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§1 Introduction [100]

The Scuola Normale Superiore (SNS) is a prestigious university institution with special
status that welcomes students into two distinct paths: the undergraduate course (parallel
to undergraduate and master’s degree programs) and the advanced course (PhD).

SNS students in the undergraduate course are required to take some ”internal courses”
during the academic year, in addition to their regular university courses (to which they
are duly enrolled at the University of Pisa). Every year, first-year SNS students in sub-
jects such as Mathematics, Physics, Chemistry, and Biology have followed an annual
internal Mathematics course. This course aims to delve deeper into and expand upon
the traditional concepts included in the curricula of university courses that SNS students
simultaneously attend.

Over the last 15 years, this course has covered several fundamental topics. It begins
with a more thorough treatment of the foundations of Mathematics, including set theory
based on the Zermelo-Fraenkel axioms, the construction of the set of natural numbers,
and the characterization of real numbers as a complete ordered field. It then progresses
to topics such as series and sequences, metric spaces and topology, differential calculus,
and ordinary differential equations.

In these years, professors Giuseppe Da Prato, Fulvio Ricci, Luigi Ambrosio and
Franco Flandoli have held the course. In addition to the author of this volume, Francesco
Bonsante, Carlo Mantegazza, Simone Di Marino, Tommaso Pacini, Luciano Mari,
Lorenzo Mazzieri, Andreas Hochenegger, Andrea Ferraguti, Alessandra Caraceni col-
laborated with TA.

The course notes have been published in [2].
The author has collaborated as TA, for more than ten years, accumulating a sig-

nificant amount of theoretical material and exercises, which are now presented in this
volume.

As is the case for text [2], this volume is not entirely self-contained as it is intended
as a supplement to standard university courses in the first year. However, the first part
is an exception because courses covering topics in logic fundamentals are not typically
offered in the first year, and the texts used are often not written in a readily accessible
language for first-year students. Therefore, Chapters 3 and 4 have been expanded to
include the necessary theoretical elements, often disguised as exercises. Starting from
Chapter 5, useful references to tackle the exercises are provided, along with some def-
initions and lemmas.

It should be noted that the numbering system in this volume follows a specific
method: sections (and subsections), footnotes, and figures are numbered independently,
while everything else in the volume follows a unique numbering system, divided by
sections. This includes theorems, propositions, lemmas, equations, and more. The dif-
ferent numberings are made distinguishable by the use of Roman or Arabic numerals
and/or special symbols, such as § for sections and † for notes.

ColDoc [2G2]

The author has also developed a software package called ColDoc (freely available) that
facilitates the management of complex LATEXdocuments and allows for online access.
It can be used on both computers and mobile devices such as tablets and smartphones.

The ColDoc version of this text is accessible at https://coldoc.sns.it/CD/
EDB; this platform was initially created to enhance interaction with students during the
Covid pandemic. It has evolved in a featureful document system.
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§1 INTRODUCTION

The ColDoc system divides the text into small elements, each identified by a UUID
code. The UUID code permanently identifies an object; whereas the LaTeX system’s
assigned number could change if additional material were added before that object (e.g.,
in a future edition). Therefore, the UUID code can be used for bibliographic references
and for making notes on an item of interest to share with colleagues or students, as
the UUID code can be used to retrieve the item in the web interface. For example, this
introduction can be found at https://coldoc.sns.it/UUID/EDB/2G1.

The ColDoc system also implements a multilingual LaTeX document management
system: for instance, this text is available in both English and Italian.

Copyright [009]

This text is Copyright: Andrea C. G. Mennucci, 2012-2024.
The sections comprising the theory (as well as exercises’ statements) are released

under: Creative Commons Attribution-ShareAlike 3.0 Unported License (WP:CC BY-
SA).

All right regarding solutions of exercises (in appendix) are reserved. The author
mantains exclusive rights on the solutions of the exercises, to the extent permitted by
applicable law.
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§2 Notations [00B]

• ℕ are the natural numbers, including zero.

• ℤ are the integers.

• ℚ are the rational numbers.

• ℝ is the real line.

• ℂ are the complex numbers.

A list of symbols is also available at the start of the index.

Remark 2.1. The symbols ∧ and ∨ can be used in two different contexts, where they [2DM]

assume different meanings.

• If 𝑥, 𝑦 ∈ ℝ are real numbers, then 𝑥∧𝑦 is the minimum of the two numbers, while
𝑥∨𝑦 is the maximum of the two numbers. This meaning is also appropriate when
𝑥, 𝑦 are in a totally ordered set. †1

• In mathematical logic, ∧ is the conjunction and ∨ is the disjunction. See 3.a.4.

Remark 2.2. The parentheses symbols () are unfortunately quite overloaded in com- [2FG]

mon Mathematical language.

• They are used to group algebraic operations, to induce a different order of oper-
ations (wrt the standard rules of precedence). For example, for 𝑥, 𝑦 ∈ ℝ, †2 the
expression 𝑥(𝑦 + 2) is identical to 𝑥𝑦 + 2𝑥 and not to 𝑥𝑦 + 2.

• They are used to denote arguments of functions. For example the expression
𝑓(𝑥 + 𝑦) should be read as 𝑓𝑥 + 𝑓𝑦, if 𝑓, 𝑥, 𝑦 ∈ ℝ †3; whereas, if 𝑓 is a function
𝑓 ∶ ℝ → 𝐵, then 𝑓(𝑥 + 𝑦) is the result 𝑓(𝑧) obtained by evaluating 𝑓 on the
element 𝑧 = 𝑥 + 𝑦.
To distinguish these two usages, it may be sufficient to add an explicit symbol to
denote ”multiplication”, writing 𝑓∗(𝑥+𝑦) when it should be read as 𝑓∗𝑥+𝑓∗𝑦.
(Some authors also write 𝑓.(𝑥 + 𝑦) with a ”dot”)

• They are used to define intervals, for example, (1, 𝜋) may be shorthand for: «the
set of real numbers larger than 1 and smaller than 𝜋;» in formula

(1, 𝜋) = {𝑡 ∈ ℝ ∶ 1 < 𝑡 < 𝜋} ;

this extends to ordered sets, see Sect. §3.d.d.

• They are used to represent elements of the Cartesian product; for example, (1, 𝜋)
is point in ℝ2 with 1 as abscissa and 𝜋 as ordinate.

†1∧ and ∨ are also used in partially ordered set, but we will not discuss their definition in this text.
†2Or, more in general, if 𝑥, 𝑦 are elements of a ring where multiplication is denoted by justaposition of

symbols.
†3Again, more in general, if𝑓, 𝑥, 𝑦 are elements of a ringwhere multiplication is denoted by justaposition.
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§2 NOTATIONS

While the first and second situations are usually discernable and recognizable, the third
and fourth can cause confusion.

Some care is needed in parsing statements involving Cartesian products of ordered
sets, such as: «a point (𝑥, 𝑦) in the rectangle 𝑅 of the plane that is the product 𝑅 =
(0, 1) × (2, 4)». Here (𝑥, 𝑦) is a point in ℝ2 whereas (0, 1), (2, 4) are intervals in ℝ.

To avoid confusion, we may use a different notation for points and/or for intervals:
many symbols that are similar to ”parentheses” are available nowadays in the extended
Unicode codespace, and are available to LATEX users through the unicode-math pack-
age.

For example, in the above statement, we may use this (non-standard) notation: use
barred parentheses ⦗…⦘ to denote the point in ℝ2 with 𝑥 as abscissa and 𝑦 as ordinate;
use double parentheses ⦅𝑎, 𝑏⦆ = {𝑡 ∈ ℝ ∶ 𝑎 < 𝑡 < 𝑏} for intervals; so as to obtain «a
point ⦗𝑥, 𝑦⦘ in the rectangle 𝑅 of the plane that is the product 𝑅 = ⦅0, 1⦆ × ⦅2, 4⦆». In
this case, for typographic consistency, we may use at the same time double brackets for
closed-ended intervals, such as ⟦2, 4⟧.

This may be considered overkill for this example. But the situation can be more
complicated, though!

For example, we may be dealing with intervals of elements of an ordered set 𝑋 , that
is also a Cartesian product 𝑋 = 𝑋1 × 𝑋2 of ordered sets 𝑋1, 𝑋2 (!) †4 In that case, we
should first label the orders, for example: ≤1 being the order relation on 𝑋1, ≤2 being
the order relation on 𝑋2, and ⪯ being the order relation on 𝑋; and use a (non-standard)
notation for intervals, such as

⦅𝑎, 𝑏⦆1 = {𝑡 ∈ 𝑋1 ∶ 𝑎 <1 𝑡 <1 𝑏}

for open-ended intervals in the first set (with extremes 𝑎, 𝑏 ∈ 𝑋1),

⦅𝑧, 𝑤⦆⪯ = {𝑥 ∈ 𝑋 ∶ 𝑤 ≺ 𝑥 ≺ 𝑧}

for open-ended intervals in the Cartesian product 𝑋 (with extremes 𝑧, 𝑤 ∈ 𝑋), and so
on. Again, for typographic consistency, we may use double brackets for closed-ended
intervals, such as

⟦𝑎, 𝑏⟧1 = {𝑥 ∈ 𝑋1 ∶ 𝑎 ≤1 𝑥 ≤1 𝑏}
and so on.

In the following we will often use the usual parentheses () ; but in certain contexts
we will use the notation proposed in this note (when it could help in understanding the
text).

See also Remarks 3.a.6 and 6.1.

†4BTW, there is a standard method to order a Cartesian product of ordered sets, see Sect. §3.d.b.
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§3 Fundamentals [00C]

§3.a Logic [1YS]

In the next sections we will give some definitions; these are simplified, but sufficient [23H]

to cope with the exercises. Readers interested in an in-depth study can consult a book
on Logic such as [12].

§3.a.a Propositions

Definition 3.a.1. A logical proposition 𝜑 is an assertion that takes on the value of [1VW]
(Solved on
2020-10-22)

truth or falsehood.

Example 3.a.2. Examples: [1VX]

• ”the snow is white”,

• ”the Earth has a diameter of about 12000km”,

• ”a kg of bread costs 3$”.

(One could argue philosophically about what is meant by ”truth”: in many areas [23J]

the truth of a proposition is subjective, it can depend on the context, the interpretation,
who does and who answers the question, on when the question is asked, etc etc; in
mathematics the situation is simpler).

A proposition may depend on some variables. Examples:

• ”the person x by trade is a baker”,

• ”the number x is greater than 9”.

We write
𝑃(𝑥) ≐ “the number x is larger than 9’

to say that 𝑃(𝑥) is the symbol that summarizes the proposition written on the right.
Remark 3.a.3. For the proposition to make sense, we will have to narrow down the [23K]

scope of the variable to an appropriate set; in the first case, the set of human beings;
in the second case, a numerical set (e.g. integers).

At this level of discussion, the concept of ”set” is intuitive; we will see later that
there is an axiomatic theory of sets, almost universally used in Mathematics; however,
even the intuitive concept of set is widely used (See remark 3.b.16).

§3.a.b Propositional logic

Definition 3.a.4. A propositional logic is a language, with associated an alphabet [00D]

of variables (which for convenience in the following we will identify with the Italian
alphabet) and a family of connectives †5

negation, NOT ¬
conjunction, AND ∧
disjunction, OR ∨

implication ⇒
biconditional, iff ⇔

†5In logic texts, the symbol→ is often used for the implication and the symbol↔ for the double implication
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§3 FUNDAMENTALS

to these symbols we add parentheses, which are used to group parts of the formula
(when there is a risk of ambiguity); the parentheses are omitted when the precedence of
the operators allows; the operators are listed in the previous list in descending order
of precedence. †6

Definition 3.a.5. Well-formed formulas are [00G]
(Solved on
2022-10-11)• atomic formulas, i.e. composed of a single variable, or

• a formula of the type ¬(𝛼) where 𝛼 is a well-formed formula, or

• – a formula of the type (𝛼) ⇒ (𝛽) , or
– a formula of the type (𝛼) ⇔ (𝛽) , or
– a formula of the type (𝛼) ∨ (𝛽) , or
– a formula of the type (𝛼) ∧ (𝛽) ,

where 𝛼, 𝛽 are two well-formed formulas.

You can determine if a formula is well formed by making a finite number of checks [1YK]

using the previous rules: in fact the rules establish that any well-formed formula must
be decomposable in terms of well-formed formulas that are shorter than it. So the
statement ”this formula is well formed” is ”decidable”. †7

Remark 3.a.6. In the definition 3.a.5 we speak of atomic formulas, i.e. composed of [228]

a single variable; we want to reflect on this. In programming languages we may use
names composed of several letters to identify objects (variables, functions, etc.): such
as

foo = 3 ;
bar = 7;
foo = foo + bar;

In mathematics this is unusual, since in a formula such as

𝑥𝑦𝑧 + 𝑎𝑏𝑐

it would be difficult to understand if xyz is a variable, or the product of three vari-
ables 𝑥, 𝑦, 𝑧. For this reason, usually, in mathematics the identifiers are composed of
a single letter; some notable functions are an exception, such as sin, cos, exp, log…etc.
However, this creates some problems when you want to express a formula where there
are many variables; for this reason, letters from the Greek alphabet are also used, and
even Hebrew, in particular ”aleph” ℵ and ”beth” ℶ; and the letters are also accompa-
nied by indexes, subscript as 𝑥1, 𝑥2, 𝑥3 or superscript 𝑥1, 𝑥2, 𝑥3 (being careful not to
be confused with the exponentiation); then there are variants expressed with the signs

̂𝑥, 𝑥, ̃𝑥, 𝑥′ (being careful not to get confused with derivatives); and there are choices of
fonts, such as ”calligraphic” 𝒜, ℬ, 𝒞, 𝒟, …, the ”fraktur” 𝔞, 𝔟, 𝔠, 𝔡 … 𝔄, 𝔅, ℭ, 𝔇 or the
blackboard bold 𝕒, 𝕓, 𝕔, 𝕕 … 𝔸, 𝔹, ℂ, 𝔻.

Definition 3.a.7. An evaluation assigns to each variable a value of ”true” or ”false”. [00J]

†6Some scholars use a different order of precedence, some consider ”the implication” as preceding the
”disjunction”. For this reason it is always better to use parentheses to group the parts of phrase where these
connectives are used.

†7The precise definition of ”decidable” goes beyond these notes. Think of an algorithm written on the
computer that, given a formula, with a finite number of computations answer ”well formed” or ”not well
formed”. Note, however, that the number of checks to be done grows exponentially with the length of the
formula.
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§3.a Logic

Knowing the value of the variables, and using the known truth tables for connectives
†8, we can calculate the value of each well-formed formula.

So a well-formed formula is a ”logical proposition” as it takes on the value of truth
or falsehood, depending on the value given to its free variables. We can broaden the
definition by adding that the propositions seen in the previous section they are ”atomic
formulas”; For example,

”𝑥 is a number less than 3” ∧ ”𝑦 is an even number”

it will also be a ”well-formed formula”.
For convenience, in this Section, we also add to the language the constants 𝑉 and

𝐹 which are respectively always true and always false, in every evaluation. †9 In the
construction of well-formed formulas they are treated as variables. Note that we have
not introduced the equality connective ”=”. When all variables can only take true/false
values, the equality 𝑎 = 𝑏 can be interpreted as 𝑎 ⟺ 𝑏. In more general contexts (as
in the case of set theory) instead, ”equality” needs a precise definition.

Exercises

E3.a.8 Complete the following truth table [1VY]

P Q ¬ P 𝑃 ∧ 𝑄 𝑃 ∨ 𝑄 𝑃 ⇒ 𝑄 𝑃 ⇐ 𝑄 𝑃 ⇔ 𝑄
V V
V F
F V
F F

Hidden solution: [UNACCESSIBLE UUID '1VZ']

E3.a.9 Tell which formulas are well formed, and add parentheses to highlight the order [00K]

of precedence.

𝑎 ∧ ¬𝑏 ∧ 𝑐 ∧ 𝑑
¬𝑎 ∨ 𝑏 ∧ 𝑐 ⇒ 𝑑
𝑎 ⇒ ¬𝑏 ∧ 𝑐 ∨ 𝑑

𝑎 ∧ 𝑏 ∨ 𝑐 ⇔ ¬𝑐 ⇒ 𝑑
𝑎 ∨ 𝑏¬𝑐 ∨ 𝑑

Hidden solution: [UNACCESSIBLE UUID '00M']

E3.a.10 A well-formed formula in propositional logic is a tautology if for each eval- [00N]

uation the formula is always true. Suppose 𝐴, 𝐵, 𝐶 are well-formed formulas. Show
that the following properties of connectives are tautologies. †10

†8See 3.a.8
†9We can get rid of constants 𝑉 and 𝐹 by defining them as 𝑉 = 𝐴 ∨ ¬𝐴 and 𝐹 = ¬𝑉 .
†10These lists are taken from Section 1.3 in [12], or [29].
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§3 FUNDAMENTALS

𝐴 ⇒ 𝐴 identity law

¬(¬𝐴) ⇔ 𝐴 law of double negation

𝐴 ∨ 𝐴 ⇔ 𝐴 , 𝐴 ∧ 𝐴 ⇔ 𝐴 laws of idempotence

(𝐴 ⇒ 𝐵) ⇔ (¬𝐵 ⇒ ¬𝐴) law of opposition,

or of the contrapositive †11 (3.a.11)
(𝐴 ⇒ 𝐵) ⇔ (¬𝐴 ∨ 𝐵) ⇔ (¬(𝐴 ∧ ¬𝐵)) equivalence of implication,

conjunction and disjunction (3.a.12)
𝐴 ∧ 𝐵 ⇔ ¬(¬𝐴 ∨ ¬𝐵) first law of De Morgan (3.a.13)
𝐴 ∨ 𝐵 ⇔ ¬(¬𝐴 ∧ ¬𝐵) second law of De Morgan (3.a.14)

𝐴 ∧ (𝐵 ∨ 𝐶) ⇔ (𝐴 ∧ 𝐵) ∨ (𝐴 ∧ 𝐶) distributive property of the conjunction

with respect to the disjunction (3.a.15)
𝐴 ∨ (𝐵 ∧ 𝐶) ⇔ (𝐴 ∨ 𝐵) ∧ (𝐴 ∨ 𝐶) distributive property of the disjunction

with respect to the conjunction (3.a.16)
𝐴 ∧ 𝐵 ⇔ 𝐵 ∧ 𝐴 commutative property of ∧
𝐴 ∨ 𝐵 ⇔ 𝐵 ∨ 𝐴 commutative property of ∨

𝐴 ∧ (𝐵 ∧ 𝐶) ⇔ (𝐴 ∧ 𝐵) ∧ 𝐶 associative property of ∧
𝐴 ∨ (𝐵 ∨ 𝐶) ⇔ (𝐴 ∨ 𝐵) ∨ 𝐶 associative property of∨ (3.a.17)

These last two properties allow to omit parentheses in sequences of conjunctions or
disjunctions.
The property (3.a.12),(3.a.13),(3.a.14) they say that we could base all logic on con-
nectives alone ¬ and ∧, (or on ¬,   ∨).

†11The clause (¬𝐵 ⇒ ¬𝐴) is called ”contrapositive” of (𝐴 ⇒ 𝐵).
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§3.a Logic

Other important tautologies, often used in logical reasoning.

𝐴 ∨ ¬𝐴 excluded middle

¬(𝐴 ∧ ¬𝐴) law of non-contradiction

(𝐴 ∧ (𝐴 ⇒ 𝐵)) ⇒ 𝐵 modus ponens (3.a.18)
(¬𝐵 ∧ (𝐴 ⇒ 𝐵)) ⇒ ¬𝐴 modus tollens (3.a.19)

¬𝐴 ⇒ (𝐴 ⇒ 𝐵) negation of the antecedent

𝐵 ⇒ (𝐴 ⇒ 𝐵) affirmation of the consequent

(𝐴 ⇒ (𝐵 ⇒ 𝐶)) ⇒ ((𝐴 ∧ 𝐵) ⇒ 𝐶) exporting

((𝐴 ⇒ 𝐵) ∧ (𝐴 ⇒ 𝐶)) ⇒ (𝐴 ⇒ (𝐵 ∧ 𝐶)) proof by parts

((𝐴 ⇒ 𝐶) ∧ (𝐵 ⇒ 𝐶)) ⇒ ((𝐴 ∨ 𝐵) ⇒ 𝐶) proof by cases

((𝐴 ⇒ 𝐵) ∧ (𝐵 ⇒ 𝐶)) ⇒ (𝐴 ⇒ 𝐶) hypothetical syllogism, or transitivity of impli-
cation

(𝐴 ∨ (𝐴 ∧ 𝐵)) ⇔𝐴 ∧ (𝐴 ∨ 𝐵) ⇔
(𝐴 ∨ 𝐹) ⇔ (𝐴 ∧ 𝑉) ⇔ 𝐴 absorption laws

𝐹 ⇒ 𝐵 first law of Pseudo Scotus, or ex falso sequitur
quodlibet

𝐴 ⇒ (¬𝐴 ⇒ 𝐵) second law of Pseudo Scoto

(¬𝐴 ⇒ 𝐹) ⇔ 𝐴 proof by contradiction

((𝐴 ∧ ¬𝐵) ⇒ 𝐹) ⇔ (𝐴 ⇒ 𝐵) proof by contradiction, with hypothesis and the-
sis

(¬𝐴 ⇒ 𝐴) ⇒ 𝐴 consequentia mirabilis (3.a.20)

E3.a.21 Show the validity of the following tautology [22C]

((¬𝐴 ∧ 𝐵) ⇒ 𝐶) ⟺ ((¬𝐶 ∧ 𝐵) ⇒ 𝐴)

Then use the 3.k.6 exercise to turn it into a Venn diagram with three sets. Hidden
solution: [UNACCESSIBLE UUID '22D']

E3.a.22 Show that the implication connective ⇒ is neither commutative nor associa- [2G8]

tive. †12 Hidden solution: [UNACCESSIBLE UUID '2G9']

§3.a.c First-order logic

In the first order logic we add the connectives ∀, which reads ”for each” and ∃, which
reads ”exists”. We must therefore enlarge the family of well-formed formulas.

Definition 3.a.23. A formula is well formed if it meets all the rules in the list in 3.a.5 [00Q]

and this additional rule: ”given a well-formed formula 𝜙 where the variable 𝑥 is free,
a formula of the form ”∀𝑥, 𝜙”, or ”∃𝑥, 𝜙” is a well-formed formula.”

We will say that a variable 𝑥 is free in a well-formed formula if

• the formula is atomic and the variable 𝑥 appears in it; or if

• the formula is of the form ¬𝛼 and the variable 𝑥 is free in 𝛼; or even if

• the formula is of the form 𝛼 ∧ 𝛽, 𝛼 ∨ 𝛽, 𝛼 ⇒ 𝛽, 𝛼 ⟺ 𝛽 (or other logical
connective introduced later) and the variable 𝑥 is free in 𝛼 or 𝛽.

†12This exercise came about during a discussion with Anton Mennucci.
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§3 FUNDAMENTALS

So in the formulas (∀𝑥, 𝜙) or (∃𝑥, 𝜙), the variable 𝑥 is no longer free; we will say
that ”the variable is quantified”.

In every part of a formula where a variable is quantified this variable can be replaced
with every other variable.

Remark 3.a.24. The variable 𝑥 , which is quantified in a part of a formula, is again [1X1]
(Solved on
2022-10-11)

free if it is reused in another piece of the formula; this is syntactically permissible but
makes the formula less readable, as in this example that uses the language of set theory

𝐴 ⊆ ℕ ∧ 𝑥 ∈ ℕ ∧ 𝑥 ≥ 4 ∧ (∀𝑥 ∈ 𝐴, 𝑥 ≤ 10)

which should be written as

𝐴 ⊆ ℕ ∧ 𝑥 ∈ ℕ ∧ 𝑥 ≥ 4 ∧ (∀𝑦 ∈ 𝐴, 𝑦 ≤ 10)

renaming the variable inside the part where it is quantified.

Remark 3.a.25. It is assumed as an axiom that [2DC]

¬(∀𝑥, 𝜙) ⇔ (∃𝑥, ¬𝜙) . (3.a.26)

(In Sec. 2.1 in [12] indeed (∀𝑥, 𝜙) is presented as short form for ¬(∃𝑥, ¬𝜙)).

Note that, in many examples, quantified variables are assumed to be elements of a
”set”.

Definition 3.a.27. Given two variables 𝑥, 𝑦 we will write 𝑥 ∈ 𝑦 to say that “𝑥 is an [1X2]

element of the set 𝑦”. Equivalent expressions are “𝑥 is a member of 𝑦”, “𝑥 belongs to
𝑦” or just simply “𝑥 is in 𝑦”.

The formula (𝑥 ∈ 𝑦) is equivalent to (𝑦 ∋ 𝑥); the negations are (𝑥 ∉ 𝑦) ≐ ¬(𝑥 ∈
𝑦) and (𝑦 ∌ 𝑥) ≐ ¬(𝑦 ∋ 𝑥).

The formula (𝑥 ∈ 𝑦) (as all other variants) takes value of truth/falsehood and
therefore can be used as atom in the construction of a well-formed formula.

Definition 3.a.28. We usually write [00R]

”∀𝑥 ∈ 𝐴, 𝑃(𝑥)” to say ”for every 𝑥 in 𝐴 𝑃(𝑥) holds”,
or
”∃𝑥 ∈ 𝐴, 𝑃(𝑥)” to say ”there is a 𝑥 in 𝐴 for which 𝑃(𝑥)” holds;

(where 𝐴 is a set); to link these writings to the previous definitions, we decide that the
previous writings are abbreviations for

∀𝑥 ∈ 𝐴, 𝑃(𝑥) ≐∀𝑥, 𝑥 ∈ 𝐴 ⇒ 𝑃(𝑥) ,
∃𝑥 ∈ 𝐴, 𝑃(𝑥) ≐∃𝑥, 𝑥 ∈ 𝐴 ∧ 𝑃(𝑥) .

Note that these RHS are ”well-formed formulas”. See also the exercise 3.a.35.

We use the term ”together” informally here, see footnote 3.b.16.

Remark 3.a.29. Note that ”∀𝑥 ∈ 𝐴, 𝜑” is true if 𝐴 is the empty set; this is consistent [00S]
(Solved on
2022-10-11)

with what was discussed in the exercise 3.a.35. This has though a striking consequence:
the implication

(∀𝑥 ∈ 𝐴, 𝜑) ⇒ (∃𝑥 ∈ 𝐴, 𝜑)
is always valid when 𝐴 is a non-empty set, but is instead false when 𝐴 = ∅.
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§3.a Logic

Since an element of a set may not have a truth/falsehood value, we enrich the lan-
guage by adding the ”logical propositions”.

