 15F , β β β β β β β β 163 , 16F , 1J3 , 1JN , 1JQ .
- function, uniformly continuous, space of --- , 1JX .
- functional, relation , 23X , 1Y6 .
- functions, equicontinuous , 1J3 .
- fundamental system of neighbourhoods , 0GW , 0MM , 2BP .
- funzione distanza , 0R9 .
- generate , 02D , 057 .
- graph , 1Y6 .
- greatest common divisor , 1WH .
- greatest element , 229 .
- greatest lower bound , see infimum .
- group , 1ZF .
- homeomorphism , 0J8 , 2B9 , 09T , 2F3 , 0V8 , 21N , 1NW , 1P0 , 1PH , 1PN .
- hyperplane , 17J .
- identity matrix , 1MG .
- image , 092 .
- immersed curve , see curve, immersed .
- implication , 00D .
- incomparable , 229 .
- increasing , 2DJ .
- indicator , see characteristic function .
- indiscrete topology , 2F6 .
- induced norm , 2CM .
- induction , 1XC .
- induction principle , 23B , 1XC .
- induction principle, strong -- , 1XS .
- induction, strong , 1XS .
- induction, transfinite --- , 1XY .
- inductive , see S-saturated .
- inequality, Jensen β , 1C3 .
- inequality, Young β , see Young inequality .
- inequality, triangle --- , 0MS , see triangle inequality .
- inf , see infimum .
- inf-convolution , 13P .
- infimum , 22R , 209 , 20B .
- infinite , see set, infinite .
- infinite, countably --- , 2DD .
- informal set theory , 01J .
- initial segment , 07T .
- injective , 23X .
- integer numbers , 03M .
- integer numbers, dense in ultrametric , 0XW .
- integer part , see floor , 0BY , 0D6 .
- integral domain , 203 .
- interior , 0G7 , 0GF , 0GH , 0HM , 0KS , 0P3 , 0PB , 0PD , 0PG , 0PJ , 0PM , 0Q8 , 172 , 174 , 176 , 178 .
- interior, and closure , 0GJ , 0SG .
- interior, in metric space , 0NX .
- interpolation, polynomial --- , 09J , 1F7 .
- intersection theorem , see Cantor, intersection theorem .
- interval , 2DW and following , 07C , β β β β β β β β
- interval, standard β , 07D .
- irrational numbers , 0C1 , 0VZ , 152 , 19Y .
- irrational numbers, approximation , 29Q .
- irreflexiv, relation , 23X , 224 , 24K .
- isolated point , 0HD , 0HJ , 2F3 , 0T5 , 1TZ .
- isolated point, in a topological space , 0GX .
- isometry , 0TM , 0TT , 0TW , 0TZ .
- itersection of sets , 1W1 .
- l.s.c. , see lower semicontinuous .
- labeled polygon , 2CD .
- least element , 229 .
- least upper bound , see supremum , 08T .
- left inverse , 2BZ , 2BX .
- lemma, Abel's β , 1KJ .
- lemma, Dini's --- , 1HS .
- lemma, Gronwall's β , 1QB .
- lemma, Hadamard's β , 1F1 .
- lemma, Zorn's β , 23R , 17J .
- lexicographic order , see order, lexicographic .
- liminf , 29P , 02F .
- liminf, of function , 29P and following , β 20F , β β 0BK , β β β β β β β β
- liminf, of sequence , 0BQ .
- liminf, of sets , 1Z2 , 063 , 064 , 065 , 0BP .
- limit inferior , see liminf .
- limit point, of a net in a topological space , 2B4 .
- limit superior , see limsup .
- limsup , 29P .
- limsup, of function , 29P and following , β 20F , β β 0BK , β β β β β β β β
- limsup, of sequence , 0BQ .
- limsup, of sets , 1Z2 , 063 , 064 , 065 , 0BP .
- line , see also real line .
- line, extended , see extended line .
- linear isometry , 111 .
- linear, order , see order, total .
- linearly independent , 02D , 057 .
- locally compact , 0VD .
- logarithm , 21N .
- lower bounds , 22R .
- lower semicontinuous , 2CV and following , 138 , β β β β β β β β β β β β β
- majorants , 22R .
- matrix, adjugate --- , 1V2 .
- matrix, cofactor --- , 1V2 .
- matrix, determinant , 1V0 , 1V2 , 1V4 .
- matrix, exponential , 1MF .
- matrix, identity --- , 1MG .
- maximal , 229 , 06V .
- maximum , 229 , 06V , 0HT .