Definition 3.a.30. A logical proposition 𝜙 is an assertion that assumes value of truth [00T]
(Solved on
2021-10-18)

or falsehood depending on the value given to the its free variables, and only from that.

An example of a logical proposition would be: ”𝑛 is an even number”. We can use
logical propositions as atoms in the construction of well-formed formulas.

Exercises

E3.a.31 Let 𝑋, 𝑌 sets. Let 𝜙, 𝜓 logical propositions be; 𝑥, 𝑎 are free variables in 𝜙, [00V]

and 𝑦, 𝑏 are free in 𝜓. We also assume that 𝑎, 𝑏 can only be true or false, while
𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 . Consider the following formulae. Which ones are well formed?
What variables are free in them?

𝑏 ∧ (∀𝑥, 𝜙)
(∃𝑦, 𝜓) ∨ (∀𝑥, 𝜙)

∀𝑥, ∀𝑏, (𝜙 ∧ (𝜓 ∨ 𝑏))
𝑎 ∨ (∀𝑥, ∀𝑎, 𝜙)

(∃𝑥, 𝜓) ∧ (∀𝑥, 𝜙)

Hidden solution: [UNACCESSIBLE UUID '00W']

E3.a.32 Consider a proposition 𝑃(𝑢, ℓ) dependent on two free variables 𝑢 (which takes [00X]

values in the set of people), and ℓ (in the set all the jobs), and which is worded as
follows: ’Person 𝑢 knows how to do the job ℓ’.
Express the following formulas in English

∃𝑢∃ℓ𝑃(𝑢, ℓ) , ∀𝑢∃ℓ𝑃(𝑢, ℓ) , ∃ℓ∀𝑢𝑃(𝑢, ℓ) ,
∀ℓ∃𝑢𝑃(𝑢, ℓ) , ∃𝑢∀ℓ𝑃(𝑢, ℓ) , ∀𝑢∀ℓ𝑃(𝑢, ℓ) .

Hidden solution: [UNACCESSIBLE UUID '00Y']

E3.a.33 What implications are there among the previous formulas? [00Z]
(Proposed on
2021-10-21)Hidden solution: [UNACCESSIBLE UUID '010']

E3.a.34 You may prove that [011]

((∀𝑥, 𝜑(𝑥)) ∧ (∀𝑦, 𝜓(𝑦))) ⟺ (∀𝑥 (𝜑(𝑥) ∧ 𝜓(𝑥)))

E3.a.35 As already commented in 3.a.28, given 𝐴 a set, and 𝑃(𝑥) a logical proposition [016]

dependent from a free variable 𝑥, we usally write

∀𝑥 ∈ 𝐴, 𝑃(𝑥) , ∃𝑥 ∈ 𝐴, 𝑃(𝑥)

however
∀𝑥 ∈ 𝐴, 𝑃(𝑥) summarizes ∀𝑥, (𝑥 ∈ 𝐴) ⇒ 𝑃(𝑥) ,
∃𝑥 ∈ 𝐴, 𝑃(𝑥) summarizes ∃𝑥, (𝑥 ∈ 𝐴) ∧ 𝑃(𝑥) ;
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§3 FUNDAMENTALS

where the ”extended” versions are well-formed formulas.
Using this extended version you can prove that the two propositions

¬(∀𝑥 ∈ 𝐴, 𝑃(𝑥)) , ∃𝑥 ∈ 𝐴, (¬𝑃(𝑥)) .
are equivalent, in the sense that from one it is possible to prove the other (and vice
versa). In the proof use only tautologies (listed in 3.a.10) and in particular the equiv-
alence of the formula ”𝑃 ⇒ 𝑄” with ”(¬𝑃) ∨ 𝑄” †13 , and finally the equivalence
between ”¬∃𝑥, 𝑄” and ”∀𝑥, ¬𝑄” †14.
Replacing 𝑃(𝑥)with¬𝑃(𝑥) and using the tautology of double negation finally results
in

∀𝑥 ∈ 𝐴, (¬𝑃(𝑥)) , ¬(∃𝑥 ∈ 𝐴, 𝑃(𝑥))
are equivalent.
Hidden solution: [UNACCESSIBLE UUID '017']

E3.a.36 Given 𝐴 a set, and 𝑃(𝑥) a proposition dependent on a free variable 𝑥, we [013]

usually write
∃!𝑥 ∈ 𝐴, 𝑃(𝑥)

when there is one and only one element 𝑥 of 𝐴 for which 𝑃(𝑥) is true. Define this
notation with a well-formed formula. (Note that you will need to use the equality
connective, because you must be able to express the idea of ”unique”, which needs
of a method to be able to tell when two objects are distinguishable and when they are
not).
Hidden solution: [UNACCESSIBLE UUID '015']

§3.b Set theory [1YT]

§3.b.a Naive set theory [242]

As already explained in Definition 3.a.27, in set theory, the connective ”∈” is added;
given two sets 𝑧, 𝑦 the formula 𝑥 ∈ 𝑦 reads ”𝑥 belongs to 𝑦” or more simply ”𝑥 is in
𝑦”, and indicates that 𝑥 is an element of 𝑦.

It is customary to indicate the sets using capitalized letters as variables.

Definition 3.b.1. We also add the connective 𝑎 = 𝑏 between sets, which is true when [1Y8]
(Solved on
2022-10)∀𝑥, 𝑥 ∈ 𝑎 ⟺ 𝑥 ∈ 𝑏 .

This is the axiom of extensionality.

This says that two sets 𝑎 and 𝑏 are equal when they have the same elements; that is, [226]

it excludes that a set can have some other property that distinguishes it †15.

Definition 3.b.2. For convenience, the 𝑎 ⊆ 𝑏 connective is used to indicate that 𝑎 is [227]

a subset of 𝑏; formally this is defined by
∀𝑥, 𝑥 ∈ 𝑎 ⇒ 𝑥 ∈ 𝑏 .

𝑏 ⊇ 𝑎 is equivalent to 𝑎 ⊆ 𝑏.
Obviously 𝑎 = 𝑏 ⟺ ((𝑎 ⊆ 𝑏) ∧ (𝑏 ⊆ 𝑎)). Note that 𝑎 ⊆ 𝑎.

†13Tautology in eqn. (3.a.12).
†14Already discussed in eqn.(3.a.26).
†15One could imagine a set theory in which the parentheses can be ”red” or ”blue”, and the equality between

sets occur when the elements and colors are the same. In the usual theory the parentheses are always black.
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§3.b Set theory

It is usual to write 𝑥 ∉ 𝑦 for ¬(𝑥 ∈ 𝑦), 𝑥 ⊈ 𝑦 for ¬(𝑥 ⊆ 𝑦) and so on.
Remark 3.b.3. There are also other symbols used. Some texts use 𝑎 ⊂ 𝑏 to indicate [1W0]

that 𝑎 ⊆ 𝑏 but 𝑎 ≠ 𝑏 (as in the notes [2]); others use a more expressive writing such
as 𝑎 ⊊ 𝑏 to say that 𝑎 ⊆ 𝑏 but 𝑎 ≠ 𝑏. (Some even use 𝑎 ⊂ 𝑏 instead of 𝑎 ⊆ 𝑏,
unfortunately — e.g. [13]).

We also define the constant ∅, also referred to as {}, which is the empty set,†16 that
is uniquely identified by the property

∀𝑥, ¬𝑥 ∈ ∅ .

Some fundamental concepts are therefore introduced: union, intersection, symmet-
ric difference, power set, Cartesian product, relations, functions etc.

Definition 3.b.4. Given 𝐼 a non-empty family of indices and given 𝐶𝑖 sets (one for [1Y2]

each 𝑖 ∈ 𝐼), then the union
⋃
𝑖∈𝐼

𝐶𝑖

is a set, which contains all (and only) the elements of all sets 𝐶𝑖; in formula†17

⋃
𝑖∈𝐼

𝐶𝑖
def= {𝑥 ∶ ∃𝑖 ∈ 𝐼, 𝑥 ∈ 𝐶𝑖} .

If only two sets are given 𝐶1, 𝐶2, we usually write 𝐶1 ∪ 𝐶2 to indicate the union; and
similarly when finite sets are given.

Definition 3.b.5. Given 𝐼 a non-empty family of indexes and given 𝐶𝑖 sets (one for [1W1]

each 𝑖 ∈ 𝐼), we define the intersection

⋂
𝑖∈𝐼

𝐶𝑖

which is the set that contains the elements that belong to all sets 𝐶𝑖 (for all 𝑖 ∈ 𝐼).
If only two sets are given𝐶1, 𝐶2, we usually write𝐶1∩𝐶2 to indicate the intersection,

and you have
𝐶1 ∩ 𝐶2

def= {𝑥 ∈ 𝐶1 ∪ 𝐶2 ∶ 𝑥 ∈ 𝐶1 ∧ 𝑥 ∈ 𝐶2} ;
and similarly when finite sets are given.

The power set is defined as in ZF:5.

Definition 3.b.6. Other operators between sets are: [23S]

• the difference
𝐴 ⧵ 𝐵 def= {𝑥 ∈ 𝐴 ∶ 𝑥 ∉ 𝐵} ;

• if the set 𝐴 is clearly specified by the context, and if 𝐵 ⊆ 𝐴, it is common to write
𝐵𝑐 def= 𝐴 ⧵ 𝐵; 𝐵𝑐 is said to be the complement of 𝐵 in 𝐴;

• the symmetric difference

𝐴𝛥𝐵 def= (𝐴∪𝐵)⧵(𝐴∩𝐵) = (𝐴⧵𝐵)∪(𝐵⧵𝐴) = {𝑥 ∈ 𝐴∪𝐵 ∶ 𝑥 ∈ 𝐴 ⟺ 𝑥 ∉ 𝐵} ;

where 𝐴, 𝐵 are sets.
†16In Zermelo–Fraenkel axiomatic theory, the existence of ∅ is an axiom.
†17This is a more manageable version of the official axiom. The official definition is located in ZF:4.
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§3 FUNDAMENTALS

Exercises

E3.b.7 Prove that 𝐴 = 𝐵 if and only if ((𝐴 ⊆ 𝐵) ∧ (𝐵 ⊆ 𝐴)). Hidden solution: [1W6]
(Proposed on
2021-10-18)

[UNACCESSIBLE UUID '1W7']

E3.b.8 Represent operations [1W8]

• ∪ union
• ∩ intersection
• ⧵ difference
• 𝛥 symmetrical difference

between two sets using Venn diagrams.

E3.b.9 Prerequisites:3.b.8.Use the above Venn diagrams to show that in general (𝐴 ∪ [1W9]

𝐵) ∩ 𝐶 ≠ 𝐴 ∪ (𝐵 ∩ 𝐶).

E3.b.10 Show that if 𝑋 ⊆ 𝑌 and 𝑌 ⊆ 𝑍 then 𝑋 ⊆ 𝑍 Hidden solution: [UNACCESSIBLE [1WB]

UUID '1WD']

E3.b.11 Explain why the union operation 𝐴 ∪ 𝐵 between two sets is commutative, and [1W2]

show that it is associative; similarly for the intersection; finally show that the union
distributes over the intersection, and also that the intersection distributes over the
union. Hidden solution: [UNACCESSIBLE UUID '1W3']

E3.b.12 Consider the sets: [1WF]
(Proposed on
2022-12)• 𝑃 all the professors,

• 𝑆 all scientists,
• 𝐹 the set of philosophers,
• 𝑀 the set of mathematicians.

For each of the following sentences, write a formula that represents it, using the above
sets, the empty set, relations ⊆, =, ≠, and set operations ∪, ∩, ⧵.

• not all professors are scientists
• some mathematician is philosopher;
• if a philosopher is not a mathematician then s/he is a professor;
• all philosophers are scientists or professors, but not mathematicians;
• if there is a mathematician who is also a scientist, then s/he is neither a philoso-
pher nor a professor.

Hidden solution: [UNACCESSIBLE UUID '1WG']

E3.b.13 Let 𝑈 be the set of human beings, 𝐴 the set of animals and 𝑀 the set of mortal [1Y4]

creatures; convert the following syllogism into formulas and prove it:

every man is an animal, every animal is mortal, therefore every man is mortal.
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§3.b Set theory

E3.b.14 Explain the formula ⋃𝐵∈𝒫(𝐴) 𝐵 using the definition 3.b.4 of the axiom of [1WC]

union. Then show that 𝐴 = ⋃𝐵∈𝒫(𝐴) 𝐵.
See also 3.b.25 where the same result is obtained starting from the axiom of union
as defined in ZF:4 in the Zermelo–Fraenkel axiomatic.
Hidden solution: [UNACCESSIBLE UUID '1WV']

E3.b.15 Let 𝐼, 𝐶𝑖 as in 3.b.4 and let 𝐴 be a set; prove that [24P]

⋃
𝑖∈𝐼

𝐶𝑖 ⊆ 𝐴

if and only if
∀𝑖 ∈ 𝐼, 𝐶𝑖 ⊆ 𝐴 .

Remark 3.b.16. A distinction is made between an informal set theory and a formal [01J]

set theory. †18
Informal set theory exploits all notions previously listed, but does not investigate

the fundamentals, that is, the axiomatization. For this approach we recommend the
text [9]; or [28] for a brief discussion.

The most widely used formal set theory is the Zermelo–Fraenkel axiomatic, that we
will shortly recall in next Section. See Chap. 6 in [12] (for a brief introduction [30]
can also be fine).

In Zermelo—Fraenkel’s axiomatic set theory, all variables represent sets, so vari-
ables do not have a meaning of truth or falsehood. For this reason, in the definitions
3.a.5 and 3.a.23 of well-formed formula changes the concept of ”atom”. A An atom is
now a formula of the form 𝑎 ∈ 𝑏 that has truth/falsehood value.

While in formal theory all the elements of language are sets, in practice we tend to
distinguish between the sets, and other objects of Mathematics (numbers, functions, etc
etc); for this in the following we will generally use capital letters to indicate the sets,
and lowercase letters to indicate other objects.

§3.b.b Zermelo–Fraenkel axioms [241]

We now briefly discuss the axioms of Zermelo–Fraenkel set theory.

ZF:1 Axiom of extensionality, already seen above in 3.b.1.

ZF:2 The empty set ∅ is a set. The formula for this axiom is [014]

∃𝑋 ∶ ∀𝑌¬(𝑌 ∈ 𝑋)

and by the preceding axiom, 𝑋 is unique, so it is denoted by ∅.

ZF:3 Axiom of pairing. Given any two sets 𝑋 and 𝑌 there exists a set 𝑍, denoted by [1Y3]

𝑍 = {𝑋, 𝑌}, whose only two elements are 𝑋 and 𝑌 . In formula

∀𝑋, 𝑌∃𝑍 ∶ ∀𝑊(𝑊 ∈ 𝑍) ⟺ (𝑊 = 𝑋) ∨ (𝑊 = 𝑌) .

Again, by the axiom of extensionality 3.b.1, the set 𝑍 unique.
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§3 FUNDAMENTALS

ZF:4 The axiom of union†19 says that for each set 𝐴 there is a set 𝐵 that contains all [026]

the elements of the elements of 𝐴; in symbols,

∀𝐴∃𝐵, ∀𝑥, (𝑥 ∈ 𝐵 ⟺ (∃𝑦, 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦)) .

This implies that this set is unique, by the axiom of extensionality 3.b.1; we indi-
cate this set 𝐵 with⋃𝐴 (so as not to confuse it with the symbol already introduced
before).
For example if

𝐴 = {{1, 3, {5, 2}}, {7, 19}}
then

⋃𝐴 = {1, 3, {5, 2}, 7, 19} .

Given 𝐴1, … 𝐴𝑘 sets, let 𝐷 = {𝐴1, … 𝐴𝑘} †20 we define

𝐴1 ∪ 𝐴2 … ∪ 𝐴𝑘
def= ⋃𝐷 .

ZF:5 The axiom of the power set says that for every set 𝐴, there is a set 𝒫(𝐴) whose [1Y1]

elements are all and only subsets of 𝐴. A shortened definition formula is

𝒫(𝐴) def= {𝐵 ∶ 𝐵 ⊆ 𝐴} .

𝒫(𝐴) is also called set of parts.
In the formal language of the Zermelo-Fraenkel axioms, the axiom is written:

∀𝐴, ∃ 𝑍, ∀𝑦, 𝑦 ∈ 𝑍 ⟺ (∀𝑧, 𝑧 ∈ 𝑦 ⟹ 𝑧 ∈ 𝐴) ;

this formula implies that the power set 𝑍 is unique, therefore we can denote it
with the symbol 𝒫(𝐴) without fear of misunderstandings.
Note that

(∀𝑧, 𝑧 ∈ 𝑦 ⟹ 𝑧 ∈ 𝐴)
can be shortened with 𝑦 ⊆ 𝐴 and therefore the axiom can be written as

∀𝐴, ∃ 𝑍, ∀𝑦, 𝑦 ∈ 𝑍 ⟺ (𝑦 ⊆ 𝐴) ;

then using the extensionality, we obtain that

𝑍 = {𝑦 ∶ (𝑦 ⊆ 𝐴)} .

ZF:6 Axiom of infinity (see 3.h.11)

ZF:7 The axiom of specification, which reads [1Y0]

If 𝐴 is a set, and 𝑃(𝑥) is a logical proposition, then {𝑥 ∈ 𝐴 ∶ 𝑃(𝑥)} is a set.
†18See the introduction to Chap. 6 in [12] for a discussion comparing these two approaches.
†19This is the ”official” version of Zermelo–Fraenkel. However, the simplified version 3.b.4 is often used
†20The existence of this set can be proven, see 3.b.35
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§3.b Set theory

Formally, setting 𝐵 = {𝑥 ∈ 𝐴 ∶ 𝑃(𝑥)},

∀𝑋, 𝑋 ∈ 𝐵 ⟺ 𝑋 ∈ 𝐴 ∧ 𝑃(𝑥) .

This axiom avoids Russell’s paradox: let 𝐴 be the set of 𝑥 such that 𝑥 ∉ 𝑥, then
you have neither 𝐴 ∈ 𝐴 nor 𝐴 ∉ 𝐴.

ZF:8 Axiom of good foundation, or regularity (see 3.b.36)

ZF:9 Axiom of replacement

(We have omitted the definitions of ”Axiom of replacement”; you can find it in Chap.1
Sec.16 in [2] or Chap. 1 in [13]).

A further axiom is the Axiom of Choice; it will be discussed in Sec. §3.b.c.

Remark 3.b.17. Zermelo–Fraenkel set theory with the axiom of choice included [2DX]

is abbreviated ZFC, whereas ZF refers to the axioms of Zermelo–Fraenkel set theory
(without the axiom of choice).

Remark 3.b.18. This wording is commonly used: ”let 𝐼 be a non-empty set of indices, [01M]

and 𝐴𝑖 a family of setsCDLeng indexed by 𝑖 ∈ 𝐼”; this, in axiomatic theory, should be
written as ”let 𝐼 be a non-empty set, let 𝑋 be a set, and 𝐴 ∶ 𝐼 → 𝒫(𝑋) a function; we
will write 𝐴𝑖 instead of 𝐴(𝑖)”. (With this writing we have that 𝐴𝑖 are all subsets of 𝑋).

Exercises

E3.b.19 The notation in ZF:4 differs from the usual one, which is ⋃𝑖∈𝐼 𝐶𝑖, where 𝐼 is [23W]

a non-empty family of indices and 𝐶𝑖 are sets; as seen in 3.b.4.
How can you define ⋃𝑖∈𝐼 𝐶𝑖 using the axiom of union presented ZF:4? (Sugg. re-
read the note 3.b.18)
Eventually you should obtain

∀𝑥, 𝑥 ∈ ⋃
𝑖∈𝐼

𝐶𝑖 ⟺ ∃𝑖 ∈ 𝐼, 𝑥 ∈ 𝐶𝑖 . (3.b.20)

Hidden solution: [UNACCESSIBLE UUID '027']

E3.b.21 Prove that the definition 3.b.5 of intersection is well posed, using the Z-F [23T]
(Proposed on
2022-10-11)

(Solved on
2022-10-25)

axioms. Eventually prove also that

∀𝑥, 𝑥 ∈ ⋂
𝑖∈𝐼

𝐶𝑖 ⟺ (𝐼 ≠ ∅ ∧ ∀𝑖 ∈ 𝐼, 𝑥 ∈ 𝐶𝑖) . (3.b.22)

Hidden solution: [UNACCESSIBLE UUID '23V']

E3.b.23 Prerequisites:3.b.21,ZF:4,ZF:7,3.a.29. Let 𝐴 be a non-empty set; we define 𝐵 as [252]

the set that contains all the elements that are in all the elements of 𝐴. Write a well-
formed formula that defines 𝐵, prove that 𝐵 is indeed a set, and show that it is unique;
for symmetry with the axiom ZF:4 we will indicate it with

𝐵 = ⋂𝐴 .
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It is related to the usual notation by the relation

⋂𝐴 = ⋂
𝑥∈𝐴

𝑥 .

Hidden solution: [UNACCESSIBLE UUID '254']

E3.b.24 Prerequisites:3.b.19,3.b.21. Now that you have correctly defined the union [247]
(Solved on
2022-10-25)

3.b.5 and the intersection 3.b.4 using the Z-F axioms, tell what value are assumed
by

⋂
𝑖∈𝐼

𝐶𝑖

and

⋃
𝑖∈𝐼

𝐶𝑖

when 𝐼 is the empty set. Hidden solution: [UNACCESSIBLE UUID '249']

E3.b.25 Prerequisites:ZF:4. Using the definition of ⋃ presented in ZF:4, show that 𝐴 = [028]

⋃(𝒫(𝐴)).

E3.b.26 Given a set 𝑋 and 𝐼, 𝐶𝑖 as in 3.b.5 and 3.b.4, show that [248]
(Solved on
2022-10-25)

𝑋 ⧵ (⋂
𝑖∈𝐼

𝐶𝑖) = ⋃
𝑖∈𝐼

(𝑋 ⧵ 𝐶𝑖) . (3.b.27)

What happens when 𝐼 is the empty set?
Hidden solution: [UNACCESSIBLE UUID '24B']

E3.b.28 If 𝐴 is a set of 𝑛 elements (𝑛 ≥ 0 natural number) then how many elements [1W4]
(Proposed on
2022-12)

are there in 𝒫(𝐴)?

E3.b.29 Write explicitly 𝒫𝒫𝒫(∅). How many elements does it have? Hidden solu- [023]

tion: [UNACCESSIBLE UUID '1WX']

E3.b.30 Let be given 𝑎, 𝑏, 𝑥, 𝑦. [1Y9]

1. Show that in the hypothesis

{𝑎, 𝑏} = {𝑥, 𝑦}

you have that

(𝑎 = 𝑏) ⟺ (𝑥 = 𝑦) ⟺ 𝑎 = 𝑏 = 𝑥 = 𝑦 .

2. In particular, you deduce that if

{𝑎} = {𝑥, 𝑦}

then 𝑎 = 𝑥 = 𝑦.
3. Then show that if we assume that the four elements 𝑎, 𝑏, 𝑥, 𝑦 are not all the

same, then we have
{𝑎, 𝑏} = {𝑥, 𝑦}

if and only if 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 or 𝑎 = 𝑦 ∧ 𝑏 = 𝑥.
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§3.b Set theory

To show the above be as precise as possible: use the axiom of extensionality 3.b.1,
the axiom of pairing ZF:3 and the tautulogies shown in the previous section (or other
elementary logical relationships). Hidden solution: [UNACCESSIBLE UUID '1YB']

E3.b.31 Prerequisites:3.b.30. The ordered pair is defined as [01N]
(Solved on
2022-10-25)(𝑥, 𝑦) def= {{𝑥}, {𝑥, 𝑦}} ;

(note that the axiom of pairing ZF:3 guarantees us that this is a good definition); show
that

(𝑎, 𝑏) = (𝑥, 𝑦) ⟺ (𝑎 = 𝑥 ∧ 𝑏 = 𝑦) . (3.b.32)

(First solution that doesn’t use 3.b.30) Hidden solution: [UNACCESSIBLE UUID '1WZ'] )
(Second solution using 3.b.30) Hidden solution: [UNACCESSIBLE UUID '1YC'] )

E3.b.33 Prerequisites:3.b.30,3.b.36. Let’s imagine a different definition for the ordered [1YD]

pair, defined as
⟬𝑥, 𝑦⟭ def= {𝑥, {𝑥, 𝑦}} ;

show that
⟬𝑎, 𝑏⟭ = ⟬𝑥, 𝑦⟭ ⟺ (𝑎 = 𝑥 ∧ 𝑏 = 𝑦) . (3.b.34)

To show it you will need 3.b.36. Hidden solution: [UNACCESSIBLE UUID '1YF']

E3.b.35 Show that, given 𝑎1, … 𝑎𝑘 sets, there is a set that contains all and only these [029]
(Solved on
2022-10-25)

elements. This set is usually denoted by {𝑎1, … 𝑎𝑘}.
Hidden solution: [UNACCESSIBLE UUID '02B']

E3.b.36 The axiom of good foundation (also called axiom of regularity) of the [01R]
(Solved on
2022-10-25)

Zermelo–Fraenkel theory says that every non-empty set 𝑋 contains an element 𝑦
that is disjoint from 𝑋; in formula

∀𝑋, 𝑋 ≠ ∅ ⇒ (∃𝑦 (𝑦 ∈ 𝑋) ∧ (𝑋 ∩ 𝑦 = ∅))

(remember that every object in the theory is a set, so 𝑦 is a set). Using this axiom
prove these facts.

• There is no set 𝑥 that is an element of itself, that is, for which 𝑥 ∈ 𝑥.
• More generally there is no finite family 𝑥1, … 𝑥𝑛 such that 𝑥1 ∈ 𝑥2 ∈ … ∈

𝑥𝑛 ∈ 𝑥1.
• There is also no 𝑥1, … 𝑥𝑛, … sequence of sets for which 𝑥1 ∋ 𝑥2 ∋ 𝑥3 ∋ 𝑥4 ….

Hidden solution: [UNACCESSIBLE UUID '01S']

E3.b.37 Prerequisites:3.b.36. Show that for every 𝑥 there is a 𝑦 such that 𝑦 ∉ 𝑥 Hidden [01W]
(Solved on
2021-10-21)

solution: [UNACCESSIBLE UUID '01X']

E3.b.38 Show instead that the axiom of infinity, and the consequent construction of [01Y]

the natural numbers seen in Sec. §3.h, implies that there is a sequence 𝑥1, … 𝑥𝑛, …
of sets for which 𝑥1 ∈ 𝑥2 ∈ 𝑥3 …. Hidden solution: [UNACCESSIBLE UUID '01Z']
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E3.b.39 Prerequisites:3.b.41. Given 𝐴 non-empty set show that there is a bijection [020]
(Solved on
2022-10-25)

𝑓 ∶ 𝐴 → 𝐵 between 𝐴 and a set 𝐵 disjoint from 𝐴.
More generally, let 𝐼 a non-empty set of indexes, and 𝐴𝑖 a family of non-empty sets
indexed by 𝑖 ∈ 𝐼; †21 show that there are bijections 𝑓𝑖 ∶ 𝐴𝑖 → 𝐵𝑖, where the sets 𝐵𝑖
enjoy ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐼, 𝐵𝑖 ∩ 𝐴𝑗 = ∅ and for 𝑗 ≠ 𝑗 also 𝐵𝑖 ∩ 𝐵𝑗 = ∅.
Hidden solution: [UNACCESSIBLE UUID '021']

E3.b.40 Prerequisites:ZF:5. [022]

Show that 𝑋 ⊆ 𝑌 if and only if 𝒫(𝑋) ⊆ 𝒫(𝑌). Hidden solution: [UNACCESSIBLE UUID

'1WW']

E3.b.41 Using the definition of pair (𝑎, 𝑏) as {{𝑎}, {𝑎, 𝑏}} show that, given two sets 𝑥, 𝑦 [024]

, for each 𝑎 ∈ 𝑥, 𝑏 ∈ 𝑦 you have

(𝑎, 𝑏) ∈ 𝒫𝒫(𝑥 ∪ 𝑦) .

Use this fact and the axiom of separation to justify axiomatically the definition of the
Cartesian product 𝑥 × 𝑦.
Hidden solution: [UNACCESSIBLE UUID '025']

Remark 3.b.42. In the exercise 3.b.35 the elements are identified using variables [27F]

𝑎1, … 𝑎𝑘 that we may have denoted using other letters such as 𝑎, 𝑏, 𝑐, 𝑑, …. If we in-
stead think of 𝑎1, … 𝑎𝑘 … as values of a function 𝑎𝑖 = 𝑎(𝑖), 𝑎 ∶ 𝐼 → 𝑋 then the set
{𝑎1, … 𝑎𝑘 …} always exists (for any choice of 𝐼) since it is the image of the function
{𝑎1, … 𝑎𝑘 …} = {𝑥 ∈ 𝑋 ∶ ∃𝑖 ∈ 𝐼, 𝑥 = 𝑎𝑖}.

§3.b.c Zorn Lemma, Axiom of Choice, Zermelo’s Theorem [23R]

There are three fundamental statements in set theory, Zorn’s Lemma, the Axiom of
Choice, and Zermelo’s Theorem. It is proven, within the Zermelo–Fraenkel axiomatics,
that these are equivalent. See in Chap. 1 in [2] for an elementary presentation, based
on the above defined theory. †22

The first exercise presents some fundamental equivalent ways to state the Axiom
of Choice.

Exercises

E3.b.43 Prerequisites:3.b.18, ZF:4,3.b.39 . Let 𝐼 be a non-empty set of indexes, let 𝐴𝑖 a [02H]

family of non-empty sets indexed by 𝑖 ∈ 𝐼. Recall that, by definition, the Cartesian
product ∏𝑖∈𝐼 𝐴𝑖 is the set of functions 𝑓 ∶ 𝐼 → ⋃𝑖∈𝐼 𝐴𝑖 such that 𝑓(𝑖) ∈ 𝐴𝑖 for each
𝑖 ∈ 𝐼.
Show that the following are equivalent formulations of the axiom of choice.

• The Cartesian product of a non-empty family of non-empty sets is non-empty.
• Given a family 𝐴𝑖 as above, such that the sets are not-empty and pairwise dis-
joint, there is a subset 𝐵 of ⋃𝑖∈𝐼 𝐴𝑖 such that, for each 𝑖 ∈ 𝐼, 𝐵 ∩ 𝐴𝑖 contains a
single element.

†21Cf. 3.b.18
†22This theory can be found in many books on Logic, such as [12, 13, 10], but the statements and proofs

use a language and mathematical tools that may be too advanced for the intended audience of this book.
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• Let 𝑆 be a set. Then there is a function 𝑔 ∶ 𝒫(𝑆) → 𝑆 such that 𝑔(𝐴) ∈ 𝐴 for
each nonempty 𝐴 ∈ 𝒫(𝑆).

Hidden solution: [UNACCESSIBLE UUID '02J']

Remark 3.b.44. Attention! Suppose as above that the sets 𝐴𝑖 are not empty. This is [02K]

formally written as ∀𝑖 ∈ 𝐼, ∃𝑥 ∈ 𝐴𝑖. Intuitively this brings us to say that the element 𝑥
depends on 𝑖, and therefore that 𝑥 = 𝑥(𝑖). This step, as intuitive as it is, is exactly the
axiom of choice.

Exercises

E3.b.45 Find a non-empty set of indexes 𝐼, and, for each 𝑖 ∈ 𝐼, non-empty sets 𝐴𝑖, so [2GF]

that there does not exists a subset 𝐵 of ⋃𝑖∈𝐼 𝐴𝑖 with the property that, for each 𝑖 ∈ 𝐼,
𝐵 ∩ 𝐴𝑖 contains a single element. Hidden solution: [UNACCESSIBLE UUID '2GG']

E3.b.46 Prerequisites:3.e.20.Consider the Zermelo-Fraenkel set theory, and this state- [2BZ]

ment:

Given any 𝐴, 𝐵 non-empty sets such that there exists a surjective function
𝑔 ∶ 𝐵 → 𝐴, then there exists an injective function 𝑓 ∶ 𝐴 → 𝐵 such that 𝑔◦𝑓 = Id𝐴.

Prove that this statement implies the Axiom of Choice. Hidden solution: [UNACCESSIBLE

UUID '2C0']

E3.b.47 Let 𝑉 be a real vector space. Let 𝐵 ⊆ 𝑉 be a subset. A finite linear combi- [02D]

nation 𝑣 of elements of 𝐵 is equivalently defined as

• 𝑣 = ∑𝑛
𝑖=1 ℓ𝑖𝑏𝑖 where 𝑛 = 𝑛(𝑣) ∈ ℕ, ℓ1, … , ℓ𝑛 ∈ ℝ and 𝑏1, … , 𝑏𝑛 are elements

of 𝐵;
• 𝑣 = ∑𝑏∈𝐵 𝜆(𝑏)𝑏 where 𝜆 ∶ 𝐵 → ℝ but also 𝜆(𝑏) ≠ 0 only for a finite number
of 𝑏 ∈ 𝐵.

We call 𝛬 ⊆ ℝ𝐵 the set of functions 𝜆 as above, which are non-null only for a finite
number of arguments; 𝛬 is a vector space: so the second definition is less intuitive
but is easier to handle.
We will say that 𝐵 generates (or, spans) 𝑉 if every 𝑣 ∈ 𝑉 is written as finite linear
combination of elements of 𝐵.
Wewill say that the vectors of𝐵 are linearly independent if 0 = ∑𝑏∈𝐵 𝜆(𝑏)𝑏 implies
𝜆 ≡ 0; or equivalently that, given 𝑛 ≥ 1, ℓ1, … , ℓ𝑛 ∈ ℝ and 𝑏1, … , 𝑏𝑛 ∈ 𝐵 all
different, the relation ∑𝑛

𝑖=1 ℓ𝑖𝑏𝑖 = 0 implies ∀𝑖 ≤ 𝑛, ℓ𝑖 = 0.
We will say that 𝐵 is an algebraic basis (also known as Hamel basis) if both prop-
erties apply.
If 𝐵 is a basis then the linear combination that generates 𝑣 is unique (i.e. there is only
one function 𝜆 ∈ 𝛬 such that 𝑣 = ∑𝑏∈𝐵 𝜆(𝑏)𝑏).
Show that any vector space has an algebraic basis. Show more in general that for
each𝐴, 𝐺 ⊆ 𝑉 , with𝐴 family of linearly independent vectors and𝐺 generators, there
is an algebraic basis 𝐵 with 𝐴 ⊆ 𝐵 ⊆ 𝐺.
Hidden solution: [UNACCESSIBLE UUID '02G']

The proof in general requires Zorn’s Lemma; indeed this statement is equivalent to
the Axiom of Choice; this was proved by A. Blass in [6]; see also Part 1 §6 [21].
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E3.b.48 Difficulty:*.†23 Consider the following quotient of the family of all integer [02M]

valued sequences
𝕏 = {𝑎 ∶ ℕ → ℕ}/ ∼

where we define 𝑎 ∼ 𝑏 iff 𝑎𝑘 = 𝑏𝑘 eventually in 𝑘.
We define the ordering

𝑎 ⪯ 𝑏 ⟺ ∃𝑛 s.t. ∀𝑘 ≥ 𝑛, 𝑎𝑘 ≤ 𝑏𝑘

that is, 𝑎 ⪯ 𝑏 when 𝑎𝑘 ≤ 𝑏𝑘 eventually. This is a preorder and

𝑎 ∼ 𝑏 ⟺ (𝑎 ⪯ 𝑏 ∧ 𝑏 ⪯ 𝑎)

so it passes to the quotient were it becomes an ordering, see Prop. 3.g.3.
Let 𝑎𝑘 be an increasing sequence of sequences, that is, 𝑎𝑘 ⪯ 𝑎𝑘+1; we readily see
that it has an upper bound 𝑏, by defining

𝑏𝑛 = sup
ℎ,𝑘≤𝑛

𝑎𝑘
ℎ .

We can then apply the Zorn Lemma to assert that in the ordered set (𝕏, ⪯) there exist
maximal elements.
Given 𝑎, 𝑏 we define

𝑎 ∨ 𝑏 = (𝑎𝑛 ∨ 𝑏𝑛)𝑛

then it is easily verified that 𝑎 ⪯ 𝑎 ∨ 𝑏. So this a direct ordering, see 3.d.15.
We conclude that the ordered set (𝕏, ⪯) has an unique maximum, by 3.d.23.
This is though false, since for any sequence 𝑎 the sequence (𝑎𝑛 + 1)𝑛 is larger than
that.
What is the mistake in the above reasoning? What do you conclude about (𝕏, ⪯)?

Many other exercise need Zorn’s Lemma, Axiom of Choice, Zermelo’s Theorem in
their proof; to cite a few: 3.e.20, 3.j.5, 3.j.39, 3.j.40, 3.j.41, 3.j.44.

Remark 3.b.49. “The Axiom of Choice is obviously true, the well-ordering principle [02C]

obviously false, and who can tell about Zorn’s lemma?” — Jerry Bona†24
This is a joke†25: although the three are all mathematically equivalent, many math-

ematicians find the axiom of choice to be intuitive, the well-ordering principle to be
counterintuitive, and Zorn’s lemma to be too complex for any intuition.

†23Originally published in https://dida.sns.it/dida2/Members/mennucci/curiosa/
†24As cited in [15].
†25Paragraph quoted from [46].
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§3.c Relations

§3.c Relations [1YV]

Definition 3.c.1. A relation between elements of two sets 𝐴, 𝐵 is defined as a subset [1WY]

𝑅 ⊆ 𝐴 × 𝐵 of the cartesian product. Typically, the infix notation 𝑎𝑅𝑏 is used instead of
writing (𝑎, 𝑏) ∈ 𝑅.

Definition 3.c.2. A relation 𝑅 between elements of 𝐴 is said to be: [23X]

• reflexive if 𝑥𝑅𝑥 for any 𝑥 ∈ 𝐴;

• irreflexive or anti-reflexive if ¬𝑥𝑅𝑥 for any 𝑥 ∈ 𝐴;

• symmetric if 𝑥𝑅𝑦 implies 𝑦𝑅𝑥 for any 𝑥, 𝑦 ∈ 𝐴;

• antisymmetric if 𝑎𝑅𝑏 and 𝑏𝑅𝑎 imply 𝑎 = 𝑏, for any 𝑎, 𝑏 ∈ 𝐴;

• trichotomous if for all 𝑥, 𝑦 ∈ 𝐴 one and exactly one of 𝑥𝑅𝑦, 𝑦𝑅𝑥 and 𝑥  =  𝑦
holds;

• transitive if 𝑥𝑅𝑦 and 𝑦𝑅𝑧 imply 𝑥𝑅𝑧, for any 𝑥, 𝑦, 𝑧 ∈ 𝐴.

A relation 𝑅 between elements of 𝐴 and elements of 𝐵 is said to be:

• injective (also called left-unique) if 𝑥𝑅𝑦 and 𝑧𝑅𝑦 imply 𝑥 = 𝑧, for any 𝑥, 𝑧 ∈
𝐴, 𝑦 ∈ 𝐵;

• functional (also called right-unique) if 𝑥𝑅𝑦 and 𝑥𝑅𝑧 imply 𝑦 = 𝑧, for any
𝑥 ∈ 𝐴, 𝑦, 𝑧 ∈ 𝐵; such a binary relation is called a “partial function” (see also
§3.e,3.e.24);

• total (also called “left-total”) if for any 𝑥 ∈ 𝐴 there is a 𝑦 ∈ 𝐵 such that 𝑥𝑅𝑦;

• surjective (also called “right-total”) if for any 𝑦 ∈ 𝐵 there is a 𝑥 ∈ 𝐴 such that
𝑥𝑅𝑦.

Definition 3.c.3. An equivalence relation is a relation between elements of 𝐴 that [1W5]

enjoys the properties: reflective, symmetrical, transitive.
Equivalence relations are typically denoted by symbols ”∼” , ”≈” , ”≃” , ”≅” ,

”≊” etc.

Definition 3.c.4. An order relation (or simply order) is a relation between elements [1Y5]

of 𝐴 that enjoys the properties: reflective, antisymmetrical, transitive.
An order relation is total if all elements are comparable, i.e. if for every 𝑎, 𝑏 ∈ 𝐴

you have 𝑎𝑅𝑏 ∨ 𝑏𝑅𝑎.
(When an order relation is not total, it is said to be partial).
Symbols such as ”≤” or ”⊆” or ”⪯” or similar are generally used.

Remark 3.c.5. The above is the definition in [2]; in other texts, a relation between el- [24W]

ements of 𝐴 that enjoys the properties: reflexive, antisymmetrical, transitive is straight-
forwardly called partial order. (cf Example 2.1.1 in [12] where moreover a total order
is called linear order). For this reason we will sometimes add a “(partial)” to state that
the order being discussed may be partial.

Order relations are discussed in Section §3.d
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Remark 3.c.6. It is customary to write 𝑎 ≥ 𝑏 as a synonym for 𝑏 ≤ 𝑎. If 𝑎 ≤ 𝑏∧𝑎 ≠ 𝑏 [1Y7]

we will write 𝑎 < 𝑏; similarly if 𝑎 ≥ 𝑏 ∧ 𝑎 ≠ 𝑏 we write 𝑎 > 𝑏. Beware that if the
relation is not total, it is not true in general that ¬(𝑎 ≤ 𝑏) is equivalent to 𝑎 > 𝑏.

See in this regard the exercise 3.d.3.

Definition 3.c.7. A total order †26 on a set 𝑋 is said to be a well ordering if every [1X0]

non-empty subset of 𝑋 has minimum.

Exercises

E3.c.8 Prerequisites:3.c.2. For each set 𝐴 and each relation 𝑅 between elements of 𝐴, [1WH]
(Proposed on
2022-12)

explain if it is reflective, symmetric, antisymmetric and/or transitive; if it is a order
relation, determine if it is total.

• In 𝐴 = ℕ ⧵ {0} , 𝑛𝑅𝑚 iff the greatest common divisor between 𝑛 and 𝑚 is 1
• In 𝐴 = ℕ ⧵ {0} , 𝑛𝑅𝑚 if and only if 𝑛 divides 𝑚
• In 𝐴 = ℕ ⧵ {0} , 𝑛𝑅𝑚 if and only if 2𝑛 divides 𝑚
• In 𝐴 = 𝒫(ℕ), 𝑎𝑅𝑏 if and only if 𝑎 ⊆ 𝑏.

E3.c.9 Let 𝑓 ∶ 𝐴 → 𝐵 be a function, let ∼ be an equivalence relation on 𝐵: prove that [1WK]

the relation 𝑅 between elements of 𝐴 given by

𝑥𝑅𝑦 ⟺ 𝑓(𝑥) ∼ 𝑓(𝑦)

is an equivalence relation.

E3.c.10 Prerequisites:3.c.2,3.c.4. [224]

Given two relations 𝑎 ≤ 𝑏 and 𝑎 < 𝑏 for 𝑎, 𝑏 ∈ 𝐴, show that these are equivalent:

• 𝑎 ≤ 𝑏 is a (possibly partial) order relation and we identify

𝑎 < 𝑏 = (𝑎 ≤ 𝑏 ∧ 𝑎 ≠ 𝑏) ;

• 𝑎 < 𝑏 is an irreflexive and transitive relation and ∀𝑥, 𝑦 ∈ 𝐴 at most one of
𝑥 < 𝑦 , 𝑥 = 𝑦 , 𝑦 < 𝑥 holds; and we identify

𝑎 ≤ 𝑏 = (𝑎 < 𝑏 ∨ 𝑎 = 𝑏) .

This latter 𝑎 < 𝑏 is called strict (partial) order.

E3.c.11 Prerequisites:3.c.2,3.c.4,3.c.10. Given two relations 𝑎 ≤ 𝑏 and 𝑎 < 𝑏 for [24K]

𝑎, 𝑏 ∈ 𝐴 show that these are equivalent:

• 𝑎 ≤ 𝑏 is a total order relation and

𝑎 < 𝑏 = (𝑎 ≤ 𝑏 ∧ 𝑎 ≠ 𝑏) ,

• 𝑎 < 𝑏 is an irreflexive, trichotomous and transitive relations and

𝑎 ≤ 𝑏 = (𝑎 < 𝑏 ∨ 𝑎 = 𝑏) .

This latter 𝑎 < 𝑏 is called strict total order.
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E3.c.12 Consider 𝐴 = ℝ2 and consider the relations [1YH]

(𝑥, 𝑦) ∼ (𝑥′, 𝑦′) ⟺ (𝑥 − 𝑥′ ∈ ℤ ∧ 𝑦 − 𝑦′ ∈ ℤ)

between elements of ℝ2 :

• show that it is an equivalence relation;
• graphically represent equivalence classes;
• describe the set 𝐴/ ∼.

§3.d Order relations [1YY]

Let (𝑋, ≤) an orderered set, non-empty (cf definition 3.c.4)

Definition 3.d.1. Given 𝑥, 𝑦 ∈ 𝑋 remember that 𝑥 < 𝑦 means 𝑥 ≤ 𝑦 ∧ 𝑥 ≠ 𝑦. [229]

• When we have that 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥 we will say that the two elements are ”com-
parable”. Conversely if neither 𝑥 ≤ 𝑦 nor 𝑦 ≤ 𝑥 then we will say that the two
elements are ”incomparable”.

• An element 𝑚 ∈ 𝑋 is called maximal if there is no element 𝑧 ∈ 𝑋 such that
𝑚 < 𝑧.

• An element 𝑚 ∈ 𝑋 is called minimal if there is no element 𝑧 ∈ 𝑋 such that
𝑧 < 𝑚.

• An element 𝑚 ∈ 𝑋 is called maximum, or greatest element, if, for any element
𝑧 ∈ 𝑋 , 𝑧 ≤ 𝑚.

• An element𝑚 ∈ 𝑋 is calledminimum, or least element, if, for any element 𝑧 ∈ 𝑋 ,
𝑧 ≤ 𝑚.

Note that the definitions of minimum/minimal can be obtained frommaximum/maximal
by reversing the order relation (and vice versa).

Exercises

E3.d.2 Given an ordered set, show that the maximum, if it exists, is unique. [1WJ]

E3.d.3 Show that for any two 𝑥, 𝑦 ∈ 𝑋 one of the following (mutually exclusive) cases [067]
(Solved on
2022-10-13)

holds

• 𝑥 = 𝑦,
• 𝑥 < 𝑦,
• 𝑥 > 𝑦,
• 𝑥, 𝑦 are incomparable.

Hidden solution: [UNACCESSIBLE UUID '068']

E3.d.4 Show that if 𝑥 < 𝑦 ∧ 𝑦 ≤ 𝑧 or 𝑥 ≤ 𝑦 ∧ 𝑦 < 𝑧 then 𝑥 < 𝑧. [29D]
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E3.d.5 Show that 𝑚 ∈ 𝑋 is maximal if and only if ”for every 𝑧 ∈ 𝑋 you have that [069]

𝑧 ≤ 𝑚 or 𝑧, 𝑚 are incomparable”.
Hidden solution: [UNACCESSIBLE UUID '06B']

E3.d.6 Let 𝑓 ∶ 𝐴 → 𝐵 be a function, let ⪯ an order relation on 𝐵; consider the relation [1WM]

𝑅 between elements of 𝐴 given by

𝑥𝑅𝑦 ⟺ 𝑓(𝑥) ⪯ 𝑓(𝑦) ;

is it an order relation? What if we also assume that 𝑓 is injective?

E3.d.7 Show that, if every non-empty subset admits minimum, then the order is total. [1WN]

E3.d.8 Consider 𝐴 = ℝ2 and consider the relation [1YJ]

(𝑥, 𝑦) ⪯ (𝑥′, 𝑦′) ⟺ (𝑥 ≤ 𝑥′ ∧ 𝑦 ≤ 𝑦′)

• show that it is an order relation; is it partial or total?
• Define 𝐵 = {(𝑥, 𝑦) ∶ 𝑥2 + 𝑦2 ≤ 1}, let’s consider it as an ordered set with the
sorting ⪯ : are there maxima? minima? maximals? minimals?

E3.d.9 Let (𝑋, ≤) be a finite and ordered non-empty set then it has maximals and [06C]
(Proposed on
2022-12)

minimals. Hidden solution: [UNACCESSIBLE UUID '06D']

E3.d.10 Build an order ⪯ on ℕ with this property: for each 𝑛 ∈ ℕ [06F]

• the set {𝑘 ∈ ℕ, 𝑘 ≠ 𝑛, 𝑘 ⪯ 𝑛} of the elements preceding 𝑛 has exactly two
maximals,

• the set {𝑘 ∈ ℕ, 𝑘 ≠ 𝑛, 𝑛 ⪯ 𝑘} of the elements following 𝑛 has exactly two
minimals.

E3.d.11 Let 𝑋 be a non-empty set and 𝑅 ⊆ 𝑋2 an order relation, then there is a total [06J]
(Proposed on
2022-12)

order 𝑇 that extends 𝑅 (i.e. 𝑅 ⊆ 𝑇, considering relations as subsets of 𝑋2).

E3.d.12 Prerequisites:4.b.1,3.b.43. Let 𝑋 be ordered (partially). Show that these are [263]
(Solved on
2022-10-13)

equivalent

1. in each non-empty subset 𝐴 ⊆ 𝑋 there is at least one minimal element;
2. there are no strictly decreasing functions 𝑓 ∶ ℕ → 𝑋 .

Hidden solution: [UNACCESSIBLE UUID '07Y']

See also Proposition 3.g.3.

§3.d.a Direct and filtering order [2FJ]

Definition 3.d.13. Let (𝑋, ≤) be a (partially) ordered set, we will say that it is filtering [06M]
(Solved on
2022-11-24)

†27 if
∀𝑥, 𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑋, 𝑥 < 𝑧 ∧ 𝑦 < 𝑧 . (3.d.14)

The sets ℝ, ℕ, ℚ, ℤ endowed with their usual order relations, are filtering.
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Definition 3.d.15. A directed set is an ordered set (𝑋, ≤) for which [06N]

∀𝑥, 𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑋, 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 . (3.d.16)

Obviously a filtering order is direct.

Remark 3.d.17. We have added the antisymmetric property to the usual definition of [0NB]

”Directed Set”, see [14] (or other references in [38]).
This choice simplify the discussion (in particular it eases the use of concepts already

used in the theory of ordered sets, such as maximum and maximal); at the same time,
by 7.d.3, this choice does not hinder the usufulness and power of the theory developed
in this Section and in Section §7.d.

Definition 3.d.18. Given a directed set (𝑋, ≤𝑋 ) a subset of it 𝑌 ⊆ 𝑋 is called cofinal [06P]

if
∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌, 𝑦 ≥𝑋 𝑥 (3.d.19)

More in general, another directed set (𝑍, ≤𝑍) is said to be cofinal in 𝑋 if there exists a
map 𝑖 ∶ 𝑍 → 𝑋 monotonic weakly increasing and such that 𝑖(𝑍) is is cofinal in 𝑋; i.e.

(∀𝑧1, 𝑧2 ∈ 𝑍, 𝑧1 ≤𝑍 𝑧2 ⇒ 𝑖(𝑧1) ≤𝑋 𝑖(𝑧2)) ∧ (∀𝑥 ∈ 𝑋 ∃𝑧 ∈ 𝑍, 𝑖(𝑧) ≥𝑋 𝑥) (3.d.20)

(This second case generalizes the first one, where we may choose 𝑖 ∶ 𝑌 → 𝑋 to be the
injection map, and ≤𝑌 to be the restriction of ≤𝑋 to 𝑌 .)

Definition 3.d.21. If 𝑋 is filtering, ”a neighborhood of ∞ in 𝑋” is a subset 𝑈 ⊆ 𝑋 [231]

such that
∃𝑘 ∈ 𝑋∀𝑗 ∈ 𝑋, 𝑗 ≥ 𝑘 ⇒ 𝑗 ∈ 𝑈 .

Exercises

E3.d.22 Let (𝑋, ≤) be a filtering ordered set, prove that it is an infinite set. Hidden [06Q]
(Proposed on
2022-11)

solution: [UNACCESSIBLE UUID '06R']

E3.d.23 Let (𝑋, ≤) be a directed set: show that if there is a maximal element in 𝑋 then [06S]
(Solved on
2022-10-27)

it is the maximum. Hidden solution: [UNACCESSIBLE UUID '06T']

E3.d.24 Prerequisites:3.d.13,3.d.23. Let (𝑋, ≤) be a directed set. Show that these prop- [06V]
(Solved on
2022-11-24)

erties are equivalent:

• (𝑋, ≤) satisfies the filtering property (3.d.14),
• (𝑋, ≤) has no maximum,
• (𝑋, ≤) has no maximals.

Hidden solution: [UNACCESSIBLE UUID '06W']

E3.d.25 Prerequisites:3.d.18.Let (𝑋, ≤) be a directed set, and 𝑌 ⊆ 𝑋 cofinal: show that [06X]

(𝑌, ≤
𝑌

) is a directed set.
Similarly, if (𝑋, ≤) is filtering, show that (𝑌, ≤

𝑌
) it is filtering.
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E3.d.26 Prerequisites:3.d.21.Given 𝑈1, 𝑈2 ⊆ 𝐽 two neighborhoods of ∞ show that the [232]

intersection 𝑈1 ∩ 𝑈2 is a neighborhood of ∞. Hidden solution: [UNACCESSIBLE UUID

'236'] .