- mean value theorem , see Lagrange's theorem .
- metric space , 0MR and following , 2CC , β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β 13P .
- metric space, also a group , 0R5 .
- minimal , 229 , 1XP .
- minimum , 229 .
- minimum, on convex set , 18B .
- minorants , 22R .
- monotonic , 2DJ .
- natural numbers , 1X9 and following .
- natural numbers, order , 26Y .
- negation , 00D .
- neighborhood, deleted , 0B2 , 0BG , 20D .
- neighborhood, deleted, in a topological space , 0GY .
- neighborhood, of infinity , 231 .
- neighborhood, punctured , 0B2 .
- neighbourhood , 0GW .
- neighbourhood, fundamental system of β , 0GW , 0MM , 2BP .
- neighbourhood, in \( β \) , 0B2 .
- net , 21J , 230 , 22Y , 0K4 , 0KD , 0KG , 2BP .
- net, and compact set , 0K8 .
- network , 0FS .
- norm , 0ZV .
- norm, Frobenious , 11H .
- norm, and dimension , 0Z1 .
- norm, spectral , 11G .
- normed vector space , 0ZT and following , β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β
- normed vector space, strictly convex --- , 0ZZ .
- norms, equivalent , 107 , 109 .
- numbers , see also natural numbers , see also integer numbers , see also rational numbers , see also real numbers , see also complex numbers .
- numerabile , 2DD .
- numero di Nepero , see Euler's number .
- one-point compactified line , 0HR .
- open, see{set, open β} , 0G6 .
- open-close , 0Q8 .
- order , 1YY and following , β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β
- order isomorphism , 07V .
- order relation , 1Y5 .
- order topology , 2F5 , 2F9 .
- order, (partial) , 24W .
- order, directed , 2FJ and following , β 06N , β β β β β β β β β β β β β β β 237 , 0HS , 0HT , 0HW , 0K5 .
- order, directed, of sets , 0GQ , 0KG .
- order, lexicographic , 2FH and following , β 071 , β β β β β 2F9 .
- order, of natural numbers , 26Y .
- order, partial , 1Y5 .
- order, strict total --- , 24K .
- order, total , 1Y5 , 24W , 24K , 2F5 , 2F9 .
- order, type , 07V .
- order, with filtering property , 2FJ and following , β 06M , β β 06P , β β 06Q , β β β β β β β β β β β 237 , 2B6 .
- order, with filtering property, and net , 21J .
- order-isomorphic , 07V .
- ordered field , 1ZX .
- ordered field, \(β \) , 08V .
- ordered ring , 1ZJ , 1ZT , 1ZV .
- ordered set , see order .
- ordinal , 26D .
- ordinary differential equation , see ODE .
- oscillation , 13T , 143 .
- osculating circle , 1TJ , 1TJ .
- p-adic, distance , 0XF .
- p-adic, valuation , 0XG , 0XM .
- parametric curve , see curve, parametric --- .
- partial function , 23X , 01P .
- partial order , see order, partial , 224 .
- partial, derivative , see derivative, partial .
- path connected set , 0RG .
- perfect , 09S , 2F3 , 0W3 .
- pointwise , see convergence, pointwise .
- polygon , 2FN , 10Y .
- polygon, ear , 0JN .
- polygonal curve , 2G6 , 2FN .
- polynomial , 09J , 03H , 29Q and following , β β β β β β β β β 0C7 , β β β β β β β β β 19M , 1F7 , 23Z , 1SC , 1SD , 1SF , 1SH , 1SK , 1SN , 1SP .
- polynomial interpolation , 09J , 1F7 .
- polynomial, Taylor's --- , see Taylor's theorem .
- polynomial, convergence of --- , 1J3 .
- polynomial, ring --- , 0C8 .
- polynomial, sequence of --- , 1J3 .
- power , see also exponentiation .
- power series , 1K6 and following , β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β
- power set , 242 , 1Y1 .
- predecessor , 25C , 1Z1 , 1YP .
- preorder , 02M , 1Z7 .
- product topology , 0M3 , 0QM .
- product topology (of infinitely many spaces) , 2F7 , 2F9 .
- product, Cartesian β , see Cartesian product .
- projection, theorem , 17D .
- proper, function , 0T3 .
- property, cancellation , see cancellation .
- proposition (logic) , 1YS .
- punctured neighborhood , 0B2 .
- quantified variable , 00Q .
- radius of curvature , 1TJ .
- ratio test , 21C .
- rational numbers , 03M , 1ZD , 200 , 29Q , 0C1 , 19Y , 1T9 .