E3.d.27 Prerequisites:3.d.18,3.d.21.If (𝑋, ≤) a filtering set, 𝑌 ⊆ 𝑋 is cofinal, and𝑈 ⊆ 𝑋 [234]

is a neighborhood of ∞ in 𝑋 , show that 𝑈 ∩ 𝑌 is a neighborhood of ∞ in 𝑌 . Hidden
solution: [UNACCESSIBLE UUID '235']

A directed ordered set (𝑋, ≤) is a framework in which we can generalize the notion
seen in 4.g.1.

Definition 3.d.28. Let P(x) be a logical proposition that depends on a free variable [06Y]
(Solved on
2022-10-27)

𝑥 ∈ 𝑋 . We will say that
P(x) holds eventually for 𝑥 ∈ 𝑋 if ∃𝑦 ∈ 𝑋, ∀𝑥 ∈ 𝑋, 𝑥 ≥ 𝑦 ⇒ P(x) holds;
P(x) frequently applies for 𝑥 ∈ 𝑋
if

∀𝑦 ∈ 𝑋, ∃𝑥 ∈ 𝑋, 𝑥 ≥ 𝑦 such that
P(x) holds.

Exercises

E3.d.29 The 4.g.5 property reformulates in this way. [070]
(Proposed on
2022-10-27)Show that «P(x) frequently applies for 𝑥 ∈ 𝑋» if and only if the set

𝑌 = {𝑥 ∈ 𝑋 ∶ 𝑃(𝑥)}
is cofinal in 𝑋 .

E3.d.30 Prerequisites:3.d.28,3.d.26.Show that «P(x) eventually holds for 𝑥 ∈ 𝑋» if and [233]

only if the set
𝑈 = {𝑥 ∈ 𝑋 ∶ 𝑃(𝑥)}

is a neighborhood of ∞ in 𝑋 .
E3.d.31 Prove that the properties 4.g.3, 4.g.4, 4.g.6 and 4.g.7 seen in Sec. §4.g also [06Z]

apply in this more general case 3.d.28.

E3.d.32 Suppose that on the set 𝑋 there is a relation 𝑅 that is reflexive and transitive [2B2]

and satisfies
∀𝑥, 𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑋, 𝑥𝑅𝑧, 𝑦𝑅𝑧 . (3.d.33)

(as seen in (3.d.16))
This pair (𝑋, 𝑅) is a ”Directed Set” according to the usual definition (see [14] or other
references in [38]).
Show that there exists another relation ≤ such that

• ≤ is a partial order and it satisfies (3.d.16);
• 𝑅 extends ≤ that is;

∀𝑥, 𝑦 ∈ 𝑋 𝑥 ≤ 𝑦 ⇒ 𝑥𝑅𝑦 ;
• moreover (𝑋, ≤) is cofinal in (𝑋, 𝑅).

Hidden solution: [UNACCESSIBLE UUID '2GM']

Further exercises on the subject are 6.a.2,8.15, and in Section §7.d.
†26Actually the condition of well ordering for an order implies that the order is total; we leave it as an

exercise 3.d.7.
†27As defined in Definition 4.2.1 of the notes [2]. It is also called strongly directed set.
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§3.d.b Lexicographic order [2FH]

Definition 3.d.34. Given two ordered sets (𝑋, ≤𝑋 ) and (𝑌, ≤𝑌 ), setting 𝑍 = 𝑋 × 𝑌 , [071]

we define the lexicographic order ≤𝑍 on 𝑍; let 𝑧1 = ⦗𝑥1, 𝑦1⦘ ∈ 𝑍 and 𝑧2 = ⦗𝑥2, 𝑦2⦘ ∈
𝑍, then:

• in the case 𝑥1 ≠ 𝑥2 , then 𝑧1 ≤𝑍 𝑧2 if and only if 𝑥1 ≤𝑋 𝑥2;

• in the case 𝑥1 = 𝑥2 , then 𝑧1 ≤𝑍 𝑧2 if and only if 𝑦1 ≤𝑌 𝑦2.

This definition is then extended to products of more than two sets: given two vectors,
if the first elements are different then we compare them, if they are equal we compare
the second elements, if they are equal the thirds, etc.

Exercises

E3.d.35 Verify that ≤𝑍 is an order relation. [1WP]

E3.d.36 If (𝑋, ≤𝑋 ) and (𝑌, ≤𝑌 ) are total orders, show that (𝑍, ≤𝑍) is a total order. [072]

E3.d.37 If (𝑋, ≤𝑋 ) and (𝑌 , ≤𝑌 ) are well ordered, show that (𝑍, ≤𝑍) is a well ordering. [073]

E3.d.38 Let𝑋 = ℕℕ be ordered with lexicographic order. Build a function 𝑓 ∶ 𝑋 → ℝ [074]

that is strictly increasing. Hidden solution: [UNACCESSIBLE UUID '075']

E3.d.39 Consider 𝑋 = ℝ × {0, 1} ordered with lexicographic order. Show that there is [076]

no function 𝑓 ∶ 𝑋 → ℝ strictly growing. Hidden solution: [UNACCESSIBLE UUID '077']

§3.d.c Total order, sup and inf [2FM]

Let ≤ a total order on a non-empty set 𝑋 .

Definition 3.d.40. Let 𝐴 ⊆ 𝑋 . The majorants of 𝐴 (or upper bounds) are [22R]

𝑀𝐴
def= {𝑥 ∈ 𝑋 ∶ ∀𝑎 ∈ 𝐴, 𝑎 ≤ 𝑥} .

A set 𝐴 is bounded above when there exists an 𝑥 ∈ 𝑋 such that ∀𝑎 ∈ 𝐴, 𝑎 ≤ 𝑥, i.e.
exactly when 𝑀𝐴 ≠ ∅.

If 𝑀𝐴 has minimum 𝑠, then 𝑠 is th supremum, a.k.a. least upper bound, of 𝐴, and
we write 𝑠 = sup𝐴.

By reversing the order relation in the above definition, we obtain the definition of
minorants/lower bounds, bounded below, infimum/greatest lower bound.

Lemma 3.d.41. Let 𝐴 ⊆ 𝑋 be a not empty set. We recall these properties of the [22S]

supremum.

1. If 𝐴 has maximum 𝑚 then 𝑚 = sup𝐴.

2. Let 𝑠 ∈ 𝑋 . We have 𝑠 = sup𝐴 if and only if

• for every 𝑥 ∈ 𝐴 we have 𝑥 ≤ 𝑠.
• for every 𝑥 ∈ 𝑋 with 𝑥 < 𝑠 there exists 𝑦 ∈ 𝐴 with 𝑥 < 𝑦.

This last property is of very wide use in the analysis!
The proof is left as a (useful) exercise. Hidden solution: [UNACCESSIBLE UUID '22T']
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Exercises

E3.d.42 Let 𝐵 be a non-empty set that is bounded from below, let 𝐿 the set of minorants [078]
(Proposed on
2022-10-13)

of 𝐵; we note that 𝐿 is upper bounded, and suppose that 𝛼 = sup𝐿 exists: then 𝛼 ∈ 𝐿
and 𝛼 = inf𝐵. Hidden solution: [UNACCESSIBLE UUID '079']

E3.d.43 Prerequisites:3.d.42. Show that if for the total ordering of 𝑋 all ”suprema” exist [07B]
(Proposed on
2022-10-13)

then all ”infima” also exist; and vice versa. Precisely, show that these are equivalent:

• Every non-empty set bounded from below in 𝑋 admits greatest lower bound;
• every non-empty set bounded from above in 𝑋 admits least upper bound.

Hidden solution: [UNACCESSIBLE UUID '207']

§3.d.d Total ordering, intervals [2DW]

Let ≤ a total order on a non-empty set 𝑋 .

Definition 3.d.44. A set 𝐼 ⊆ 𝑋 is an interval if for every 𝑥, 𝑧 ∈ 𝐼 and every 𝑦 ∈ 𝑋 [07C]

with 𝑥 < 𝑦 < 𝑧 we have 𝑦 ∈ 𝐼.

Note that the empty set is an interval.

Definition 3.d.45. Given 𝑥, 𝑧 ∈ 𝑋 the following standard intervals are defined [07D]

(𝑥, 𝑧) = {𝑦 ∈ 𝑋 ∶ 𝑥 < 𝑦 < 𝑧}
(𝑥, 𝑧] = {𝑦 ∈ 𝑋 ∶ 𝑥 < 𝑦 ≤ 𝑧}

(𝑥, ∞) = {𝑦 ∈ 𝑋 ∶ 𝑥 < 𝑦}
[𝑥, 𝑧) = {𝑦 ∈ 𝑋 ∶ 𝑥 ≤ 𝑦 < 𝑧}
[𝑥, 𝑧] = {𝑦 ∈ 𝑋 ∶ 𝑥 ≤ 𝑦 ≤ 𝑧}

[𝑥, ∞) = {𝑦 ∈ 𝑋 ∶ 𝑥 ≤ 𝑦}
(−∞, 𝑧) = {𝑦 ∈ 𝑋 ∶ 𝑦 < 𝑧}
(−∞, 𝑧] = {𝑦 ∈ 𝑋 ∶ 𝑦 ≤ 𝑧}

(−∞, ∞) = 𝑋 .

Note that there are 9 cases, 3 for the LHS and 3 for the RHS. We concord that [24Y]

∞, −∞ are symbols and not elements of 𝑋; if 𝑋 has a maximum 𝑚 then the intervals
are preferably written as (𝑥, ∞) = (𝑥, 𝑚] and [𝑥, ∞) = [𝑥, 𝑚]; similarly if 𝑋 has a
minimum.

Exercises

E3.d.46 Prerequisites:3.d.44,3.d.45,3.b.23. [07F]

Let ℱ be a non-empty family of intervals.
Show that the intersection ⋂ℱ of all intervals is an interval.

Suppose the intersection ⋂ℱ is not empty, show that the union ⋃ℱ is an interval.

Hidden solution: [UNACCESSIBLE UUID '07G']
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E3.d.47 Prerequisites:3.d.44,3.d.45. [07H]
(Solved on
2022-10-13)Find an example of a set 𝑋 with total ordering, in which there is an interval 𝐼 that

does not fall into any of the categories viewed in 3.d.45.
Hidden solution: [UNACCESSIBLE UUID '07J']

E3.d.48 Prerequisites:3.d.44,3.d.45,3.d.46. [07K]
(Proposed on
2022-10-13)Let 𝐴 ⊆ 𝑋 be a non-empty set; let𝐼 the smallest interval that contains 𝐴; this is

defined as the intersection of all intervals that contain 𝐴 (and the intersection is an
interval, by 3.d.46). Let 𝑀𝐴 be the family of majorants of 𝐴, 𝑀𝐼 of 𝐼; show that
𝑀𝐴 = 𝑀𝐼 . In particular 𝐴 is bounded from above if and only 𝐼 is bounded from
above; if moreover𝐴 has supremum, then sup𝐴 = sup 𝐼. (Similarly for theminorants
and infimum). Hidden solution: [UNACCESSIBLE UUID '07M']

E3.d.49 Prerequisites:3.d.44,3.d.45,3.d.46,3.d.48. [07N]

Let 𝑋 be a totally ordered set. Show that the following two are equivalent.

• Every 𝐴 ⊆ 𝑋 non-empty bounded from above and from below admits supre-
mum and infimum.

• Each non-empty interval 𝐼 ⊆ 𝑋 falls in one of the categories seen in 3.d.45.

Hidden solution: [UNACCESSIBLE UUID '07P']

E3.d.50 Prerequisites:3.d.44,3.d.45,3.d.46.Difficulty:*. [206]

At the beginning of the section we assumed that the ordering ≤ on 𝑋 be total. The
definitions of interval in 3.d.44 and 3.d.45 however, they can also be given for an
order that is not (necessarily) total. What happens in exercise 3.d.46 when the order
is not total? Which result is true, which is false, and if so what counterexample can
we give?

§3.d.e Order types

Definition 3.d.51. Given two ordered non-empty sets (𝑋, ≤𝑋 ) and (𝑌 , ≤𝑌 ), we will [07V]

say that ”they have the same order type”, or ”order-isomorphic”, or more briefly that
they are ”equiordinate” †28, if there is a strictly increasing monotonic bijective function
𝑓 ∶ 𝑋 → 𝑌 , whose inverse 𝑓−1 is strictly increasing. The function 𝑓 is the “order
isomorphism”.

Remark 3.d.52. Note that if (𝑋, ≤𝑋 ) and (𝑌, ≤𝑌 ) are equiordinate then 𝑋 and 𝑌 [21R]
(Solved on
2021-11-18)

are equipotents; but given an infinite set 𝑋 , there exist on it orders of different types —
even if we consider only the well orders. (See for example exercise 3.i.20)

Remark 3.d.53. Note that if two sets are equiordinate, then they enjoy the same [21V]

properties: if one is totally ordered, so is the other; if one is well ordered, so is the
other; etc etc .... See 3.d.55.

Exercises

E3.d.54 Show that the relation ”having the same order type” is an equivalence relation. [220]
(Proposed on
2021-11-18)

Given a set 𝑋 , let’s consider all possible orders on 𝑋 , the relation therefore defines
equivalence classes, and each class is (precisely) an“order type” on 𝑋 .

†28The wording ”equiordinate” is not standard.
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E3.d.55 Given two ordered non-empty sets (𝑋, ≤𝑋 ) and (𝑌 , ≤𝑌 ), and 𝑓 ∶ 𝑋 → 𝑌 as [22P]
(Proposed on
2023-01-17)

defined in 3.d.51.

• If 𝐴 ⊆ 𝑋 and 𝑚 = max𝐴 then 𝑓(𝑚) = max𝑓(𝐴); similarly for the minimums;
• (𝑋, ≤𝑋 ) is totally ordered if and only if (𝑌 , ≤𝑌 ) is;
• (𝑋, ≤𝑋 ) is well ordered if and only if (𝑌, ≤𝑌 ) is.
• Suppose that (𝑋, ≤𝑋 ) and (𝑌, ≤𝑌 ) are well ordered, let 𝑆𝑋 and respectively 𝑆𝑌
be the functions ”successor”, 3.i.7, then we have that 𝑥 is not the maximum of
𝑋 if and only if 𝑓(𝑥) is not the maximum of 𝑌 , and in this case 𝑦 = 𝑆𝑋 (𝑥) if
and only if 𝑓(𝑦) = 𝑆𝑌 (𝑓(𝑥)).

E3.d.56 Given two totally ordered non-empty sets (𝑋, ≤𝑋 ) and (𝑌 , ≤𝑌 ), suppose there [21P]

exists a strictly increasing monotonic bijective function 𝑓 ∶ 𝑋 → 𝑌 : show that
then its inverse 𝑓−1 is strictly increasing, and consequently (𝑋, ≤𝑋 ) and (𝑌, ≤𝑌 ) are
equiordinate. Hidden solution: [UNACCESSIBLE UUID '21T']

E3.d.57 Find a simple example of two non-empty (partially) ordered sets (𝑋, ≤𝑋 ) and [21Q]

(𝑌, ≤𝑌 ), for which there exists a strictly increasing monotonic bijective function 𝑓 ∶
𝑋 → 𝑌 , whose inverse 𝑓−1 is not strictly increasing. Hidden solution: [UNACCESSIBLE

UUID '21S']

§3.d.f Concatenation

Definition 3.d.58. Given two ordered sets (𝑋, ≤𝑋 ) and (𝑌, ≤𝑌 ), with 𝑋, 𝑌 disjoint, [21W]

the concatenation of 𝑋 with 𝑌 is obtained defining 𝑍 = 𝑋 ∪ 𝑌 and providing it with
the ordering ≤𝑍 given by:

• if 𝑧1, 𝑧2 ∈ 𝑋 then 𝑧1 ≤𝑍 𝑧2 if and only if 𝑧1 ≤𝑋 𝑧2;

• if 𝑧1, 𝑧2 ∈ 𝑌 then 𝑧1 ≤𝑍 𝑧2 if and only if 𝑧1 ≤𝑌 𝑧2;

• If 𝑧1 ∈ 𝑋 and 𝑧2 ∈ 𝑌 then you always have 𝑧1 ≤𝑍 𝑧2.

This operation is sometimes denoted by the notation 𝑍 = 𝑋 ⧺ 𝑌 .
If the sets are not disjoint, we can replace them with disjoint sets defined by ̃𝑋 =

{0} × 𝑋 and ̃𝑌 = {1} × 𝑌 , then we may ”copy” the respective orders, and finally we can
perform the concatenation of ̃𝑋 and ̃𝑌 .

Exercises

E3.d.59 Let 𝑘 ∈ ℕ and let 𝐼 = {0, … , 𝑘} with the usual ordering of ℕ: show that the [21X]

concatenation of 𝐼 with ℕ has the same type of order as ℕ; while the concatenation
of ℕ with 𝐼 does not have the same type of order.

E3.d.60 Prerequisites:3.d.34,3.d.51.Let (𝑋1, ≤1), (𝑋2, ≤2) be two disjoint and partially [21Y]

ordered sets and with the same order type. Let 𝐼 = {1, 2} with the usual order; let
𝑍 = 𝐼 × 𝑋1 equipped with lexicographical order; Let 𝑊 be the concatenation of
of 𝑋1 with 𝑋2: show that 𝑍 and 𝑊 have the same type of order. Hidden solution:
[UNACCESSIBLE UUID '221']

E3.d.61 Let 𝑋1, 𝑋2 be two disjoint and well-ordered sets. Let 𝑊 be the concatenation [21Z]

of 𝑋1 with 𝑋2: show that it is well ordered.
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§3.e Functions

§3.e Functions [1YR]

The definition of function can be obtained from set theory in this way.

Definition 3.e.1. Given two sets 𝐴, 𝐵, a function 𝑓 ∶ 𝐴 → 𝐵 is a triple [1Y6]

𝐴, 𝐵, 𝐹

(where 𝐴 is said domain and 𝐵 codomain) and 𝐹 is a relation 𝐹 ⊆ 𝐴 × 𝐵 such that

∀𝑥 ∈ 𝐴∃!𝑦 ∈ 𝐵, 𝑥𝐹𝑦 ;

i.e. it enjoys the properties of being functional and total (defined in 3.c.2).
Being the element 𝑦 unique, we can write 𝑦 = 𝑓(𝑥) to say that 𝑦 is the only element

in relation 𝑥𝐹𝑦 with 𝑥.
The set 𝐹 is also called graph of the function.

Definition 3.e.2. Given nonempty sets 𝐼, 𝐴, a sequence with indexes in 𝐼 and taking [16G]

values in 𝐴 is a function 𝑎 ∶ 𝐼 → 𝐴; this though is usually written by the notation
(𝑎𝑛)𝑛∈𝐼 . To denote the codomain, the notation (𝑎𝑛)𝑛∈𝐼 ⊆ 𝐴 is also employed. In this
text, in most cases, we will have that 𝐼 = ℕ, and in this case we will simply write (𝑎𝑛).

In practice, the definition of function is always written as 𝑓 ∶ 𝐴 → 𝐵; for this
reason the graph is defined as

𝐹 = {(𝑎, 𝑏) ∈ 𝐴 × 𝐵 ∶ 𝑏 = 𝑓(𝑎)} .

Remark 3.e.3. Let 𝐴 be a non-empty set, let 𝑓 ∶ 𝐴 → {0, 1} and 𝑔 ∶ 𝐴 → {1} both [08X]

given by 𝑓(𝑥) = 𝑔(𝑥) = 1 for each 𝑥 ∈ 𝐴.
Let 𝐹, 𝐺 respectively be the graphs: note that 𝐹 = 𝐺 (!) Will we say that 𝑓 = 𝑔 or

not? We choose “not”, otherwise the concept of ”surjective” would not make sense.
For this reason in the definition we decided that the function is the triple ”domain”,

”codomain”, ”relation”.

Exercises

E3.e.4 Show that the composition of two injective functions is an injective function. [1WQ]

E3.e.5 Show that the composition of two surjective functions is a surjective function. [1WR]

E3.e.6 Let 𝑓 ∶ ℕ → ℕ be an assigned function and 𝐼 its image, prove that 𝐴 ⊆ ℕ exists [1WS]

such that 𝑓|𝐴 is injective and 𝑓(𝐴) = 𝐼. (Hint it may be useful to know that the usual
order of ℕ is a well-order cf 3.i.1 and 4.d.4).
Hidden solution: [UNACCESSIBLE UUID '1WT']

Note: The result is true for any function 𝑓 ∶ 𝐴 → 𝐵, but the proof requires the axiom
of choice.

E3.e.7 Let 𝐼, 𝐽 ⊆ ℝ and let 𝑓 ∶ 𝐼 → 𝐽 be given by 𝑓(𝑥) = sin(𝑥). By choosing 𝐼 = ℝ [08Y]
(Proposed on
2022-12)

or 𝐼 = [0, 𝜋/2] or 𝐼 = [−𝜋/2, 𝜋/2], and choosing 𝐽 = ℝ or 𝐽 = [−1, 1], say for
which choices 𝑓 is surjective, and for which it is injective.
(This exercise is to make you ponder about the difference between ”formula” and
”function.”.)
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§3 FUNDAMENTALS

E3.e.8 Let 𝐴, 𝐵 ⊆ ℝ and let 𝑓 ∶ 𝐴 → 𝐵 be defined by the formula 𝑓(𝑥) = 𝑥2; tell if, [1X3]

for the following choices of 𝐴, 𝐵, the function 𝑓 is injective and/or surjective.

1. 𝐴 = ℝ, 𝐵 = ℝ
2. 𝐴 = ℝ, 𝐵 = [0, ∞)
3. 𝐴 = [0, ∞), 𝐵 = ℝ
4. 𝐴 = [0, ∞), 𝐵 = [0, ∞)

If the function is bijective, what is its inverse commonly called?
(This exercise is to make you ponder about the difference between ”formula” and
”function.”

E3.e.9 Given 𝑓, 𝑔 ∶ ℕ → ℕ defined by 𝑓(𝑛) = 𝑛2 − 1 and 𝑔(𝑛) = (𝑛 + 1)2, write [1X4]

explicitly 𝑓◦𝑔 and 𝑔◦𝑓, say if they coincide or are different functions.
E3.e.10 Find an example of 𝑓, 𝑔 ∶ ℕ → ℕ such that 𝑓◦𝑔 ≡ 𝑔◦𝑓, but neither 𝑓 nor 𝑔 [1X5]

are bijective.

E3.e.11 Let 𝑓 ∶ ℝ → ℝ be bijective, and 𝐹 ⊆ ℝ2 its graph; let 𝑓−1 be the inverse of 𝑓 [1X6]

and let 𝐺 be its graph; show that 𝐺 is the symmetric of 𝐹 with respect to the bisector
of the first and third quadrants.

E3.e.12 Let 𝐷, 𝐶 be non-empty sets and 𝑓 ∶ 𝐷 → 𝐶 a function. Let 𝐼 a non-empty [091]

family of indexes, 𝐵𝑖 ⊆ 𝐶 for 𝑖 ∈ 𝐼. Given 𝐵 ⊆ 𝐶 remember that the counterimage
of 𝐵 is

𝑓−1(𝐵) def= {𝑥 ∈ 𝐷, 𝑓(𝑥) ∈ 𝐵} ,
Given 𝐵 ⊆ 𝐶 we write 𝐵𝑐 = {𝑥 ∈ 𝐶, 𝑥 ∉ 𝐵} to denote the complement. Show these
counterimage properties.

𝑓−1(⋃
𝑖∈𝐼

𝐵𝑖) = ⋃
𝑖∈𝐼

𝑓−1(𝐵𝑖) (3.e.13)

𝑓−1(⋂
𝑖∈𝐼

𝐵𝑖) = ⋂
𝑖∈𝐼

𝑓−1(𝐵𝑖) (3.e.14)

𝑓−1(𝐵𝑐) = 𝑓−1(𝐵)𝑐 . (3.e.15)

E3.e.16 Let 𝐷, 𝐶 be non-empty sets and 𝑓 ∶ 𝐷 → 𝐶 a function. Let 𝐼 be a non-empty [092]

family of indexes, 𝐴𝑖 ⊆ 𝐷, for 𝑖 ∈ 𝐼. Given 𝐴 ⊆ 𝐷 remember that the image of 𝐴 is
the subset 𝑓(𝐴) of 𝐷 given by

𝑓(𝐴) def= {𝑓(𝑥), 𝑥 ∈ 𝐴} .

Show these image properties.

𝑓(⋃
𝑖∈𝐼

𝐴𝑖) = ⋃
𝑖∈𝐼

𝑓(𝐴𝑖)

𝑓(⋂
𝑖∈𝐼

𝐴𝑖) ⊆ ⋂
𝑖∈𝐼

𝑓(𝐴𝑖) .

Show that the function is injective if and only if

𝑓(𝐴1 ∩ 𝐴2) = 𝑓(𝐴1) ∩ 𝑓(𝐴2) (3.e.17)

is an equality for every choice of 𝐴1, 𝐴2 ⊆ 𝐷.
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§3.e Functions

E3.e.18 Let 𝐷, 𝐶 be non-empty sets and 𝑓 ∶ 𝐷 → 𝐶 a function. Given 𝑈 ⊆ 𝐶 show [250]

that
𝑓(𝑓−1(𝑈)) ⊆ 𝑈 ;

if 𝑓 is surjective show that they are equal; find an example where they are different.

E3.e.19 Let 𝐷, 𝐶 be non-empty sets and 𝑓 ∶ 𝐷 → 𝐶 a function. Given 𝐴 ⊆ 𝐷 show [251]

that
𝑓−1(𝑓(𝐴)) ⊇ 𝐴 ;

if 𝑓 is injective show that they are equal; find an example where they are different.

E3.e.20 Let 𝐴, 𝐵 be non-empty sets. [2BX]

• Suppose that 𝑓 ∶ 𝐴 → 𝐵 is an injective function: there exists a surjective
function 𝑔 ∶ 𝐵 → 𝐴 such that 𝑔◦𝑓 = Id𝐴 (the identity function). (Such 𝑔 is a
left inverse of 𝑔).

• Suppose that 𝑔 ∶ 𝐵 → 𝐴 is a surjective function: there exists a injective func-
tion 𝑓 ∶ 𝐴 → 𝐵 such that 𝑔◦𝑓 = Id𝐴. (Such 𝑓 is a right inverse of 𝑔).

The proof of the second statement requires the Axiom of Choice (see 3.b.46).
Vice versa.

• If 𝑓 ∶ 𝐴 → 𝐵 has a left inverse then it is an injective function.
• If 𝑔 ∶ 𝐵 → 𝐴 has a right inverse, then it is a surjective function.

Hidden solution: [UNACCESSIBLE UUID '2BY']

E3.e.21 Let 𝐴 be a set and let 𝑔 ∶ 𝐴 → 𝐴 be injective. We define the relation 𝑥 ∼ 𝑦 [093]

which is true when an 𝑛 ≥ 0 exists such that 𝑥 = 𝑔𝑛(𝑦) or 𝑥 = 𝑔𝑛(𝑦); where

𝑔𝑛 =
𝑛

⏞⎴⏞⎴⏞𝑔◦ ⋯ ◦𝑔

is the 𝑛-th iterate of the composition. (We decide that 𝑔0 is identity). Show that
𝑥 ∼ 𝑦 is an equivalence relation. Study equivalence classes. Let 𝑈 = ⋂∞

𝑛=1 𝑔𝑛(𝐴)
be the intersection of repeated images. Show that each class is entirely contained in
𝑈 or is external to it.
Hidden solution: [UNACCESSIBLE UUID '094']

E3.e.22 Show that there is a function 𝑓 ∶ ℝ → ℝ such that 𝑓(𝑓(𝑥)) = −𝑥. Is there [095]

a continuous function for which 𝑓(𝑓(𝑥)) = −𝑥? (Hint: show that for every such 𝑓
you have 𝑓−1({0}) = {0}). Hidden solution: [UNACCESSIBLE UUID '096']

E3.e.23 Show that there exists a function 𝑓 ∶ [0, 1] → [0, 1] such that 𝑓(𝑓(𝑥)) = [097]

sin(𝑥). Is there a continuous function? Hidden solution: [UNACCESSIBLE UUID '098']

E3.e.24 Let 𝐷, 𝐶 be non-empty sets. A partial function from 𝐷 in 𝐶 is a function [01P]
(Solved on
2022-11-15)

𝜑 ∶ 𝐵 → 𝐶 where 𝐵 ⊆ 𝐷. (The definition of ”function” is in 3.e.1).
It can be convenient to think of the partial function as a relation 𝛷 ⊆ 𝐷 ×𝐶 such that,
if (𝑥, 𝑎), (𝑥, 𝑏) ∈ 𝛷 then 𝑎 = 𝑏 (see 3.c.2). The two notions are equivalent in this
sense: given 𝛷 we build the domain of 𝜑, which we will call 𝐵, with the projection of
𝛷 on the first factor i.e. 𝐵 = {𝑥 ∈ 𝐷 ∶ ∃𝑐 ∈ 𝐶, (𝑥, 𝑐) ∈ 𝛷}, and we define 𝜑(𝑥) = 𝑐
as the only element 𝑐 ∈ 𝐶 such that (𝑥, 𝑐) ∈ 𝛷; vice versa 𝛷 is the graph of 𝜑.
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§3 FUNDAMENTALS

Partial functions, seen as relations 𝛷, are of course sorted by inclusion; equivalently
𝜑 ≤ 𝜓 if 𝜑 ∶ 𝐵 → 𝐶 and 𝜓 ∶ 𝐸 → 𝐶 and 𝐵 ⊆ 𝐸 ⊆ 𝐷 and 𝜑 = 𝜓|𝐵.
Let now𝑈 be a chain, i.e. family of partial functions that is totally ordered according
to the order previously given; seeing each partial function as a relation, let 𝛹 be the
union of all relations in 𝑈; show that 𝛹 is the graph of a partial function 𝜓 ∶ 𝐸 → 𝐶,
whose domain 𝐸 is the union of all the domains of the functions in 𝑈 , and whose
image 𝐼 is the union of all images of functions in 𝑈
If moreover all functions in 𝑈 are injective, show that 𝜓 is injective.
Hidden solution: [UNACCESSIBLE UUID '01Q']

§3.f Elementary functions
Exercises

E3.f.1 Let 𝑛, 𝑚, 𝑘 be positive integers. Prove that the number (𝑛 + √𝑚)𝑘 + (𝑛 − √𝑚)𝑘 [09G]

is integer.
Hidden solution: [UNACCESSIBLE UUID '09H']

E3.f.2 Let 𝐾 be a positive integer, 𝑁 an integer, and 𝐼 = {𝑁, 𝑁 + 1, … , 𝑁 + 𝐾} be the [09J]

sequence of integers from 𝑁 to 𝑁 + 𝐾. For each 𝑛 ∈ 𝐼 we set an integer values 𝑎𝑛.
Let 𝑝 be the only one polynomial of degree 𝐾 such that 𝑝(𝑛) = 𝑎𝑛 for every 𝑛 ∈ 𝐼.

• Show that 𝑝 has rational coefficients.
• Show that 𝑝(𝑥) is integer for every 𝑥 integer.
• Find an example of a polynomial 𝑝 which takes integer values for 𝑥 integer, but
not all coefficients of 𝑝 are integers.

• What happens if 𝐼 contains 𝐾 + 1 integers, but not consecutive? Is it still true
that, defining 𝑝(𝑥) as above, 𝑝 only assumes integer values on integers?

E3.f.3 Let 𝑝(𝑥) be a polynomial with real coefficients of degree 𝑛, show that exists 𝑐 > [09K]

0 such that for every 𝑥 we have |𝑝(𝑥)| ≤ 𝑐(1 + |𝑥|𝑛). Hidden solution: [UNACCESSIBLE

UUID '09M']

E3.f.4 Prove that, for 𝑛 ≥ 2, [211]
(Proposed on
2022-12)

𝑛−1
∑
𝑘=1

1
𝑘 ≥ log(𝑛)

Hidden solution: [UNACCESSIBLE UUID '212']

§3.g Projecting to the quotient [1Z5]

Definition 3.g.1. Let 𝐴 be a set and ∼ an equivalence relation. We denote by [23M]

𝐴/∼

the quotient space, that is, the set of all equivalence classes; the canonical projection
is the map 𝜋 ∶ 𝐴 → 𝐴/∼ that associates each 𝑥 ∈ 𝐴 with the class [𝑥] ∈ 𝐴/ ∼.
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§3.g Projecting to the quotient

𝐴 𝐵

𝐴/∼

𝑓

𝜋 ̃𝑓

[UNACCESSIBLE UUID '20Q']

Proposition 3.g.2. [1Z6]

• Suppose that the function 𝑓 ∶ 𝐴×𝐴 → 𝐵 is invariant for the equivalence relation
∼ in all its variables, i.e.

∀𝑥, 𝑦, 𝑣, 𝑤 ∈ 𝐴, 𝑥 ∼ 𝑦 ∧ 𝑣 ∼ 𝑤 ⇒ 𝑓(𝑥, 𝑣) = 𝑓(𝑦, 𝑤) ;
let ̃𝑓 be the projection to the quotient 𝑓 ∶ 𝐴/∼ × 𝐴/∼ → 𝐵 that satisfies

𝑓(𝑥, 𝑦) = 𝑓(𝜋(𝑥), 𝜋(𝑦)) .
If 𝑓 is commutative (resp. associative) then 𝑓 is commutative (resp. associative).

• If 𝑅 is a relation in 𝐴 × 𝐴 invariant for ∼, and 𝑅 is reflexive (resp symmetrical,
antisymmetric, transitive) then 𝑅 is reflexive (resp symmetrical, antisymmetric,
transitive).

• If 𝐴 and 𝐵 are ordered and the order is invariant, and 𝑓 is monotonic, then 𝑓 is
monotonic.

Proposition 3.g.3. (Replaces 06G) (Replaces 06H) Consider 𝑅 a transitive and reflexive re- [1Z7]

lation in 𝐴 × 𝐴; such a relation is called a preorder [43]; we define 𝑥 ∼ 𝑦 ⟺
(𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) then ∼ is an equivalence relation, 𝑅 is invariant for ∼, and 𝑅 (defined as
in 3.g.2) is an order relation.

Proof. 1. ∼ is clearly reflexive and symmetrical; is transitive because if 𝑥 ∼ 𝑦, 𝑦 ∼
𝑧 then 𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥 ∧ 𝑦𝑅𝑧 ∧ 𝑧𝑅𝑦 but being 𝑅 transitive you get 𝑥𝑅𝑧 ∧ 𝑧𝑅𝑥 i.e.
𝑥 ∼ 𝑧

2. Let 𝑥, 𝑦, ̃𝑥, ̃𝑦 ∈ 𝑋 be such that 𝑥 ∼ ̃𝑥, 𝑦 ∼ ̃𝑦 then we have 𝑥𝑅 ̃𝑥∧ ̃𝑥𝑅𝑥∧𝑦𝑅 ̃𝑦∧ ̃𝑦𝑅𝑦
if we add 𝑥𝑅𝑦, by transitivity we get ̃𝑥𝑅 ̃𝑦; and symmetrically.

3. Finally, we see that 𝑅 is an order relation on 𝑌 . Using the (well posed) definition
”[𝑥]𝑅[𝑦] ⟺ 𝑥𝑅𝑦”we deduce that𝑅 is reflexive and transitive (as indeed stated
in the previous proposition). 𝑅 is also antisymmetric because if for 𝑧, 𝑤 ∈ 𝐴/ ∼
you have 𝑧𝑅𝑤 ∧ 𝑤𝑅𝑧 then taken 𝑥 ∈ 𝑧, 𝑦 ∈ 𝑤 we have 𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥 which means
𝑥 ∼ 𝑦 and therefore 𝑧 = 𝑤.

Exercises

E3.g.4 ℤ are the relative integers with the usual operations. Let 𝑝 ≥ 1 a fixed integer. [1Z8]

Consider the equivalence relation

𝑛 ∼ 𝑚 ⟺ 𝑝|(𝑛 − 𝑚)
that is, they are equivalent when 𝑛 − 𝑚 is divisible by 𝑝.
Show that there are 𝑝 equivalence classes [0], [1], … [𝑝 − 1] We indicate the quotient
space with ℤ/(𝑝ℤ) or more briefly ℤ𝑝.
Show that the usual operations of sum, subtraction, product in ℤ pass to the quotient.
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§3 FUNDAMENTALS

§3.h Natural numbers in ZF [246]

In this section we will build a model of the natural numbers inside the ZF set theory;
this model satisfies Peano’s axioms 4.3 and has an order relation that satisfies 4.d.1, so
this model enjoys all properties described in Sec. §4; for this reason in this section we
will mostly discuss properties that are specific of this model.

§3.h.a Successor

Definition 3.h.1. Given 𝑥 the successor is defined as [24X]

𝑆(𝑥) def= 𝑥 ∪ {𝑥} . (3.h.2)

We will often write 𝑆𝑥 instead 𝑆(𝑥) to ease notations.
We say that a set 𝐴 is S-saturated if ∅ ∈ 𝐴 and if for every 𝑥 ∈ 𝐴 you have

𝑆(𝑥) ∈ 𝐴. †29

Exercises

E3.h.3 Note that 𝑧 ∈ 𝑆(𝑥) if and only if 𝑧 ∈ 𝑥 ∨ 𝑧 = 𝑥; [24V]

E3.h.4 Prerequisites:3.b.36,3.h.3.Prove that 𝑥 ∈ 𝑆(𝑥) and 𝑥 ⊊ 𝑆(𝑥). Hidden solution: [24M]

[UNACCESSIBLE UUID '24N']

E3.h.5 Prerequisites:3.b.36,(3.h.2),3.h.3.Let𝑥, 𝑦 be elements (generic, not necessarily nat- [239]

ural numbers), such that
𝑥 ⊆ 𝑦 ⊆ 𝑆(𝑥) (3.h.6)

prove that
𝑥 = 𝑦 ∨ 𝑦 = 𝑆(𝑥) ;

where the above two are mutually exclusive, and (in the hypothesis (3.h.6) above)
the second one holds if and only if 𝑥 ∈ 𝑦; summarizing

(3.h.6) ⇒ (𝑥 = 𝑦 ⟺ 𝑦 ≠ 𝑆(𝑥) ⟺ 𝑥 ∉ 𝑦) .

Note the analogy with 3.i.9.

E3.h.7 Prove that the intersection of S-saturated sets provides an S-saturated set. [245]

E3.h.8 Prerequisites:3.b.36,(3.h.2),3.h.3.†30 Prove that [1YM]

𝑥 = 𝑦 ⟺ 𝑆(𝑥) = 𝑆(𝑦) .

In particular this shows that, if 𝐴 is an S-saturated set, then the function 𝑆 ∶ 𝐴 → 𝐴
is well defined, and its graph is the relation

{(𝑥, 𝑦) ∈ 𝐴2 ∶ 𝑦 = 𝑆(𝑥)} ;

moreover 𝑆 is injective.
Hidden solution: [UNACCESSIBLE UUID '1YN']
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E3.h.9 Find an example of 𝑥, 𝑦 such that 𝑥 ∈ 𝑦 ∧ 𝑥 ⊆ 𝑦 but 𝑆(𝑥) ∉ 𝑆(𝑦) [24Q]

Hidden solution: [UNACCESSIBLE UUID '24R']

E3.h.10 Show that when 𝑥 ∈ 𝑦 ∧ 𝑥 ⊆ 𝑦 then 𝑆(𝑥) ⊆ 𝑦. Hidden solution: [UNACCESSIBLE [24S]

UUID '24T']

§3.h.b Natural numbers in ZF

Definition 3.h.11. The axiom of infinity guarantees that there is a set 𝐴 that is [243]

S-saturated.

Using the axiom of infinity 3.h.11 we can prove the existence of the set of natural
numbers.

Theorem 3.h.12. ℕ is the smallest S-saturated set. [244]

Proof. Given a set 𝐴 that is S-saturated, ℕ𝐴 is defined as the intersection of all S-
saturated subsets of 𝐴. By 3.h.7, ℕ𝐴 is S-saturated. Given two sets 𝐴, 𝐵 that are S-
saturated, it is proven that ℕ𝐴 = ℕ𝐵: we denote then by ℕ this set. In particular, given
a set 𝐴 that is S-saturated, we have ℕ ⊆ 𝐴.

Example 3.h.13. In this model, the first natural number 0 is identified with ∅. Then [291]

1 = 0 ∪ {0} = {0} = {{}},
2 = 1 ∪ {1} = {0, 1} = {{}, {{}}},

3 = 2 ∪ {2} = {0, 1, 2} = {{}, {{}}, {{}, {{}}}},

....

Remark 3.h.14. This fact holds true: [25C]

∀𝑦 ∈ ℕ, 𝑦 ≠ ∅ ⇒ ∃𝑥 ∈ ℕ, 𝑆(𝑥) = 𝑦

this can be proven by induction, as in 4.2, or by proving that, if

∃𝑦 ∈ ℕ, 𝑦 ≠ ∅ ∧ ∀𝑥 ∈ ℕ, 𝑆(𝑥) ≠ 𝑦

then ℕ ⧵ {𝑦} would be an S-saturated set smaller than ℕ, a contradiction. In particular
by 3.h.8 we get that the successor function

𝑆 ∶ ℕ → ℕ ⧵ {0}

is bijective.
If 𝑛 ≠ 0, we will call 𝑆−1(𝑛) the predecessor of 𝑛.

We can also prove directly the induction principle.

Theorem 3.h.15 (Induction Principle). Let 𝐴 ⊇ ℕ and 𝑃(𝑛) be a logical proposition [23B]

that can be evaluated for 𝑛 ∈ 𝐴. Suppose the following two assumptions are satisfied:

• 𝑃(𝑛) is true for 𝑛 = 0 and
†29In [13] such set is called inductive.
†30Proposition 1.7.4 point 5 in [2].
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• ∀𝑛 ∈ ℕ, 𝑃(𝑛) ⇒ 𝑃(𝑆(𝑛)) ;

then 𝑃 is true for every 𝑛 ∈ ℕ.
The first hypothesis is known as ”the basis of induction” and the second as ”inductive
step”

Proof. Let𝑈 = {𝑛 ∈ ℕ ∶ 𝑃(𝑛)}, we know that 0 ∈ 𝑈 and that ∀𝑥, 𝑥 ∈ 𝑈 ⇒ 𝑆(𝑥) ∈ 𝑈 ,
so 𝑈 is S-saturated and 𝑈 ⊆ 𝑁 we conclude that 𝑈 = ℕ.

Theorem 3.h.16. Consider the order relation ⊆ on ℕ; then [24D]

∀𝑥, 𝑦 ∈ ℕ, (𝑥 ⊆ 𝑆𝑦 ∧ 𝑥 ≠ 𝑆𝑦) ⟺ (𝑥 ⊆ 𝑦) . (3.h.17)

This will be proven in Exercise 3.h.26.

To prove the above theorem, the exercises in the following section can be used.

Remark 3.h.18. Peano’s Axioms are provable in this model; moreover the order [26K]

relation satisfies the requirements of Hypothesis 4.d.1; therefore this model of ℕ enjoys
all properties discussed in Sec. §4: all different versions of the induction principle;
(ℕ, ⊆) is well-ordered; definitions by recursion; arithmetic, etc.

When we will want to compare this model with other models, we will denote it by
ℕZF.

The ordered set ℕ, ⊆ then enjoys these properties.

Proposition 3.h.19. This model of ℕ is a well-ordered set with the ordering [26J]

𝑛 ≤ 𝑚 ⟺ 𝑛 ⊆ 𝑚 .

Moreover in this model we have

∀𝑛, 𝑚 ∈ ℕ, 𝑛 ∈ 𝑚 ⟺ (𝑛 ⊆ 𝑚 ∧ 𝑛 ≠ 𝑚) . (3.h.20)

so, defining (as usual)
𝑛 < 𝑚 ≐ (𝑛 ≤ 𝑚 ∧ 𝑛 ≠ 𝑚)

we can write
𝑛 ∈ 𝑚 ⟺ 𝑛 < 𝑚 .

This is proven in the following exercises, see in particular 3.h.28.

More details are in the course notes (Chap. 1 Sec. 7 in [2]); or [13],[12].

§3.h.c Transitive sets

Definition 3.h.21. A set 𝐴 is said to be transitive if these equivalent conditions hold: [24Z]

•
∀𝑥, 𝑥 ∈ 𝐴 ⇒ 𝑥 ⊆ 𝐴 ,

i.e. every element of 𝐴 is also a subset of 𝐴;

•
∀𝑥, 𝑦, 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ⇒ 𝑥 ∈ 𝐴 .
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Example 3.h.22. Examples of transitive sets are: [290]

{} = 0
{{}} = 1,

{{}, {{}}} = 2,

{{}, {{}}, {{{}}}},

{{}, {{}}, {{{}}}, {{{{}}}}},

...

{{}, {{}}, {{}, {{}}}} = 3

{{}, {{}}, {{{}}}, {{}, {{}}}},

....

Comparing with 3.h.13 note that there are transitive sets that are not natural numbers.

Exercises

E3.h.23 If every element of 𝐴 is a transitive set then the relation 𝑥 ∈ 𝑦 is a transitive [25J]

relation in 𝐴 . (Note that this holds also if 𝐴 is not a transitive set.) Hidden solution:
[UNACCESSIBLE UUID '25K']

E3.h.24 Prove that for each 𝑚 ∈ ℕ, 𝑚 is a transitive set. [257]

Hidden solution: [UNACCESSIBLE UUID '258']

E3.h.25 Prerequisites:3.h.21,3.h.10,3.h.24. [26N]

∀𝑛, 𝑘 ∈ ℕ if 𝑛 ∈ 𝑘 then 𝑆𝑛 ⊆ 𝑘.
(Hint: you do not need induction, use that each 𝑛 ∈ ℕ is a transitive set).

E3.h.26 Prerequisites:3.h.25,3.b.36.To assert the Theorem 3.h.16 we have to prove [26P]

∀𝑥, 𝑦 ∈ ℕ, (𝑥 ⊆ 𝑆𝑦 ∧ 𝑥 ≠ 𝑆𝑦) ⟺ (𝑥 ⊆ 𝑦) . (3.h.17)

Prove that if 𝑋 is a set where each element is transitive

∀𝑥, 𝑦 ∈ 𝑋, (𝑥 ⊆ 𝑆𝑦 ∧ 𝑥 ≠ 𝑆𝑦) ⟺ (𝑥 ⊆ 𝑦) . (3.h.27)

Hidden solution: [UNACCESSIBLE UUID '26Q']

The previous exercises prove Theorem 3.h.16, then by results of Sec. §4 we obtain
that (ℕ, ≤) is well ordered.

Here following are other interesting exercises.

42 Copyright A. C. G. Mennucci
The sections comprising theory and exercises’ statements are released under License WP:CC BY-SA

https://coldoc.sns.it/UUID/EDB/290/
https://coldoc.sns.it/UUID/EDB/25J/
https://coldoc.sns.it/UUID/EDB/25K
https://coldoc.sns.it/UUID/EDB/257/
https://coldoc.sns.it/UUID/EDB/258
https://coldoc.sns.it/UUID/EDB/26N/
https://coldoc.sns.it/UUID/EDB/26P/
https://coldoc.sns.it/UUID/EDB/26Q
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License


§3 FUNDAMENTALS

Exercises

E3.h.28 We know from 3.h.18 that the relation 𝑛 ⊆ 𝑚 is total in ℕ. Prove that [269]

∀𝑛, 𝑚 ∈ ℕ, 𝑛 ∈ 𝑚 ⟺ (𝑛 ⊆ 𝑚 ∧ 𝑛 ≠ 𝑚) . (3.h.20)

By 3.c.11 this implies

∀𝑛, 𝑚 ∈ ℕ, 𝑛 ⊆ 𝑚 ⟺ (𝑛 ∈ 𝑚 ∨ 𝑛 = 𝑚) .

Hidden solution: [UNACCESSIBLE UUID '26B']

E3.h.29 Prove this assertion [265]

∀𝑘 ∈ ℕ, 𝑘 ≠ ∅ ⇒ ∅ ∈ 𝑘 .

Hidden solution: [UNACCESSIBLE UUID '266']

E3.h.30 Prerequisites:3.h.16,3.h.19.Prove that [25D]

∀𝑥, 𝑦 ∈ ℕ , 𝑥 ⊆ 𝑦 ∧ 𝑥 ≠ 𝑦 ⇒ 𝑆𝑥 ⊆ 𝑦 .

Hidden solution: [UNACCESSIBLE UUID '279']

E3.h.31 Having fixed 𝑁 ∈ ℕ, consider the ordering 𝑛 ⊆ 𝑚 for 𝑛, 𝑚 ∈ 𝑁. Since [25W]

𝑁 ⊆ ℕ is well ordered, then Proposition 3.h.19 implies that (𝑁, ⊆) is well ordered;
nonetheless prove directly by induction that 𝑛 ⊆ 𝑚 is a well ordering in 𝑁.
Hidden solution: [UNACCESSIBLE UUID '25X']

E3.h.32 Prove that [25Z]

⋃ℕ = ℕ .

Hidden solution: [UNACCESSIBLE UUID '260']

§3.h.d Ordinals

Perusing the above results we can give some elements of the theory of ordinals.

Definition 3.h.33. An ordinal (according to Von Neumann) is a transitive set 𝐴 such
that any element in 𝐴 is a transitive set.

Exercises

E3.h.34 Prerequisites:3.b.36,3.c.10.If 𝐴 is a set where ∈ is transitive, we define [25Q]

𝑥 ≤ 𝑦 ≐ 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦

prove that 𝑥 ≤ 𝑦 is a (possibly partial) order relation in 𝐴.
Hidden solution: [UNACCESSIBLE UUID '25S']

E3.h.35 Prove that the intersection of transitive sets is a transitive set. [25B]

E3.h.36 Prove that the intersection of ordinals is an ordinal. [25N]

Copyright A. C. G. Mennucci
The sections comprising theory and exercises’ statements are released under License WP:CC BY-SA

43

https://coldoc.sns.it/UUID/EDB/269/
https://coldoc.sns.it/UUID/EDB/26B
https://coldoc.sns.it/UUID/EDB/265/
https://coldoc.sns.it/UUID/EDB/266
https://coldoc.sns.it/UUID/EDB/25D/
https://coldoc.sns.it/UUID/EDB/279
https://coldoc.sns.it/UUID/EDB/25W/
https://coldoc.sns.it/UUID/EDB/25X
https://coldoc.sns.it/UUID/EDB/25Z/
https://coldoc.sns.it/UUID/EDB/260
https://coldoc.sns.it/UUID/EDB/25Q/
https://coldoc.sns.it/UUID/EDB/25S
https://coldoc.sns.it/UUID/EDB/25B/
https://coldoc.sns.it/UUID/EDB/25N/
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License


§3.i Well ordering

E3.h.37 Prove that if 𝑋 is an ordinal and 𝐴 ∈ 𝑋 then 𝐴 is an ordinal. [25M]

Hidden solution: [UNACCESSIBLE UUID '25P']

E3.h.38 Use the axiom of foundation 3.b.36 to prove that if 𝐴 is transitive and 𝐴 ≠ ∅ [25G]

then ∅ ∈ 𝐴.
Hidden solution: [UNACCESSIBLE UUID '25H']

E3.h.39 Prove that ℕ is a transitive set. (Hint: use induction.) [255]

Hidden solution: [UNACCESSIBLE UUID '256']

This and 3.h.24 say that ℕ is an ordinal.

E3.h.40 Let 𝑋 be an ordinal and [26S]

𝑃𝑥 = {𝑧 ∈ 𝑋, 𝑧 ∈ 𝑥}

show that
∀𝑥, 𝑦 ∈ 𝑋 , 𝑃𝑥 = 𝑃𝑦 ⇒ 𝑥 = 𝑦 .

Hidden solution: [UNACCESSIBLE UUID '26T']

(Note the similarity with 4.d.6).

E3.h.41 Prerequisites:3.h.34,3.b.36,3.d.12,3.i.6,3.h.40. [26V]

Let 𝑋 be an ordinal, we define

𝑥 ≤ 𝑦 ≐ 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦

we know from 3.h.34 that 𝑥 ≤ 𝑦 is a (possibly partial) order relation in 𝑋 . Prove that
𝑥 ≤ 𝑦 is a well order.
Hidden solution: [UNACCESSIBLE UUID '26W']

Remark 3.h.42. Consider again Proposition 3.h.19 that states thatℕZF is well ordered [275]

by the relation ⊆.
We know by 3.h.39 and 3.h.24 that ℕZF is an ordinal; we may be tempted to see

Proposition 3.h.19 as a corollary of the previous result 3.h.41.
This is unfortunately not a well posed way of proving this result, because of this

cascade of dependencies:

• the proof of 3.h.41 relies on the result 3.d.12

• the result 3.d.12 in turn needs a definition by recurrence of a function: this is
Theorem 4.b.1

• the proof of Theorem 4.b.1 uses the fact that the induction principle holds on ℕ.

So we need to first prove the properties of ℕZF independently of the theory of ordi-
nals, and then prove the results in Sec. §4, and then eventually we can prove the result
3.h.41, that states that any ordinal is well ordered by the relation ⊆.
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§3.i Well ordering [1YQ]

Definition 3.i.1. [07R]

A total order ≤ on a set 𝑋 is a well ordering if every nonempty subset of 𝑋 has a
minimum.

In particular 𝑋 has a minimum that we will indicate with 0𝑋 .