- rational numbers, and ultrametric , 0XF , 0XM , 0XY , 0Y0 .
- real line , see also real numbers .
- real line, one-point compactified --- , 0HR .
- real number, approximation of β , 29Q .
- real numbers , 1ZD , 09X and following , β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β see also real line .
- recursive , 0CN .
- recursive, definition , 08Z .
- reflexiv, relation , 23X .
- regular curve , see curve, immersed .
- regulated function , 2CT and following , 141 , 142 , 143 , 144 , 1B3 , 1B4 , 1B6 , 1B9 , 1J3 .
- relation , 1WY .
- relation, antireflexiv , 224 .
- relation, antisymmetric , 224 .
- relation, equivalence --- , 1W5 , 093 , 0MX , 0MZ , 0R2 , 0YD .
- relation, equivalence ---, between curves , 1NW , 1NX , 1PN .
- relation, equivalence ---, for \( S^1\) , 0Y4 .
- relation, equivalence ---, in group , 0R5 .
- relation, irreflexiv , 224 .
- relation, order β , see order .
- relation, transitive , 224 .
- right inverse , 2BX .
- rigidity property , 1JG .
- ring , 1ZG .
- ring, of polynomials , 0C8 .
- ring, ordered β , 1ZJ , 1ZT , 1ZV .
- root test , 219 .
- rule of signs , 1D7 .
- second axiom of countability , 0MD , 0MH , 0Q5 , 0Q7 , 0T4 .
- second category set , 0VW .
- semicontinuous, lower , see lower semicontinuous .
- semicontinuous, upper , see upper semicontinuous .
- separable space , 0MH , 0Q7 .
- separation , 17H , 17J , 17T .
- sequence , 16G .
- sequence, Cauchy β , 0MT , 0MV , 0N5 , 0N6 , 0N8 , 0NC , 0VD .
- sequence, Cauchy β, and subsequence , 0N8 , 0NC .
- sequence, convergence of --- , see convergence of a sequence .
- sequence, recursive , 08Z , 0CN .
- sequentially compact , 0V3 .
- series, binomial β , 1FP .
- set theory , see also axioms ... .
- set theory, formal , 01J .
- set theory, informal , 01J .
- set, Cantor -- , see Cantor set .
- set, Dedekindβinfinite , 04G , 04M .
- set, boundary , see boundary , 0H7 .
- set, closed β, in metric space , 0NX .
- set, closed β, in topology , 0G6 .
- set, closure , see closure .
- set, complement of a --- , 23S , 05R , 063 , 0G5 , 0H7 , 0P6 .
- set, countable --- , 04J .
- set, dense , 0G7 .
- set, derived --- , 0GY , 2C2 , 0QV , 0SD , 0T5 .
- set, difference , 23S .
- set, empty β , 242 , 014 .
- set, fattened --- , 0RC .
- set, finite --- , 1B1 .
- set, first category --- , 0VW .
- set, infinite --- , 1B1 .
- set, infinite, Dedekind --- , 04G , 04M .
- set, interior , see interior .
- set, of finite subsets , 03R , 053 , 0F5 , 0FW .
- set, open β, in metric space , 0NX .
- set, open β, in topology , 0G6 .
- set, path connected , 0RG .
- set, perfect --- , 09S , 2F3 , 0W3 .
- set, power -- , see power set .
- set, power β , 242 .
- set, second category --- , 0VW .
- set, strongly directed , see order, with filtering property .
- set, sublevel --- , 182 .
- set, symmetric difference , 23S .
- set, symmetric difference, using characteristics , 05S .
- simple closed curve , see curve, closed simple .
- simple curve , see curve, simple --- .
- simplex , 16Z .
- sin(1/x) , 0RP .
- sine curve , 0RP .
- small o , see Landau symbols .
- snowflake , see Koch curve .
- space, Hausdorff --- , see Hausdorff .
- space, of uniformly continuous functions , 1JX .
- space, separable , 0MH .
- space, topological , 0G5 and following , 2DY , β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β
- space, totally disconnected --- , 0K0 , 0QF , 0WW .
- span , 02D , 057 .
- sphere , 0PY , 0Q0 , 0SM , 106 , 114 , 1P7 , 1PX .
- star , see Koch curve .
- strict partial order , 224 .
- strict total order , 24K .
- strictly convex function , 17Y .
- strictly convex, normed vector space , 0ZZ .
- strong induction , 1XS .
- strongly directed set , see order, with filtering property .