The theory of well orderings is very much linked to the theory of ordinals, of which [222]

we have given a few hints in Sec. §3.h.d. We just say that every ordinal is the standard
representative of a type of well ordering. Using standard ordinal theory (due to Von
Neumann) many of the subsequent exercises can be reformulated and simplified.

Remark 3.i.2. Recall that the supremum sup𝐴 of 𝐴 ⊆ 𝑋 is (by definition) the mini- [07S]
(Solved on
2023-01-17)

mum of the majorants (quando questo minimo esiste).
If 𝑋 is well ordered we have the existence of the supremum sup𝐴 for any 𝐴 ⊆ 𝑋

that is upper bounded. †31 (If 𝐴 is not upper bounded, we can conventionally decide
that sup𝐴 = ∞).

Exercises

E3.i.3 If (𝑋, ≤) is a well-ordered set and 𝑌 ⊆ 𝑋 is a subset, then 𝑌 (with the restriction [07W]

of the ordering) ≤ is a well-ordered set.

E3.i.4 Prerequisites:4.b.1. Let 𝑋 be totally ordered set. Show that these are equivalent: [07X]
(Solved on
2023-01-17)

(Proposed on
2022-12)

1. 𝑋 is well ordered;
2. there are no strictly decreasing functions 𝑓 ∶ ℕ → 𝑋 .

(This is a special case of 3.d.12)

E3.i.5 Prerequisites:3.d.58,3.d.34,3.d.51,3.i.4.Difficulty:*.Note:exercise 2 written exam on 29 Jan- [22F]

uary 2021. (Solved on
2022-10-13
in part)Let be given (𝑋, ≤𝑋 ) where 𝑋 is an infinite set and ≤𝑋 is a well ordering.

• If 𝑋 has no maximum, then there exists (𝑌 , ≤𝑌 ) such that setting 𝑍 = 𝑌 × ℕ
with≤𝑍 the lexicographical order, then (𝑋, ≤𝑋 ) and (𝑍, ≤𝑍) have the same type
of order.

• If instead𝑋 has maximum, then there exist (𝑌 , ≤𝑌 ) and 𝑘 ∈ ℕ such that, setting
𝑍 be the concatenation of 𝑌 ×ℕ and {0, … 𝑘} (where 𝑌 ×ℕ has the lexicograph-
ical order, as above), then (𝑋, ≤𝑋 ) and (𝑍, ≤𝑍) have the same type of order.

• Show that, in the previous cases, 𝑌 is well ordered.

Hidden solution: [UNACCESSIBLE UUID '22G']

E3.i.6 Difficulty:*. Let the ordered set (𝑋, ≤) be given; we define [0DQ]
(Proposed on
2022-12)𝑃𝑥

def= {𝑤 ∈ 𝑋 ∶ 𝑤 < 𝑥} .

Suppose (𝑋, ≤) meets these two requirements:
†31”Upper bounded” means that there exists 𝑤 ∈ 𝑋 such that 𝑥 ≤ 𝑤 for every 𝑥 ∈ 𝐴. This is equivalent

to saying that the set of majorants of 𝐴 is not empty!
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•
∀𝑥, 𝑦 ∈ 𝑋 , 𝑃𝑥 = 𝑃𝑦 ⇒ 𝑥 = 𝑦

• every non-empty set 𝐴 ⊆ 𝑋 contains at least one minimal element, i.e.

∃𝑎 ∈ 𝐴, ∀𝑏 ∈ 𝐴¬(𝑏 < 𝑎) ;

then (𝑋, ≤) is well ordered.
Hidden solution: [UNACCESSIBLE UUID '26R']

§3.i.a Successor

Definition 3.i.7. Let 𝑋 be a well-ordered non-empty set. Suppose 𝑥 ∈ 𝑋 is not the [1Z0]

maximum, then the set of majorants {𝑦 ∈ 𝑋 ∶ 𝑦 > 𝑥} is not empty, so we define the
successor element 𝑆(𝑥) of 𝑥 as

𝑆(𝑥) = min{𝑦 ∈ 𝑋 ∶ 𝑦 > 𝑥} .

Exercises

E3.i.8 Prerequisites:3.i.7. [1Z1]
(Proposed on
2023-01-17)Suppose 𝑋 has no maximum; let 𝑆 be defined as in 3.i.7; show that is an injective

function
𝑆 ∶ 𝑋 → 𝑋 ,

and that 𝑆(𝑥) ≠ 0𝑋 , for every 𝑥 (that is, 0𝑋 is not successor of any element).
Hidden solution: [UNACCESSIBLE UUID '223']

We note that in general 𝑆 will not be surjective, as a function 𝑆 ∶ 𝑋 → 𝑋 ⧵{0𝑋 }: there
may be elements 𝑦 ∈ 𝑆, 𝑦 ≠ 0𝑋 that are not successors of an element. If, however,
for a given 𝑦 ∈ 𝑋 , there exists 𝑥 ∈ 𝑋 such that 𝑦 = 𝑆(𝑥), we will say that 𝑥 is the
predecessor of 𝑦.

E3.i.9 Prerequisites:3.i.7,3.i.8.If 𝑥 ≤ 𝑦 ≤ 𝑆(𝑥) then 𝑦 = 𝑥 ∨ 𝑦 = 𝑆(𝑥). [22H]

Hidden solution: [UNACCESSIBLE UUID '22J']

(The meaning of this result is that 𝑆(𝑥) is the immediate successor of 𝑥, there is
nothing in between...).

§3.i.b Segments and well orderings

In the following (𝑋, ≤𝑋 ) will be a well-ordered set.

Definition 3.i.10. A nonempty subset 𝑆 ⊆ 𝑋 is an initial segment if ∀𝑥 ∈ 𝑆, ∀𝑦 ∈ [07T]

𝑋, 𝑦 < 𝑥 ⇒ 𝑦 ∈ 𝑆.
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Exercises

E3.i.11 Show that the initial segment union is an initial segment. [07Z]

E3.i.12 If 𝑆 ⊆ 𝑋 is an initial segment and 𝑆 ≠ 𝑋 , show that 𝑠 ∈ 𝑋 ⧵ 𝑆 exists and [080]
(Solved on
2023-01-17)

is unique (𝑠 is called the next item to 𝑆) which extends 𝑆, i.e. such that 𝑆 ∪ {𝑠} is
an initial segment. Hidden solution: [UNACCESSIBLE UUID '081'] (Note that there are
similarities with the concept of ”successor” seen in 3.i.7... We could say that 𝑠 is the
successor of the segment 𝑆).

E3.i.13 Prerequisites: 3.d.44, 3.d.45, 3.d.49. Let 𝑋 be a well-ordered set. Show that if [082]
(Solved on
2023-01-17)

𝐼 ⊆ 𝑋 is an interval then 𝐼 = [𝑎, 𝑏) or 𝐼 = [𝑎, 𝑏] or 𝐼 = [𝑎, ∞) with 𝑎, 𝑏 ∈ 𝑋 . (The
reverse is obviously true).
In particular, an initial segment is [0𝑋 , 𝑏) or [0𝑋 , 𝑏] or all 𝑋 . Hidden solution:
[UNACCESSIBLE UUID '083']

E3.i.14 Let (𝑋, ≤𝑋 ), (𝑌 , ≤𝑌 ) be totally ordered non-empty sets. Let 𝑓 ∶ 𝑋 → 𝑌 be a [084]

strictly increasing bijective function. Then for each 𝑆 ⊆ 𝑋 initial segment we have
that 𝑓(𝑆) is an initial segment of 𝑌 ; and vice versa. Hidden solution: [UNACCESSIBLE

UUID '085']

E3.i.15 Prerequisites:3.i.4,4.b.1,3.d.51. [086]

Let (𝑋, ≤𝑋 ) be awell-ordered non-empty set. Show that if 𝑆 ⊆ 𝑋 is an initial segment
and (𝑋, ≤𝑋 ) and (𝑆, ≤𝑋 ) are equiordinate from the map 𝑓 ∶ 𝑆 → 𝑋 then 𝑋 = 𝑆 and
𝑓 is the identity.
Hidden solution: [UNACCESSIBLE UUID '087'][UNACCESSIBLE UUID '088']

(Note the difference with cardinality theory: An infinite set is in one-to-one corre-
spondence with some of its proper subsets, cf 3.j.36 and 3.j.39. Moreover, if two sets
have the same cardinality then there are many bijections between them.)

E3.i.16 Give an example of a totally ordered set (𝑋, ≤𝑋 ) which has minimum, and of [089]
(Solved on
2023-01-17)

an initial segment 𝑆 such that (𝑋, ≤𝑋 ) and (𝑆, ≤𝑋 ) are equiordinate. Hidden solution:
[UNACCESSIBLE UUID '08B']

E3.i.17 Prerequisites:3.i.15. Let (𝑋, ≤𝑋 ) and (𝑌 , ≤𝑌 ) be well ordered; suppose there [08C]
(Proposed on
2022-12)

exists a bijective function 𝑓 ∶ 𝑋 → 𝑇 strictly increasing where 𝑇 an initial segment
of 𝑌 ; then 𝑓 is unique (and unique is 𝑇). Hidden solution: [UNACCESSIBLE UUID '08D']

E3.i.18 Prerequisites:3.e.24, 3.i.11, 3.i.14, 3.i.12, 3.i.17. [08F]

Let be given two well-ordered non-empty sets (𝑋, ≤𝑋 ) and (𝑌, ≤𝑌 ). Show that

1. there is an initial segment 𝑆 of 𝑋 and a strictly increasing monotonic bijective
function 𝑔 ∶ 𝑆 → 𝑌 ; or †32

2. there is an initial segment 𝑇 of 𝑌 and a bijective strictly increasing monotonic
function 𝑔 ∶ 𝑋 → 𝑇.

In the first case we will write that (𝑌, ≤𝑌 ) ⪯ (𝑋, ≤𝑋 ), in the second that (𝑋, ≤𝑋 ) ⪯
(𝑌, ≤𝑌 ). (Note that in the first case you have |𝑌 | ≤ |𝑋| and in the second |𝑋| ≤ |𝑌|).
By the previous exercise, the map 𝑔 and its segment are unique.
Hidden solution: [UNACCESSIBLE UUID '08G']
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E3.i.19 Prerequisites:3.i.18.Show that if (𝑋, ≤𝑋 ) ⪯ (𝑌, ≤𝑌 ) and also (𝑌 , ≤𝑌 ) ⪯ (𝑋, ≤𝑋 [08H]

), then they are equiordinate.
Hidden solution: [UNACCESSIBLE UUID '08J']

The relation ⪯ is therefore a total order between types of well-orderings.

§3.i.c Examples

Exercises

E3.i.20 Prerequisites:3.d.37.The type of well ordering of ℕ is called 𝜔. Given 𝑘 ≥ 2 [08K]

natural, ℕ𝑘 endowed with the lexicographical order is a well-ordered set (for 3.d.37),
and the type of ordering is called 𝜔𝑘. Show that 𝜔𝑘 ⪯ 𝜔ℎ for ℎ > 𝑘, and that 𝜔𝑘, 𝜔ℎ

do not have the same type of order.

E3.i.21 Difficulty:*.Build a well ordering on a countable set 𝑋 such that 𝑋 = ⋃∞
𝑛=1 𝑆𝑛 [08M]

where 𝑆𝑛 are initial segments, each with order type 𝜔𝑛. The order so built on 𝑋 is
indicated by 𝜔𝜔. Hidden solution: [UNACCESSIBLE UUID '08N']

E3.i.22 Difficulty:*.Build a strictly increasing map between 𝜔𝜔 and ℝ. Hidden solu- [08P]

tion: [UNACCESSIBLE UUID '08Q']

§3.j Cardinality [1YW]

For convenience we will use the symbol |𝐴| to indicate cardinality of the set 𝐴. This [22B]

symbol is used as follows. Given two sets 𝐴, 𝐵, we will write |𝐴| = |𝐵| if these sets are
equipotents (or sometimes equinumerous), i.e. if there is a bijective function between
𝐴 and 𝐵; we will write |𝐴| ≤ |𝐵| if there is an injective function from 𝐴 to 𝐵. We will
also write |𝐴| < |𝐵| if there is an injective function from 𝐴 to 𝐵, but not a bijection.If
we assume the axiom of choice to be true, then for every pair of sets we always have
|𝐴| ≤ |𝐵| or |𝐵| ≤ |𝐴| (see 3.j.20).

Proposition 3.j.1. If we now fix a family ℱ of sets of interest, we first define the [1Z9]

relation 𝐴 ∼ 𝐵 ⟺ |𝐴| = |𝐵| in it; it is easily shown that this is an equivalence
relation; so we get that |𝐴| ≤ |𝐵| is a total order in ℱ/ ∼.

Proof. This derives from the Proposition 3.g.3, since the relation

𝐴𝑅𝐵 ⟺ |𝐴| ≤ |𝐵|

is reflexive and transitive, and by Cantor–Bernstein’s Theorem

|𝐴| ≤ |𝐵| ∧ |𝐵| ≤ |𝐴| ⟺ 𝐴 ∼ 𝐵 .

In the following, let 𝐸0 = ∅, and let 𝐸𝑛 = {1, … 𝑛} otherwise if 𝑛 ≥ 1.

Lemma 3.j.2. If 𝑛, 𝑚 ∈ ℕ, 𝑛 < 𝑚 then |𝐸𝑛| < |𝐸𝑚|. This is proven in Lemma 1.12.1 [2GK]

of the notes [2].
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Definition 3.j.3. By definition †33 “a set 𝐴 is finite and has cardinality 𝑛” if it is [1B1]

equipotent to a set 𝐸𝑛 (for a choice of 𝑛 ∈ ℕ; note that there is at most one 𝑛 for which
this may hold, by the above Lemma).So when the set is finite, |𝐴| is identified with the
natural number of its elements; we will write |𝐴| = 𝑛. If a set isn’t finite, then it is
infinite.

Note that the null map 𝑓 ∶ ∅ → ∅ is a bigection; and |𝐴| = 0 ⇔ 𝐴 = ∅. The
following exercise is a fundamental result.

Exercise 3.j.4. Prove that ℕ is infinite, and that |ℕ| > 𝑛, ∀𝑛 ∈ ℕ. Hidden solution: [2GH]

[UNACCESSIBLE UUID '2GJ']

We recall Theorem 1.12.2 of the notes [2], for convenience.

Theorem 3.j.5. If 𝐴 is infinite then |𝐴| ≥ |ℕ|. In particular, |𝐴| > 𝑛 for any 𝑛 ∈ ℕ. [02S]

Definition 3.j.6. A set 𝐴 equipotent to ℕ is called countably infinite; †34 such a set [2DD]

is infinite (by the result 3.j.4 above).

§3.j.a Finite sets

Exercises

E3.j.7 If 𝐴 is a finite set and 𝐵 ⊆ 𝐴, prove that 𝐵 is finite. [02T]

Hidden solution: [UNACCESSIBLE UUID '02V']

E3.j.8 Suppose we have a finite number 𝑚 ≥1 of sets 𝐴1, … , 𝐴𝑚 all finite. Show that [02W]

⋃𝑚
𝑗=1 𝐴𝑗 is a finite set. Hidden solution: [UNACCESSIBLE UUID '02X']

E3.j.9 Recall that 𝐴𝐵 is the set of all functions 𝑓 ∶ 𝐵 → 𝐴. If 𝐴, 𝐵 are finite non- [02Y]

empty sets show that |𝐴𝐵| = |𝐴||𝐵|. What happens if one set, or both sets, are empty?
Hidden solution: [UNACCESSIBLE UUID '02Z']

E3.j.10 If 𝐴, 𝐵 are finite non-empty sets, calculate the cardinality of the set of injective [22K]

functions 𝑓 ∶ 𝐵 → 𝐴 ; and the cardinality of the surjective ones. What happens if
one, or both, of the two sets 𝐴, 𝐵 are empty?

§3.j.b Comparison

Exercises

E3.j.11 Prerequisites:3.e.20.Suppose 𝐴 is not empty. We have |𝐴| ≤ |𝐵| if and only if [030]

there is a surgective function 𝑓 ∶ 𝐵 → 𝐴. (The ”if” implication necessitates the
axiom of choice; See also 3.b.46.)

E3.j.12 Show that if |𝐴1| ≤ |𝐴2| and |𝐵1| ≤ |𝐵2| then |𝐴1 × 𝐵1| ≤ |𝐴2 × 𝐵2|. [031]

E3.j.13 Show that if |𝐴1| ≤ |𝐴2| and |𝐵1| ≤ |𝐵2| then |𝐴𝐵1
1 | ≤ |𝐴𝐵2

2 | Hidden solution: [032]

[UNACCESSIBLE UUID '033']

E3.j.14 Show that |(𝐴𝐵)𝐶 | = |𝐴(𝐵×𝐶)|. Hidden solution: [UNACCESSIBLE UUID '035'] [034]
(Solved on
2021-11-04)
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E3.j.15 Let 𝐼 be a family of indices and 𝐵𝑖, 𝐴𝑖 sets, for 𝑖 ∈ 𝐼, such that |𝐴𝑖| ≤ |𝐵𝑖|;
[036]suppose that the sets 𝐵𝑖 are pairwise disjoint. Show that

||||⋃𝑖∈𝐼
𝐴𝑖

||||
≤

||||⋃𝑖∈𝐼
𝐵𝑖

||||
.

(In your opinion, is it possible to prove this result without using the axiom of choice,
at least in the case in which 𝐼 is countable?) Hidden solution: [UNACCESSIBLE UUID

'037']

E3.j.16 Let 𝐶 be a set, 𝐼 a family of indexes, and then 𝐵𝑖 sets, for 𝑖 ∈ 𝐼; suppose the [038]

sets 𝐵𝑖 are pairwise disjoint; define ℬ = ⋃𝑖∈𝐼 𝐵𝑖 for convenience; then show that

∀𝑖, |𝐵𝑖| ≤ |𝐶| ⇒ |ℬ| ≤ |𝐼 × 𝐶| (3.j.17)
∀𝑖, |𝐵𝑖| ≥ |𝐶| ⇒ |ℬ| ≥ |𝐼 × 𝐶| . (3.j.18)

Hidden solution: [UNACCESSIBLE UUID '039']

E3.j.19 Let 𝐶 be a set, 𝐼 a family of indices, and 𝐵 sets for 𝑖 ∈ 𝐼 with |𝐵𝑖| = |𝐶|; then [03C]

show that
|ℬ| = ||𝐶𝐼 ||

where ℬ = ∏𝑖∈𝐼 𝐵𝑖. Hidden solution: [UNACCESSIBLE UUID '03D']

E3.j.20 Prerequisites:3.e.24. Show that cardinalities are always comparable: given two [03F]
(Proposed on
2022-12)

sets 𝐴, 𝐵 either |𝐴| ≤ |𝐵| or |𝐵| ≤ |𝐴| holds. (Use Zorn’s lemma and the construction
explained in the exercise 3.e.24). Hidden solution: [UNACCESSIBLE UUID '03G']

This statement is equivalent to the Axiom of Choice, see [21].

§3.j.c Countable cardinality

Definition 3.j.21. Recall that a set is ”countably infinite” if it has the same cardinality [2DF]

of ℕ.
If 𝐴 is countably infinite, there exists 𝑎 ∶ ℕ → 𝐴 bijective. Writing 𝑎𝑛 instead of

𝑎(𝑛), we will therefore say that 𝐴 = {𝑎0, 𝑎1, 𝑎2 …} is an enumeration.

Exercises

E3.j.22 Found a polynomial 𝑝(𝑥, 𝑦)which, seen as a function 𝑝 ∶ ℕ2 → ℕ is bijective. [03H]

It follows, iterating, that there is a polynomial 𝑞𝑘 in 𝑘 variables 𝑞𝑘 ∶ ℕ𝑘 → ℕ that is
bijective. So ℕ𝑘 is countable. Hidden solution: [UNACCESSIBLE UUID '03J'][UNACCESSIBLE

UUID '03K']

E3.j.23 Show that the sets ℤ, ℚ are countable. Hidden solution: [UNACCESSIBLE UUID [03M]

'03N']

E3.j.24 Prerequisites: 3.j.15,3.j.22. [03P]

†32The two conditions can also both apply, in which case 𝑋, 𝑌 have the same type of order.
†33This is the definition presented in the course. There are also other definitions of “finite set” [16]. See

for example the exercise 3.j.39
†34Attention, in English the term countable is used for finite or countable sets. By comparison, in Italian

the term insieme numerabile is used to denote a countably infinite set.
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Let 𝐴0.𝐴1 … 𝐴𝑛 … sets of countable cardinality, for 𝑛 ∈ ℕ.
Show that 𝐵 = ⋃∞

𝑘=0 𝐴𝑘 is countable.
Note that 𝐵 is infinite-countable if for example there is at least one 𝑛 for which 𝐴𝑛
is infinite-countable.
Hidden solution: [UNACCESSIBLE UUID '03Q']

E3.j.25 We indicate with 𝒫𝔣(𝐴) the set of subsets 𝐵 ⊆ 𝐴 which are finite sets. This is [03R]

called colloquially the set of finite parts.
Show that 𝒫𝔣(ℕ) is countably infinite.
Hidden solution: [UNACCESSIBLE UUID '03S']

This result applies in general, see 3.j.47.

§3.j.d Cardinality of the continuum

Definition 3.j.26. We will say that a set has cardinality of the continuum if it has the [03V]

same cardinality as ℝ.

Remark 3.j.27. Cantor proved that |ℕ| < |ℝ|. Cantor then (in 1878) formulated the [2F2]

continuum hypothesis CH: for any infinite set 𝐸 ⊆ ℝ, either |𝐸| = |ℝ| or |𝐸| = |ℕ|. For
many yearmathematicians tried to prove (or disprove) CH. It took decades to understand
that this was not possible. We know know that, if ZF is consistent, then neither CH nor
its negation can be proven as theorems in ZF (even using the Axiom of Choice). The
second part of the statement was proved by Gödel nel 1939. The first part by Cohen in
1963. See Chap. 6 in [12].

Exercises

E3.j.28 Explain how you could explicitly construct a bijection between [0, 1) and [03X]
(Proposed on
2022-12)

[0, 1)2.

E3.j.29 Show with explicit constructions that the following sets have continuum car- [03Y]
(Proposed on
2022-10-13)

(Solved on
2022-10-27)

dinalities:
[0, 1], [0, 1), (0, 1), (0, ∞) .

Hidden solution: [UNACCESSIBLE UUID '03Z']

E3.j.30 Prerequisites:3.j.37, 3.j.14, 3.j.13. [040]

Show that the following sets have continuum cardinalities.

ℝ𝑛, {0, 1}ℕ, ℕℕ, ℝℕ .

Hidden solution: [UNACCESSIBLE UUID '041'][UNACCESSIBLE UUID '042']

E3.j.31 Prerequisites:3.j.15,3.j.30.Let 𝐴𝑡 be sets with cardinality less than or equal to [043]

the continuum, for 𝑡 ∈ ℝ. Show that ⋃𝑡∈ℝ 𝐴𝑡 has cardinality of the continuum.
Hidden solution: [UNACCESSIBLE UUID '044']

E3.j.32 Let 𝒜 be the set of subsets 𝐵 ⊆ ℝ which are countable sets; show that 𝒜 has [045]

cardinality of the continuum. Hidden solution: [UNACCESSIBLE UUID '046']
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§3.j Cardinality

§3.j.e In general

Let’s add some more general exercises.

Exercises

E3.j.33 Show that |𝐴| < |𝒫(𝐴)|. Hidden solution: [UNACCESSIBLE UUID '049'] [048]

E3.j.34 Consider the setℕℕ of functions 𝑓 ∶ ℕ → ℕ; and the subset𝒜 of 𝑓 of functions [04B]

that can be defined using an algorithm, written in a programming language of your
choice (also assuming that the computer that is running this algorithm has potentially
unlimited memory) and such that for each choice 𝑛 ∈ ℕ in input the algorithm must
finish and return 𝑓(𝑛). Compare the cardinalities of ℕℕ and 𝒜.

E3.j.35 Calculate the cardinality of the set ℱ of weakly decreasing functions 𝑓 ∶ ℕ → [04D]
(Proposed on
2022-12)

ℕ. Hidden solution: [UNACCESSIBLE UUID '04F']

E3.j.36 Prerequisites:4.b.1. [04G]

A set 𝐴 is called Dedekind–infinite if 𝐴 is in bijection with a proper subset, that is if
there is 𝐵 ⊂ 𝐴, 𝐵 ≠ 𝐴 and ℎ ∶ 𝐴 → 𝐵 bijection. Show that a set 𝐴 is Dedekind–
infinite if and only if there is an injective function 𝑔 ∶ ℕ → 𝐴. (This result does not
require the axiom of choice.)
Hidden solution: [UNACCESSIBLE UUID '04H']

E3.j.37 Prerequisites:3.j.5.If 𝐴 is infinite and 𝐵 is countable, show that |𝐴| = |𝐴 ∪ 𝐵| [04J]

using the existence of an injective function 𝑔 ∶ ℕ → 𝐴.
Hidden solution: [UNACCESSIBLE UUID '04K']

E3.j.38 Prerequisites:3.j.8,3.j.37.Similarly if𝐴 is infinite and𝐵 is finite show that |𝐴| = [22M]

|𝐴 ⧵ 𝐵| using the fact that for every infinite set 𝑋 there is an injective 𝑔 ∶ ℕ → 𝑋
function. Hidden solution: [UNACCESSIBLE UUID '22N']

E3.j.39 Prerequisites:3.j.5, 3.j.36. Show that a set 𝐴 is Dedekind–infinity if and only [04M]

if it is infinite (according to the definition seen at the beginning of the chapter).
Hidden solution: [UNACCESSIBLE UUID '04N']

Note: According to [10], the previous equivalence cannot be proved using only the
axioms of ZF (Zermelo–Fraenkel without the axiom of choice) ; the previous equiv-
alence can be proved using the axioms of ZFC (Zermelo–Fraenkel with the axiom of
choice); but its validity in ZF is weaker than the axiom of choice.

E3.j.40 Prerequisites:3.j.37,3.e.24.Difficulty:*. [04P]
(Proposed on
2022-12)

Let 𝑋 an infinite set. Show that 𝑋 can be partitioned in two sets 𝑋1, 𝑋2 that have the
same cardinality as 𝑋 . (Hint. consider subsets of 𝑋 on which the property is valid,
use Zorn) Hidden solution: [UNACCESSIBLE UUID '04Q']

E3.j.41 Prerequisites:3.j.40,3.j.22,3.i.5.Difficulty:*. [04R]
(Solved on
2022-10-13
in parte)

Let 𝐴 infinite. Show that |𝐷 × 𝐴| = |𝐴| for every non-empty countable set 𝐷 . †35

(A possible solution uses 3.j.40) Hidden solution: [UNACCESSIBLE UUID '04S']

(Another possible solution uses Zermelo’s theorem, 3.i.5 and 3.j.22; in this case 3.j.40
becomes a corollary of this result.) Hidden solution: [UNACCESSIBLE UUID '04T']

†35Equivalently, show that there is a partition 𝑈 of 𝐴 such that each part 𝐵 ∈ 𝑈 has cardinality |𝐵| = |𝐴|,
and the family 𝑈 of the parts has cardinality |𝑈| = |𝐷|.
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§3 FUNDAMENTALS

E3.j.42 Let 𝐴, 𝐵 be infinite. Show that |𝐴 ∪ 𝐵| = max{|𝐴|, |𝐵|}. Hidden solution: [04V]
(Solved on
2022-10-27)

[UNACCESSIBLE UUID '04W']

E3.j.43 Show that if 𝐴 is an infinite set, and decomposes into the disjoint union of two [04X]

sets 𝐴1, 𝐴2 with |𝐴1| ≤ |𝐴2| then |𝐴| = |𝐴2|. Hidden solution: [UNACCESSIBLE UUID

'04Y']

E3.j.44 Prerequisites:3.e.24, 3.j.41.Difficulty:**. [04Z]
(Proposed on
2022-10-13)

(Solved on
2022-11-15)

Let 𝐴, 𝐵 be infinite sets. Show that |𝐴2| = |𝐴|.
Use this result to show that if 𝐴, 𝐵 are not empty and at least one is infinite then
|𝐴 × 𝐵| = max{|𝐴|, |𝐵|}.
Hidden solution: [UNACCESSIBLE UUID '050']

See also the note 3.j.45.

Remark 3.j.45. Historical notes. [27H]

• The proposition ”|𝐴2| = |𝐴| holds for every infinite set” is equivalent to the axiom
of choice. This was demonstrated by Tarski [23] in 1928 ; the article is online
and downloadable and contains other surprising equivalences. See also [21]
Part 1 Section 7 page 140 assertion CN6.

• Jan Mycielski [18] reports: «Tarski told me the following story. He tried to
publish his theorem (stated above) in the Comptes Rendus Acad. Sci. Paris but
Fréchet and Lebesgue refused to present it. Fréchet wrote that an implication
between two well known propositions is not a new result. Lebesgue wrote that
an implication between two false propositions is of no interest. And Tarski said
that after this misadventure he never tried to publish in the Comptes Rendus».
This anecdote shows how in the past (before the works of Godel and Cohen [5],
even the most respected mathematician had a feeble grasp of the importance of
the Axiom of Choice.

Exercises

E3.j.46 Prerequisites:3.j.44.Let 𝐴 be an infinite set. Let 𝑛 ∈ ℕ with 𝑛 ≥ 1. Show that [051]

|𝐴𝑛| = |𝐴|. Hidden solution: [UNACCESSIBLE UUID '052']

E3.j.47 Prerequisites:3.j.15, 3.j.46, 3.j.44. Let 𝐴 be an infinite set. Show that the set [053]
(Proposed on
2022-12)

(Solved on
2023-01-24)

of finite parts 𝒫𝔣(𝐴) has the same cardinality as 𝐴. Hidden solution: [UNACCESSIBLE

UUID '054']

E3.j.48 Prerequisites: 3.j.16, 3.j.44. Let 𝑋 be an infinite set, let ∼ be an equivalence
[055]
(Solved on
2023-01-24)

relation on 𝑋 , let 𝑈 = 𝑋/ ∼ be the equivalence classes.

• Suppose each class is finite, show that |𝑈| = |𝑋|.
• Suppose𝑈 is infinite and every class has cardinality at most |𝑈|, then |𝑈| = |𝑋|.

Hidden solution: [UNACCESSIBLE UUID '056']

E3.j.49 Prerequisites:3.b.47,3.j.47,3.j.48.Difficulty:**. [057]

Let 𝑉 be a real vector space. Let 𝐴, 𝐵 be two Hamel bases (see 3.b.47). Show that
|𝐴| = |𝐵|. (This result is known as ”Dimension theorem”)

Copyright A. C. G. Mennucci
The sections comprising theory and exercises’ statements are released under License WP:CC BY-SA

53

https://coldoc.sns.it/UUID/EDB/04V/
https://coldoc.sns.it/UUID/EDB/04W
https://coldoc.sns.it/UUID/EDB/04X/
https://coldoc.sns.it/UUID/EDB/04Y
https://coldoc.sns.it/UUID/EDB/04Y
https://coldoc.sns.it/UUID/EDB/04Z/
https://coldoc.sns.it/UUID/EDB/050
https://coldoc.sns.it/UUID/EDB/27H/
https://bibliotekanauki.pl/articles/1385793
https://bibliotekanauki.pl/articles/1385793
https://coldoc.sns.it/UUID/EDB/051/
https://coldoc.sns.it/UUID/EDB/052
https://coldoc.sns.it/UUID/EDB/053/
https://coldoc.sns.it/UUID/EDB/054
https://coldoc.sns.it/UUID/EDB/054
https://coldoc.sns.it/UUID/EDB/055/
https://coldoc.sns.it/UUID/EDB/056
https://coldoc.sns.it/UUID/EDB/057/
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License


§3.k Operations on sets

More in general, let 𝐿, 𝐺 ⊆ 𝑉 , if the vectors in 𝐿 are linearly independent, and 𝐺
generates 𝑉 , show that |𝐿| ≤ |𝐺|.
Hidden solution: [UNACCESSIBLE UUID '058']

Other interesting exercises are 10.g.10, 10.a.7.

§3.j.f Power

Recall that 𝐴𝐵 is the set of all functions 𝑓 ∶ 𝐵 → 𝐴. We will write |2𝐴| to indicate the
cardinality of the set of parts of 𝐴.

Exercises

E3.j.50 Prerequisites:3.j.44. Let 𝐴, 𝐵 be non-empty sets and such that 𝐴 is infinite and [05J]
(Proposed on
2022-12)

2 ≤ |𝐵| ≤ |𝐴| then |𝐵 𝐴| = |2𝐴|. Hidden solution: [UNACCESSIBLE UUID '05K']

E3.j.51 Let 𝐴, 𝐵 be non-empty sets, suppose there is a 𝐶 such that |𝐵| = |2𝐶 | then [05M]

|𝐵 𝐴| = max{|𝐵|, |2𝐴|}.
Hidden solution: [UNACCESSIBLE UUID '05N']

In general in case |𝐵| > |𝐴| the study of the cardinality of |𝐵 𝐴| is very complex (even
in seemingly simple cases like 𝐴 = ℕ).

§3.k Operations on sets [1YX]

Exercises

E3.k.1 Let 𝑋 be a non-empty set, and 𝐴 ⊆ 𝑋 . We will denote with 𝐴𝑐 = 𝑋 ⧵ 𝐴 = {𝑥 ∈ [05R]

𝑋 ∶ 𝑥 ∉ 𝐴} the complement of 𝐴 in 𝑋 .
We define the characteristic function 𝟙𝐴 ∶ 𝑋 → ℤ by

𝟙𝐴(𝑥) = {1 if 𝑥 ∈ 𝐴
0 if 𝑥 ∉ 𝐴 .

Prove that

𝟙𝐴𝑐 = 1 − 𝟙𝐴 , 𝟙𝐴∩𝐵 = 𝟙𝐴𝟙𝐵 , 𝟙𝐴∪𝐵 = 𝟙𝐴 + 𝟙𝐵 − 𝟙𝐴𝟙𝐵

E3.k.2 Now consider instead the characteristic function defined as before, but consid- [05S]

ered as 𝟙𝐴 ∶ 𝑋 → ℤ2 i.e. taking values in the group ℤ2 (more correctly referred to
as ℤ/2ℤ).
In this case the above relations can be written as

𝟙𝐴𝑐 = 𝟙𝐴 + 1 , 𝟙𝐴∩𝐵 = 𝟙𝐴𝟙𝐵 , 𝟙𝐴∪𝐵 = 𝟙𝐴𝟙𝐵 + 𝟙𝐴 + 𝟙𝐵 .

Recall the definition of the symmetric difference 𝐴𝛥𝐵 = (𝐴 ⧵ 𝐵) ∪ (𝐵 ⧵ 𝐴), and then
𝟙𝐴𝛥𝐵 = 𝟙𝐴 + 𝟙𝐵 .

With these rules we show that

𝐴𝛥𝐵 = 𝐵𝛥𝐴 , (𝐴𝛥𝐵)𝑐 = 𝐴𝛥(𝐵𝑐) = (𝐴𝑐)𝛥𝐵 , 𝐴𝛥𝐵 = 𝐶 ⟺ 𝐴 = 𝐵𝛥𝐶
(𝐴𝛥𝐵) ∩ 𝐶 = (𝐴 ∩ 𝐶)𝛥(𝐵 ∩ 𝐶) , 𝐴 ∪ (𝐵𝛥𝐶) = (𝐴 ∪ 𝐵)𝛥(𝐴𝑐 ∩ 𝐶)
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§3 FUNDAMENTALS

E3.k.3 Let 𝐴, 𝐵, 𝐶 sets, then [05T]

𝐴 × (𝐵 ∪ 𝐶) = (𝐴 × 𝐵) ∪ (𝐴 × 𝐶) ,
𝐴 × (𝐵 ∩ 𝐶) = (𝐴 × 𝐵) ∩ (𝐴 × 𝐶) .

Therefore the Cartesian product operation is distributive on the union and intersec-
tion.

E3.k.4 If 𝐴, 𝐵, 𝐶 are non-empty sets and [05V]

(𝐴 × 𝐵) ∪ (𝐵 × 𝐴) = (𝐶 × 𝐶)

then 𝐴 = 𝐵 = 𝐶.
Hidden solution: [UNACCESSIBLE UUID '05W']

E3.k.5 Given four sets 𝑋, 𝑌, 𝐴, 𝐵 with 𝐴 ⊂ 𝑋, 𝐵 ⊂ 𝑌 , write [05X]

(𝑋 × 𝑌) ⧵ (𝐴 × 𝐵)

as a union of three sets, pairwise disjoint, each a Cartesian product.
Hidden solution: [UNACCESSIBLE UUID '05Y']

E3.k.6 We want to rewrite the tautologies seen in 3.a.10 in the form of set relations. [05Z]

Let 𝑋 be a set and let 𝛼, 𝛽, 𝛾 ⊆ 𝑋 be subsets. Let 𝑥 ∈ 𝑋 . If we define 𝐴 = (𝑥 ∈ 𝛼),
𝐵 = (𝑥 ∈ 𝛽), 𝐶 = (𝑥 ∈ 𝛾) in the tautologies, we can then rewrite each tautology as a
formula between sets 𝛼, 𝛽, 𝛾, 𝑋, ∅, that use connectives =, ∩, ∪ and the complement.
Surprisingly, rewriting can be done algorithmically and in a purely syntactic manner.
Pick a tautology seen in 3.a.10. In the following 𝜑, 𝜓 indicate subparts of tautology
that are well-formed formulas.

• Replace ((𝜑) ⇒ (𝜓)) with ((¬(𝜑)) ∨ (𝜓)) (you will get another tautology).
• Then syntactically replace ¬(𝜑) with (𝜑)𝑐, ∨ with ∪ and ∧ with ∩; replace 𝐴
with 𝛼, 𝐵 with 𝛽, 𝐶 with 𝛾, 𝑉 with 𝑋 , and 𝐹 with ∅.

• Finally, if the formula contains at least one ” ⟺ ”, transform them all in ”=”;
otherwise add ”= 𝑋” at the end.

Check that this ”algorithm” really works!

E3.k.7 Let 𝑋 be a set. Let 𝐼, 𝐽 families not empty of indexes, and for every 𝑖 ∈ 𝐼 let [060]

𝐽𝑖 ⊆ 𝐽 a family not empty of indexes. For each 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼𝑗 let 𝐴𝑖,𝑗 ⊆ 𝑋 . Show that

⋂
𝑖∈𝐼

⋃
𝑗∈𝐽𝑖

𝐴𝑖,𝑗 = ⋃
𝛽∈𝐵

⋂
𝑖∈𝐼

𝐴𝑖,𝛽(𝑖)

where 𝐵 = ∏𝑖∈𝐼 𝐽𝑖 and remember that every 𝛽 ∈ 𝐵 is a function 𝛽 ∶ 𝐼 → 𝐽 for
which for every 𝑖 you have 𝛽(𝑖) ∈ 𝐽𝑖. Then formulate a similar rule by exchanging
the role of intersection and union. (use the complements of the sets 𝐴𝑖,𝑗 and the rules
of de Morgan). Hidden solution: [UNACCESSIBLE UUID '061']
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§3.l Combinatorics

§3.k.a Limsup and liminf of sets

Definition 3.k.8. Given 𝐴1, 𝐴2 … sets , for 𝑛 ∈ ℕ, we define [1Z2]
(Solved on
2022-11-29)

lim sup
𝑛→∞

𝐴𝑛
def=

∞

⋂
𝑛=1

∞

⋃
𝑘=𝑛

𝐴𝑘 (3.k.9)

lim inf
𝑛→∞

𝐴𝑛
def=

∞

⋃
𝑛=1

∞

⋂
𝑘=𝑛

𝐴𝑘 (3.k.10)

(3.k.11)

We suppose that 𝐴𝑛 ⊆ 𝑋 for every 𝑛. (We can set 𝑋 = ⋃𝑛 𝐴𝑛).

Exercises

E3.k.12 Recall that [063]

𝐴𝑐 = 𝑋 ⧵ 𝐴 = {𝑥 ∈ 𝑋 ∶ 𝑥 ∉ 𝐴}
is the complement of 𝐴 in 𝑋 (as defined in 3.b.6). Show that

(lim sup
𝑛→∞

𝐴𝑛)𝑐 = lim inf
𝑛→∞

(𝐴𝑐
𝑛) .

E3.k.13 Prerequisites:4.g.1. Show that [064]

lim sup
𝑛→∞

𝐴𝑛 = {𝑥 ∈ 𝑋 ∶ 𝑥 ∈ 𝐴𝑛 frequently in 𝑛} , (3.k.14)

lim inf
𝑛→∞

𝐴𝑛 = {𝑥 ∈ 𝑋 ∶ 𝑥 ∈ 𝐴𝑛 eventually in 𝑛} . (3.k.15)

(”Frequently” and ”eventually” are discussed in Sec. §4.g).

E3.k.16 Prerequisites:3.k.13, 4.g.6. Given sets 𝐴1, 𝐴2 … and 𝐵1, 𝐵2 … , for 𝑛 ∈ ℕ, say [065]

if there is a relation (of equality or containment) between

(lim inf
𝑛→∞

𝐴𝑛) ∩ (lim inf
𝑛→∞

𝐵𝑛) ?= lim inf
𝑛→∞

(𝐴𝑛 ∩ 𝐵𝑛) , (3.k.17)

(lim inf
𝑛→∞

𝐴𝑛) ∪ (lim inf
𝑛→∞

𝐵𝑛) ?= lim inf
𝑛→∞

(𝐴𝑛 ∪ 𝐵𝑛) . (3.k.18)

If equality does not hold, show an example. Then use 3.k.12 to establish similar rules
for lim sup𝑛→∞ 𝐴𝑛.
Hidden solution: [UNACCESSIBLE UUID '066']

§3.l Combinatorics
Exercises

E3.l.1 Let be given 𝑛, 𝑘 natural with 𝑘 ≥ 1. How many different choices of vectors [09N]

(𝑗1, … 𝑗𝑘) of natural numbers are there such that 𝑗1 + ⋯ + 𝑗𝑘 = 𝑛 ? How many
different choices of vectors (𝑗1, … 𝑗𝑘) of positive natural numbers are there such that
𝑗1 + ⋯ + 𝑗𝑘 = 𝑛 ? Hidden solution: [UNACCESSIBLE UUID '09P']

E3.l.2 Let 𝑛, 𝑚 be positive integers and let 𝐼 = {1, … , 𝑛}, 𝐽 = {1, … 𝑚}. [09Q]

56 Copyright A. C. G. Mennucci
The sections comprising theory and exercises’ statements are released under License WP:CC BY-SA

https://coldoc.sns.it/UUID/EDB/1Z2/
https://coldoc.sns.it/UUID/EDB/063/
https://coldoc.sns.it/UUID/EDB/064/
https://coldoc.sns.it/UUID/EDB/065/
https://coldoc.sns.it/UUID/EDB/066
https://coldoc.sns.it/UUID/EDB/09N/
https://coldoc.sns.it/UUID/EDB/09P
https://coldoc.sns.it/UUID/EDB/09Q/
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License


§3 FUNDAMENTALS

• How many functions 𝑓 ∶ 𝐼 → 𝐽 are there?
• How many functions 𝑓 ∶ 𝐼 → 𝐽 are injective?
• How many functions 𝑓 ∶ 𝐼 → 𝐽 are strictly growing?
• How many functions 𝑓 ∶ 𝐼 → 𝐽 are weakly increasing?

Hidden solution: [UNACCESSIBLE UUID '09R']

See also exercise 3.j.9.
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§4 Natural numbers [1X9]

We want to properly define the set

ℕ = {0, 1, 2, …}

of the natural numbers.
A possible model, as shown in Sec. §3.h, is obtained by relying on the theory of

Zermelo—Fraenkel.
Here instead we present Peano’s axioms, expressed using the naive version of set

theory.

Definition 4.1 (Peano’s axioms). [1XB]
(Solved on
2022-11-03)(N1) There is a number 0 ∈ ℕ.

(N2) There is a function 𝑆 ∶ ℕ → ℕ (called ”successor”), such that †36

(N3) 𝑆(𝑥) ≠ 0 for each 𝑥 ∈ ℕ and

(N4) 𝑆 is injective, that is, 𝑥 ≠ 𝑦 implies 𝑆(𝑥) ≠ 𝑆(𝑦).

(N5) If 𝑈 is a subset of ℕ such that: 0 ∈ 𝑈 and ∀𝑥, 𝑥 ∈ 𝑈 ⇒ 𝑆(𝑥) ∈ 𝑈 , then 𝑈 = ℕ.

We will often write 𝑆𝑛 instead 𝑆(𝑛) to ease notations.

From those two important properties immediately follow. One is the principle of
induction, see 4.a.1. The other is left for exercise.

Exercise 4.2. Show that every 𝑛 ∈ ℕ with 𝑛 ≠ 0 is successor of another 𝑘 ∈ ℕ, [1YP]

proving by induction on 𝑛 this proposition

𝑃(𝑛) def= (𝑛 = 0) ∨ (∃𝑘 ∈ ℕ, 𝑆(𝑘) = 𝑛) .

This shows that the successor function

𝑆 ∶ ℕ → ℕ ⧵ {0}

is bijective.
If 𝑛 ≠ 0, we will call 𝑆−1(𝑛) the predecessor of 𝑛.
Hidden solution: [UNACCESSIBLE UUID '22Q']

(Part of this result applies more generally, see 3.i.8)

The idea is that the successor function encodes the usual numbers according to the
scheme

1 = 𝑆(0), 2 = 𝑆(1), 3 = 𝑆(2) …
and (having defined the addition) we will have that 𝑆(𝑛) = 𝑛 + 1.

Exercise 4.3. Prerequisites:4.3.Removing one of the axioms (N1)—(N5), describe a set [1XD]

that satisfies the others but it is not isomorphic to natural numbers.
Hidden solution: [UNACCESSIBLE UUID '22V']
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§4 NATURAL NUMBERS

§4.a Induction [27J]

Proposition 4.a.1 (Induction Principle). Let 𝐴 ⊇ ℕ and 𝑃(𝑛) be a logical proposition [1XC]

that can be evaluated for 𝑛 ∈ 𝐴. Suppose the following two assumptions are satisfied:

• 𝑃(𝑛) is true for 𝑛 = 0 and

• ∀𝑛 ∈ ℕ, 𝑃(𝑛) ⇒ 𝑃(𝑆(𝑛)) ;

then 𝑃 is true for every 𝑛 ∈ ℕ.

Proof. Let 𝑈 = {𝑛 ∈ ℕ ∶ 𝑃(𝑛)}, we know that 0 ∈ 𝑈 and that ∀𝑥, 𝑥 ∈ 𝑈 ⇒ 𝑆(𝑥) ∈ 𝑈
, then from (N5) we conclude that 𝑈 = ℕ.

The verification of 𝑃(0) is called the ”basis of induction”, while the verification
of ∀𝑛 ∈ ℕ, 𝑃(𝑛) ⇒ 𝑃(𝑆(𝑛)) it is called ”inductive step” (in which 𝑃(𝑛) is taken as a
hypothesis, and is called ”inductive hypothesis”).

Exercises

E4.a.2 Prove that ∀𝑛 ∈ ℕ, 𝑛 ≠ 𝑆(𝑛). [1XF]

Hidden solution: [UNACCESSIBLE UUID '1XJ']

E4.a.3 Prove †37 by induction the following assertions: [1XG]

1. ∑𝑛
𝑘=1 𝑘 = 𝑛(𝑛+1)

2
;

2. ∑𝑛
𝑘=1 𝑘2 = 𝑛(𝑛+1)(2𝑛+1)

6
;

3. ∑𝑛
𝑘=1 𝑘3 = 𝑛2(𝑛+1)2

4
;

4. ∑𝑛
𝑘=1

1
4𝑘2−1

= 𝑛
2𝑛+1

;

5. ∑𝑛
𝑘=1

𝑘
2𝑘 = 2 − 𝑛+2

2𝑛 ;

6. 𝑛! ≥ 2𝑛−1;
7. If 𝑥 > −1 is a real number and 𝑛 ∈ ℕ then (1 + 𝑥)𝑛 ≥ 1 + 𝑛𝑥 (Bernoulli

inequality).

Hidden solution: [UNACCESSIBLE UUID '1XK']

§4.b Recursive definitions [274]

Theorem 4.b.1. [08Z]

Let 𝐴 be a non-empty set; suppose that 𝑎 ∈ 𝐴 is fixed, and functions 𝑔𝑛 ∶ 𝐴 → 𝐴
are given, one for each 𝑛 ∈ ℕ. Then there exists an unique function 𝑓 ∶ ℕ → 𝐴 such
that

• 𝑓(0) = 𝑎, and
†36We are using the same word successor used in the definition 3.i.7 for well ordered sets, and in 3.h.1 in

Zermelo-Fraenkel theory: we will see how these definition are ”compatible”.
†37In the following exercises we give for good knowledge of the operations typical of the natural numbers,

and their order relation.
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§4.b Recursive definitions

• for every 𝑛 ∈ ℕ we have 𝑓(𝑆(𝑛)) = 𝑔𝑛(𝑓(𝑛)).

We will say that the function 𝑓 is defined by recurrence by the two previous conditions.

Proof. Trace of proof. Note that the proof only uses Peano’s axioms and induction. [090]

Given 𝑚 ∈ ℕ, 𝑚 ≠ 0 we recall that 𝑆−1(𝑚) is the predecessor, see 4.2 (using the
arithmetic we may write

𝑆−1(𝑚) = 𝑚 − 1 , 𝑆(𝑘) = 𝑘 + 1

but this theorem is needed to define the arithmetic...) For any given 𝑅 ⊆ ℕ × 𝐴 we
define the projection on the first component

𝜋(𝑅) = {𝑛 ∈ ℕ, ∃𝑥 ∈ 𝐴, (𝑛, 𝑥) ∈ 𝑅} .

Consider the family ℱ of relations 𝑅 ⊆ ℕ × 𝐴 that satisfy

(0, 𝑎) ∈ 𝑅 (*)

∀𝑛 ≥ 0, ∀𝑦 ∈ 𝐴, (𝑛, 𝑦) ∈ 𝑅 ⇒ (𝑆(𝑛), 𝑔𝑛(𝑦)) ∈ 𝑅 (**)

We show that under these conditions 𝜋(𝑅) = ℕ; we know that 0 ∈ 𝜋(𝑅); if 𝑚 ∈
𝜋(𝑅), then there exists 𝑥 ∈ 𝐴 for which (𝑚, 𝑥) ∈ 𝑅 from which for ** follows
(𝑆(𝑚), 𝑔𝑚(𝑥)) ∈ 𝑅, and we obtain 𝑆(𝑚) ∈ 𝜋(𝑅).

The family ℱ is not empty because ℕ × 𝐴 ∈ ℱ. Let then 𝑇 be the intersection of
all relations in ℱ. 𝑇 is therefore the least relation in ℱ.

It is possible to verify that 𝑇 satisfies the previous * and ** properties. In particular
𝜋(𝑇) = ℕ.

Wemust now show that𝑇 is the graph of a function (which is the desired𝑓 function),
that is, that for every 𝑛 there is a single 𝑥 ∈ 𝐴 for which (𝑛, 𝑥) ∈ 𝑇.

Let 𝐴𝑛 = {𝑥 ∈ 𝐴, (𝑛, 𝑥) ∈ 𝑇}; we write |𝐴𝑛| to denote the number of elements in
𝐴𝑛; since 𝜋(𝑇) = ℕ then |𝐴𝑛| ≥ 1 for every 𝑛. We will show that |𝐴𝑛| = 1 for each 𝑛.
We will prove it by induction. Let

𝑃(𝑛) ≐ |𝐴𝑛| = 1 .

Let’s see the induction step.
Suppose by contradiction that |𝐴𝑚| = 1 but |𝐴𝑆𝑚| ≥ 2; morally at𝑚 the graph of the

function 𝑓 ”forks” and the function becomes ”multivalued”. We define for convenience
𝑤 = 𝑔𝑚(𝑥), 𝑘 = 𝑆𝑚; we may remove some elements to 𝑇 (those that do not have a
”predecessor” according to the relation **) defining

̃𝑇 = 𝑇 ⧵ {(𝑘, 𝑦) ∶ 𝑦 ∈ 𝐴, 𝑦 ≠ 𝑤}

it is possible to show that ̃𝑇 satisfies * and **, but ̃𝑇 would be smaller than 𝑇, against
the minimality of 𝑇. To prove that 𝑃(0) holds, we define 𝑘 = 0, 𝑤 = 𝑎 and proceed in
the same way.

The previous reasoning also shows that the function is unique, because if the graph
𝐺 of any function satisfying to * and ** must contain 𝑇, then 𝑇 = 𝐺.