- subadditive function , 0N1 , 15W , 192 .
- subadditive function and ultrametric , 0WY .
- subdifferential , 188 , 19B .
- sublevel set , 182 .
- subnet , 230 , 22Y .
- subscript , 228 .
- subsequence , 0D2 , 0D4 , 230 .
- subsequence, converging , 0MP , 0V3 .
- successor, in Peano's natural numbers , 1XB .
- successor, in ZermeloβFraenkel set theory , 24X , 1YM , 26F .
- successor, in well ordered sets , 1Z0 .
- sum, Minkowski --- , 0RC .
- sup , see supremum , 08T .
- superscript , 228 .
- support , 17T .
- support, of a curve , 1NV .
- supporting hyperplane , 17J .
- supremum , 22R , 08T .
- surjective , 23X .
- symmetric, relation , 23X .
- tautology , 00N , 016 , 05Z .
- tessellation , 0Z7 .
- test, Cauchy condensation --- , 21D .
- test, Leibniz β , 0CN , 238 .
- test, alternating series β , see Leibniz test .
- test, ratio --- , 21C .
- test, root --- , 219 .
- theorem, Ascoli--ArzelΓ 's --- , 1HQ , 1K4 .
- theorem, Baire's β , 0VV .
- theorem, CauchyβLipschitz β , 1QB .
- theorem, Dirichlet's approximation , 0C1 .
- theorem, Edelsteinβs --- , 0TH .
- theorem, Hahn--Banach β , 17J .
- theorem, Hurwitz's --- , 1ZW .
- theorem, HΓ΄pital , see HΓ΄pital rule .
- theorem, Jordan β , 2FW .
- theorem, Lagrange's --- , see Lagrange's theorem .
- theorem, MazurβUlam , 2CH , 114 .
- theorem, Mertens' --- , 0FM .
- theorem, Monotone convergence --- , 0G0 .
- theorem, PicardβLindelΓΆf β , 1QB .
- theorem, Taylor's --- , see Taylor's theorem .
- theorem, Taylor's ---, with Lagrange remainder , see Lagrange remainder .
- theorem, Tychonoff β , 0MP .
- theorem, Zermelo , 23R .
- theorem, binomial --- , 205 .
- theorem, dimension --- , 057 .
- theorem, existence and uniqueness β , 1QB .
- theorem, implicit function --- , 1GD .
- theorem, intersection --- , see Cantor, intersection theorem .
- theorem, mean value --- , see Lagrange's theorem .
- theorem, of uniqueness of the limit , 0MW .
- theorem, projection --- , 17D .
- theorem, two ears β , 0JN .
- topological group , 0X8 .
- topological space , 0G5 and following , 2DY , β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β
- topology , 2DY , 0G6 .
- topology, discrete , 2F6 , 2FD , 2F9 , 0QF .
- topology, discrete --- , 2C1 .
- topology, in metric spaces , 2C2 and following , β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β
- topology, indiscrete , 2F6 .
- topology, induced β , 2BR , 2DK .
- topology, order β , 2F5 , 2F9 .
- topology, product β , 0M3 , 0QM .
- topology, product β (of infinitely many spaces) , 2F7 , 2F9 .
- total convergence , see convergence, total .
- total convergence criterion , 118 .
- total order , see order, total .
- total, derivative , see derivative, total .
- total, relation , 23X , 1Y6 .
- totally bounded , 0V3 , 0VG , 2GB .
- totally disconnected , see space, totally disconnected .
- trace, of a curve , 1NV .
- transcendental number , 0C7 .
- transfinite, induction , 1XY .
- transitive, relation , 23X , 224 , 24K .
- transitive, set , 24Z .
- triangle inequality , 0B0 , 0MS , 0WN , 0ZV , 0ZX .
- triangulated , 1XW .
- trichotomous, relation , 23X , 24K .
- trivial topology , see indiscrete topology .
- u.s.c. , see lower semicontinuous .
- ultrametric , 0WM .
- ultrametric, of sequences , 0X0 .
- ultrametric, of sequences, dimension , 0ZP .
- uniform , see convergence, uniform .
- union of sets , 1Y2 , 026 .
- unlabeled polygon , 2CD .
- upper bounds , 22R .
- upper semicontinuous , 2CV and following , 138 , β β β β β β β β β β β β β
- valuation, p-adic --- , 0XG , 0XM .
- variable, free , 00Q .
- variable, quantified , 00Q .
- vector space , 0MM , 1SN .
- vector space, normed --- , see normed ... .
- well-formed formula , see formula, well-formed .