More generally given 𝑔𝑛 ∶ 𝐴𝑛+1 → 𝐴, an unique function 𝑓 ∶ ℕ → 𝐴 exists, such
that 𝑓(0) = 𝑎 and for every 𝑛 ∈ ℕ 𝑓(𝑆(𝑛)) = 𝑔𝑛(𝑓(0), 𝑓(1), … 𝑓(𝑛)).
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§4 NATURAL NUMBERS

Exercises

E4.b.2 Prerequisites:4.b.1.Adapt the exercise 4.b.1 to define the Fibonacci sequence, [1X7]

which satisfies the rule

𝑎0 = 1 , 𝑎1 = 1 , 𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2

for 𝑛 ≥ 2.
Hint. You don’t have to rewrite the whole proof of 4.b.1, rather choose 𝐴 = ℕ2 and
choose 𝑔 with cunning.
Hidden solution: [UNACCESSIBLE UUID '1X8']

E4.b.3 Define the interval [294]

𝐼𝑛 = {0, … 𝑛}
of natural numbers using a recursive definition (without using the order relation).
Hidden solution: [UNACCESSIBLE UUID '295']

§4.c Arithmetic [0NN]

We will define the addition operation between natural numbers, formally

⋅ + ⋅ ∶ ℕ × ℕ → ℕ , (ℎ, 𝑘) ↦ ℎ + 𝑘 .

Definition 4.c.1. Having fixed the parameter ℎ ∈ ℕ, we define the operation ℎ + ⋅, [292]

which will be a function 𝑓ℎ ∶ ℕ → ℕ given by 𝑓ℎ(𝑛) = ℎ + 𝑛, using a recursive
definition: we wish to express the rules

• ℎ + 0 = ℎ ,

• ∀𝑛 ∈ ℕ, ℎ + 𝑆(𝑛) = 𝑆(ℎ + 𝑛) .

To this end, set 𝐴 = ℕ, and 𝑔(𝑛, 𝑎) = 𝑆(𝑎), we rewrite the above as recursive rules for
𝑓ℎ

• 𝑓ℎ(0) = ℎ ,

• ∀𝑛 ∈ ℕ, 𝑓ℎ(𝑆(𝑛)) = 𝑔(𝑛, 𝑓ℎ(𝑛)) = 𝑆(𝑓ℎ(𝑛)) .

This defines recursively 𝑓ℎ. Considering then the parameter ℎ as a variable, we have
constructed the addition operation, and we define the operation ”+” between natural
numbers as ℎ + 𝑛 = 𝑓ℎ(𝑛).

This operation is commutative and associative, as shown below.
Note that ℎ + 0 = 𝑓ℎ(0) = ℎ (basis of recursion); also 0 + 𝑛 = 𝑓0(𝑛) = 𝑛 (shows

easily by induction).
To prove that it is commutative, we first show that

Lemma 4.c.2. ∀𝑛, ℎ ∈ ℕ, 𝑓𝑆(ℎ)(𝑛) = 𝑆(𝑓ℎ(𝑛)) [27N]
(Solved on
2022-11-03)Proof. Recall that 𝑆(𝑓ℎ(𝑛)) = 𝑓ℎ(𝑆(𝑛)) by recursive definition; Consider

𝑃(𝑛) ≐ ∀ℎ ∈ ℕ, 𝑓𝑆(ℎ)(𝑛) = 𝑆(𝑓ℎ(𝑛)) ;
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§4.c Arithmetic

𝑃(0) is the clause
∀ℎ ∈ ℕ, 𝑓𝑆(ℎ)(0) = 𝑆(𝑓ℎ(0)) = 𝑆(ℎ)

which is true because it is the initial value of the recursive definition 𝑓𝑆(ℎ) and 𝑓ℎ. For
the inductive step we assume that 𝑃(𝑛) is true and we study 𝑃(𝑆(𝑛)), within which we
can say

𝑓𝑆(ℎ)(𝑆(𝑛)) (1)= 𝑆(𝑓𝑆(ℎ)(𝑛)) (2)=

𝑆𝑆(𝑓ℎ(𝑛)) (3)= 𝑆(𝑓ℎ(𝑆(𝑛))

where in (1) we used the recursive definition of 𝑓ℎ with 𝑆(ℎ) instead ℎ, in (2) we used the
inductive hypothesis, and in (3) we used the recursive definition of 𝑓ℎ. This completes
the inductive step.

(Note, in the first step, how important it is that in the definition of 𝑃(𝑛) there is
∀ℎ ∈ ℕ, …).

Proposition 4.c.3. (Replaces 27Y) Addition is commutative. [27P]

Proof. By the lemma we can write

𝑆(ℎ) + 𝑛 = 𝑆(ℎ + 𝑛) = ℎ + 𝑆(𝑛) (4.c.4)

intuitively the formula is symmetric and therefore also the definition of addition must
have a symmetry. Precisely, let ̃𝑓𝑛(ℎ) def= 𝑓ℎ(𝑛) then ̃𝑓𝑛(0) = 𝑛 (as already noted) and for
the lemma 4.c.2 ̃𝑓𝑛(𝑆(ℎ)) = 𝑆( ̃𝑓𝑛(ℎ)) but then ̃𝑓 satisfies the same recursive relation as
𝑓 and therefore they are identical, so 𝑓ℎ(𝑛) = 𝑓𝑛(ℎ). (The idea is that if we had defined
addition. recursively starting from left instead of right, we would have achieved the
same result).

At this point we can give a name to 1 = 𝑆(0) and notice that 𝑆(𝑛) = 𝑛 + 1. So from
now on we could do without the symbol 𝑆.

With similar procedures we show that addition is associative.

Proposition 4.c.5. Addition is associative. [27Q]

Proof. Consider

𝑃(ℎ) ≐ ∀𝑛, 𝑚 ∈ ℕ, (𝑛 + 𝑚) + ℎ = 𝑛 + (𝑚 + ℎ) ;

Obviously 𝑃(0) is true, moreover 𝑃(𝑆ℎ) is proven (omitting ”∀𝑛, 𝑚 ∈ ℕ”) like this

(𝑛 + 𝑚) + 𝑆ℎ = 𝑆(𝑛 + 𝑚) + ℎ = (𝑆𝑛 + 𝑚) + ℎ 𝑃(𝑛)=
= 𝑆𝑛 + (𝑚 + ℎ) = 𝑛 + 𝑆(𝑚 + ℎ) = 𝑛 + (𝑚 + 𝑆ℎ)

Multiplication is similarly defined.

Definition 4.c.6. We fix the parameter 𝑚, and we define recursively (𝑚 × ⋅) through [28V]
(Solved on
2022-11-03)• 𝑚 × 0 = 0

• ∀𝑛 ∈ ℕ, 𝑚 × (𝑛 + 1) = 𝑚 × 𝑛 + 𝑚;

then we can prove the known properties (commutativity, associativity, distributiv-
ity).
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§4 NATURAL NUMBERS

Exercises

E4.c.7 Rewrite some notions seen above, such as the principle of induction, and the [27R]

definition of addition, using 𝑛 + 1 instead of 𝑆(𝑛).
E4.c.8 Show that the function𝑓ℎ(𝑛) = (ℎ+𝑛) is injective. Hidden solution: [UNACCESSIBLE [27S]

(Solved on
2022-11-03)

UUID '27T']

E4.c.9 Prove the cancellation property: if 𝑛 + ℎ = 𝑚 + ℎ then 𝑛 = 𝑚. [27V]

Hidden solution: [UNACCESSIBLE UUID '286']

E4.c.10 We have 𝑛 + 𝑚 = 0 if and only if 𝑛 = 0 ∧ 𝑚 = 0. Hidden solution: [27W]
(Solved on
2022-11-03)

[UNACCESSIBLE UUID '285']

E4.c.11 You have 𝑛 × 𝑚 = 0 if and only if 𝑛 = 0 ∨ 𝑚 = 0. Hidden solution: [27X]
(Solved on
2022-11-03)

[UNACCESSIBLE UUID '284']

E4.c.12 Prove that multiplication is commutative. Hint prove by induction in 𝑛 [28T]

∀𝑚, 𝑛 ∈ ℕ, (𝑚 + 1) × 𝑛 = 𝑚 × 𝑛 + 𝑛 ,
then reason as in Prop. 4.c.3. Hidden solution: [UNACCESSIBLE UUID '28W']

E4.c.13 Show that addition distributes over multiplication. Hint prove by induction in [281]

ℎ
∀𝑚, 𝑛, ℎ ∈ ℕ, 𝑚 × (𝑛 + ℎ) = 𝑚 × 𝑛 + 𝑚 × ℎ .

Hidden solution: [UNACCESSIBLE UUID '28Y']

E4.c.14 Prerequisites:4.c.13.Show that multiplication is associative. Hint prove by in- [27Z]

duction in ℎ
∀𝑚, 𝑛, ℎ ∈ ℕ, (𝑚 × 𝑛) × ℎ = 𝑚 × (𝑛 × ℎ) .

Hidden solution: [UNACCESSIBLE UUID '28X']

E4.c.15 Fix 𝑛 ≠ 0 and ℎ ∈ ℕ, write a recursive definition of exponentiation 𝑛ℎ. Then [280]

prove that 𝑛ℎ+𝑘 = 𝑛𝑛𝑛𝑘 and (𝑛ℎ)𝑘 = 𝑛(ℎ𝑘).
Hidden solution: [UNACCESSIBLE UUID '2DG']

In the following we will simply write 𝑛𝑚 instead of 𝑛 × 𝑚.

§4.d Ordering [27K]

Hypothesis 4.d.1. We will study an order relation ≤ on ℕ (not necessarily total) such [26H]

that

∀𝑥 ∈ ℕ,(0 ≤ 𝑥) , (4.d.2)
∀𝑥, 𝑦 ∈ ℕ,(𝑥 < 𝑆𝑦) ⟺ (𝑥 ≤ 𝑦) ; (4.d.3)

where as usual
𝑥 < 𝑦 ≐ (𝑥 ≤ 𝑦) ∧ (𝑥 ≠ 𝑦) .

Theorem 4.d.4. There is an unique order relation ≤ on ℕ such that (4.d.3),(4.d.2) in [26Y]

4.d.1 hold, and this ordering is well-ordered.

This theorem will be proven in the following: uniqueness in 4.d.5, well ordering in
4.f.6. The existence of such ordering is justified by the model in Z-F, as seen before and
summarized in Section §4.e; otherwise the ordering can be defined using arithmetic, as
shown in Section §4.d.a.
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§4.d Ordering

Exercises

E4.d.5 Suppose that≤ is a (possibly partial) order relation onℕ satisfying (4.d.3),(4.d.2) [267]

in 4.d.1 then ≤ is unique. Hidden solution: [UNACCESSIBLE UUID '270']

E4.d.6 Let [271]

𝑃𝑥 = {𝑧 ∈ ℕ, 𝑧 < 𝑥}
show that

∀𝑥, 𝑦 ∈ ℕ , 𝑃𝑥 = 𝑃𝑦 ⇒ 𝑥 = 𝑦
using the properties in Hypothesis 4.d.1.
Hidden solution: [UNACCESSIBLE UUID '272']

(Note the similarity with 3.h.40).

E4.d.7 By setting 𝑛 = 𝑥 = 𝑦 in (4.d.3) we obtain that 𝑛 < 𝑆𝑛. [276]

E4.d.8 Prerequisites:4.d.7,4.d.1.Using the properties in 4.d.1 and assuming that ≤ is a [277]

total order relation (as will be proven), prove that

∀𝑛, 𝑚 ∈ ℕ, (𝑛 < 𝑚) ⇒ (𝑆𝑛 < 𝑆𝑚) .

Hidden solution: [UNACCESSIBLE UUID '278']

E4.d.9 If ⪯ is a total order on ℕ then these are equivalent [26X]

∀𝑥, 𝑦 ∈ ℕ,(𝑥 ⪯ 𝑦 ⪯ 𝑆𝑥) ⇒ (𝑥 = 𝑦 ∨ 𝑦 = 𝑆𝑥) , (4.d.10)
∀𝑥, 𝑦 ∈ ℕ,(𝑥 ≺ 𝑆𝑦) ⟺ (𝑥 ⪯ 𝑦) ; ( as in (4.d.3))
∀𝑥, 𝑦 ∈ ℕ,(𝑥 ≺ 𝑦) ⟺ (𝑆𝑥 ⪯ 𝑦) . (4.d.11)

Note the analogy with 3.h.5
Hidden solution: [UNACCESSIBLE UUID '296']

§4.d.a Ordering from arithmetic [287]

Having already defined arithmetic, a convenient definition of ordering is as follows.

Definition 4.d.12. Given 𝑛, 𝑚 ∈ ℕ, we will say that 𝑛 ≤ 𝑚 if there exists 𝑘 ∈ ℕ such [288]

that 𝑛 + 𝑘 = 𝑚

We will show that ≤ it is a total order relation, and is a well ordering. Let’s first see
some elementary but fundamental properties.

Lemma 4.d.13. Let 𝑛, 𝑚, 𝑘 ∈ ℕ. [289]

1. For every 𝑛 we have 0 ≤ 𝑛

2. 𝑛 ≤ 𝑚 if and only if 𝑛 < 𝑆(𝑚).
Note that these two points satisfy (4.d.3),(4.d.2) in 4.d.1

3. For every 𝑛 we have 𝑛 < 𝑆(𝑛)

4. 𝑛 < 𝑚 if and only if 𝑆(𝑛) ≤ 𝑚.

64 Copyright A. C. G. Mennucci
The sections comprising theory and exercises’ statements are released under License WP:CC BY-SA

https://coldoc.sns.it/UUID/EDB/267/
https://coldoc.sns.it/UUID/EDB/270
https://coldoc.sns.it/UUID/EDB/271/
https://coldoc.sns.it/UUID/EDB/272
https://coldoc.sns.it/UUID/EDB/276/
https://coldoc.sns.it/UUID/EDB/277/
https://coldoc.sns.it/UUID/EDB/278
https://coldoc.sns.it/UUID/EDB/26X/
https://coldoc.sns.it/UUID/EDB/296
https://coldoc.sns.it/UUID/EDB/287/
https://coldoc.sns.it/UUID/EDB/288/
https://coldoc.sns.it/UUID/EDB/289/
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License


§4 NATURAL NUMBERS

5. If 𝑛 ≤ 𝑚 ≤ 𝑆(𝑛) then 𝑚 = 𝑛 or 𝑚 = 𝑆(𝑛).

The proofs are left as exercise 4.d.18. (After we will prove that the relation is total, then
by 4.d.9 the last two are equivalent.)

Proposition 4.d.14. ≤ is an order relation. [28B]

Proof. Reflexive property: 𝑛 + 0 = 𝑛. Antisymmetric property: if 𝑛 + 𝑘 = 𝑚 and
𝑚 + ℎ = 𝑛 then 𝑛 + 𝑘 + ℎ = 𝑛 therefore by cancellazione 4.c.9 ℎ + 𝑘 = 0, and for
4.c.10 ℎ = 𝑘 = 0 so 𝑛 = 𝑚. Transitive property: if 𝑛 + 𝑘 = 𝑚 and 𝑚 + ℎ = 𝑝 then
𝑛 + 𝑘 + ℎ = 𝑝.

Hence this relation “≤” defined in 4.d.12 satisfies the principle 4.d.1; we will show [298]

that any such ordering is a well order; here we present though a self contained proof for
this specific case.

Proposition 4.d.15. ≤ is a total order relation. [28Z]

Proof. Consider the proposition

𝑃(𝑛) ≐ ∀𝑚 ∈ ℕ, 𝑛 ≤ 𝑚 ∨ 𝑚 ≤ 𝑛

then 𝑃(0) is true. Let’s assume 𝑃(𝑛); let’s fix an 𝑚;

• if 𝑚 ≤ 𝑛 then 𝑚 ≤ 𝑆(𝑛), by the lemma (point 2), so 𝑃(𝑆𝑛) holds;

• if ¬𝑚 ≤ 𝑛 but 𝑃(𝑛) holds, then 𝑛 ≤ 𝑚 must hold, but it cannot be 𝑛 = 𝑚, so
𝑛 < 𝑚 holds: but then 𝑆(𝑛) ≤ 𝑚 by the lemma (point 4);

in any case 𝑃(𝑆(𝑛)) is proven starting from 𝑃(𝑛).

Proposition 4.d.16. ≤ is a well ordering. [297]

Proof. Trace of proof. By Lemma 4.d.13 (point (2)) we know that this relation satisfies
the strong induction principle 4.f.2; so we can prove that any non empty subset has a
minimal element as in Esercise 4.f.5; but we know that the ordering is total, so the
minimal element is the minimum.

Definition 4.d.17 (Subtraction). If 𝑚 ≥ 𝑛, there exists an unique ℎ such that 𝑚 = [28C]

𝑛 + ℎ (uniqueness follows from 4.c.9); we will indicate this ℎ as 𝑚 − 𝑛.

Exercises

E4.d.18 Show properties in 4.d.13. Hidden solution: [UNACCESSIBLE UUID '28F'] [28D]

E4.d.19 Show that if 𝑛 ≤ 𝑚 then 𝑚 − 𝑛 ≤ 𝑚. Hidden solution: [UNACCESSIBLE UUID [28G]

'28H']

E4.d.20 Show that if 𝑛 ≠ 0 then 𝑛 × 𝑚 ≥ 𝑚. Hidden solution: [UNACCESSIBLE UUID [28N]

'28P']

E4.d.21 Topics:Euclidean division. [28J]

Prove that, given 𝑑, 𝑛 ∈ ℕ, 𝑑 ≥ 1, two numbers 𝑞, 𝑟 ∈ ℕ, 0 ≤ 𝑟 < 𝑑 exist and are
unique for which 𝑛 = 𝑞 × 𝑑 + 𝑟 (where 𝑛 is the ”dividend” 𝑑 is the ”divisor”, 𝑞 is
the ”quotient” and 𝑟 is the ”remainder”) Hidden solution: [UNACCESSIBLE UUID '28K']
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§4.e Z-F and Peano compatibility

E4.d.22 (Replaces 282) [28M]

Let ℎ ≠ 0, prove that if 𝑛 × ℎ = 𝑚 × ℎ then 𝑛 = 𝑚. (Sugg. use subtraction)
Hidden solution: [UNACCESSIBLE UUID '28S']

In particular the map 𝑛 ↦ 𝑛 × ℎ is injective.

§4.d.b Ordering and arithmetic [28Q]

The ordering is compatible with arithmetic.

Proposition 4.d.23. [28R]

• (Addition and ordering compatibility) You have 𝑛 ≤ 𝑚 if and only if 𝑛 + 𝑘 ≤
𝑚 + 𝑘.

• (Multiplication and ordering compatibility) When 𝑘 ≠ 0 you have 𝑛 ≤ 𝑚 if and
only if 𝑛 × 𝑘 ≤ 𝑚 × 𝑘.

In particular (remembering 4.d.22) the map 𝑛 ↦ 𝑛×ℎ is strictly increasing (and hence
injective).

Proof. We will use some properties left for exercise.

• If 𝑛 ≤ 𝑚, by definition 𝑚 = 𝑛+ℎ, then 𝑛+𝑘 ≤ 𝑚+𝑘 because 𝑚+𝑘 = 𝑛+ℎ+𝑘
(note that we are using associativity). If 𝑛 + 𝑘 ≤ 𝑚 + 𝑘 let then 𝑗 the only natural
number such that 𝑛 + 𝑘 + 𝑗 = 𝑚 + 𝑘 but then 𝑛 + 𝑗 = 𝑚 by cancellation 4.c.9.

• If 𝑛 ≤ 𝑚 then 𝑚 = 𝑛 + ℎ therefore 𝑚 × 𝑘 = 𝑛 × 𝑘 + ℎ × 𝑘 so 𝑛 × 𝑘 ≤ 𝑚 × 𝑘.
Vice versa let 𝑘 ≠ 0 and 𝑛 × 𝑘 ≤ 𝑚 × 𝑘 i.e. 𝑛 × 𝑘 + 𝑗 = 𝑚 × 𝑘: divide 𝑗 by
𝑘 using the division 4.d.21, we write 𝑗 = 𝑞 × 𝑘 + 𝑟 therefore for associativity
(𝑛 + 𝑞) × 𝑘 + 𝑟 = 𝑚 × 𝑘 but for the uniqueness of the division 𝑟 = 0; eventually
collecting (𝑛 + 𝑞) × 𝑘 = 𝑚 × 𝑘 and using 4.d.22 we conclude that (𝑛 + 𝑞) = 𝑚.

§4.e Z-F and Peano compatibility [26F]

Let’s go back now to the model ℕZF of ℕ built relying on the theory of Zermelo—
Fraenkel, seen in Sec. §3.h. We want to see that this model satisfies Peano’s axioms.

Recall that, given 𝑥 (any set, not necessarily natural number) the successor is de-
fined as

𝑆(𝑥) def= 𝑥 ∪ {𝑥} .
It’s easy to see that N1 and N3 are true. The N5 property follows from the fact that ℕZF
is the smallest set that is S-saturated. N2 and N4, derive from 3.h.8.

We moreover saw in Theorem 3.h.16 that the relation ⊆ satisfies the requisites of
Hypothesis 4.d.1.
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§4 NATURAL NUMBERS

§4.f Generalized induction, well ordering [27M]

Proposition 4.f.1 (Generalized induction). Let 𝑁 ∈ ℕ, and let 𝑃(𝑛) a be logical [1XR]

clause, true for 𝑛 = 𝑁 and such that

∀𝑛 ≥ 𝑁, 𝑃(𝑛) ⇒ 𝑃(𝑆(𝑛)) ,

then 𝑃 is true for every 𝑛 ≥ 𝑁.

Let us now present the principle of strong induction.

Proposition 4.f.2 (Strong Induction). Assume that a (partial) order associated to ℕ [1XS]

satisfies 4.d.1. Let 𝑃(𝑛) be a logical clause, true for 𝑛 = 0 and such that

∀𝑛 ∈ ℕ, ((∀𝑘 ≤ 𝑛, 𝑃(𝑘)) ⇒ 𝑃(𝑆𝑛)) (4.f.3)

then 𝑃 is true for every 𝑛 ∈ ℕ.

This principle is apparently stronger than the usual one; but we’ll see that it is in
fact equivalent.

Even this result can be generalized by requiring that 𝑃(𝑁) is true, and writing the
inductive hypothesis in the form ”∀𝑘, 𝑁 ≤ 𝑘 ≤ 𝑛, 𝑃(𝑘)”: you will get that 𝑃(𝑛) is true
for 𝑛 ≥ 𝑁.

Note that the principle of well ordering is in some sense equivalent to the principle
of induction; see 4.f.8.

Exercises

E4.f.4 Prerequisites:4.d.1,4.a.1.Difficulty:*. [1XN]

Use the induction principle 4.a.1 to demonstrate the strong induction principle 4.f.2
Warning: use the properties in Hypothesis 4.d.1, but do not assume that ≤ is a total
order: indeed this result is needed to prove it.
Hidden solution: [UNACCESSIBLE UUID '1XQ']

E4.f.5 Prerequisites:4.d.1,4.f.2.Difficulty:*. [1XP]

Assume that a (partial) order ≤ associated to ℕ satisfies 4.d.1. Use the strong induc-
tion principle 4.f.2 to show that every non-empty 𝐴 ⊆ ℕ contains a minimal element,
i.e.

∃𝑎 ∈ 𝐴 , ∀𝑏 ∈ 𝐴 , ¬(𝑏 < 𝑎) .

Hidden solution: [UNACCESSIBLE UUID '1XZ']

E4.f.6 Prerequisites:4.d.6,4.f.5,3.i.6.Use the prerequisites to prove that (ℕ, ≤) is well [273]

ordered.

E4.f.7 Prerequisites:4.f.2.Use strong induction to show that every 𝑛 ≥ 2 factorizes into [1XT]

the product of prime numbers.
Hidden solution: [UNACCESSIBLE UUID '1XV']
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§4.g Frequently, eventually

E4.f.8 Difficulty:*. Let 𝐴 be a well-ordered set †38 by the order ≤; let 𝑚 = min𝐴; [1XY]

then for propositions 𝑃(𝑎) with 𝑎 ∈ 𝐴 you can use a proof method, called transfinite
induction, in which

• 𝑃(𝑚) is required to be true, and
• the following ”inductive step” is proven:

∀𝑛 ∈ ℕ((∀𝑘 < 𝑛, 𝑃(𝑘)) ⇒ 𝑃(𝑛))

Show that if the proposition 𝑃 satisfies the previous two requirements, then ∀𝑥 ∈
𝐴, 𝑃(𝑥).
Prove also that if 𝐴 = ℕ then the ”inductive step” is equivalent to the inductive step
of strong induction (defined in 4.f.2).

Other exercises regarding ”induction” are: 9.a.9

§4.g Frequently, eventually [26G]

Let ℕ be the natural numbers.

Definition 4.g.1 (frequently, eventually). Let P(n) be a logical clause that depends [018]
(Solved on
2022-10-27)

on a free variable 𝑛 ∈ ℕ. We will say that
P(n) holds eventually in 𝑛 if ∃𝑚 ∈ ℕ, ∀𝑛 ∈ ℕ with 𝑛 ≥ 𝑚, P(n) holds ;
P(n) frequently holds in 𝑛 if ∀𝑚 ∈ ℕ, ∃𝑛 ∈ ℕ with 𝑛 ≥ 𝑚 for which

P(n) holds.

This definition is equivalent to definition 6.b.2 for real variable 𝑥 → ∞; it can be
further generalized, as seen in 3.d.28.

Remark 4.g.2. In Italian frequentemente (for frequently) and definitivamente (for [23Q]

eventually) are commonly used in text books; whereas in English these terms are not
widely used.†39

Exercises

E4.g.3 Note that «P(n) holds eventually in 𝑛» implies «P(n) holds frequently in 𝑛». [019]

Hidden solution: [UNACCESSIBLE UUID '01B']

E4.g.4 Note that «(non P(n)) holds frequently in 𝑛» if and only if «non (P(n) holds [01C]

eventually in 𝑛 )».
Hidden solution: [UNACCESSIBLE UUID '01D']

E4.g.5 Note that «P(n) holds frequently in 𝑛» if and only if «P(n) holds for infinitely [01F]

many 𝑛».
(This equivalence is not true in a generic ordered set. See instead 3.d.29 for the
correct formulation).

E4.g.6 Let now 𝑃(𝑛), 𝑄(𝑛) be two propositions. [01G]
(Solved on
2022-10-27// in
parte)

†38As defined in 3.i.1.
†39With some notable exceptions, such as [14]

68 Copyright A. C. G. Mennucci
The sections comprising theory and exercises’ statements are released under License WP:CC BY-SA

https://coldoc.sns.it/UUID/EDB/1XY/
https://coldoc.sns.it/UUID/EDB/26G/
https://coldoc.sns.it/UUID/EDB/018/
https://coldoc.sns.it/UUID/EDB/23Q/
https://coldoc.sns.it/UUID/EDB/019/
https://coldoc.sns.it/UUID/EDB/01B
https://coldoc.sns.it/UUID/EDB/01C/
https://coldoc.sns.it/UUID/EDB/01D
https://coldoc.sns.it/UUID/EDB/01F/
https://coldoc.sns.it/UUID/EDB/01G/
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License


§4 NATURAL NUMBERS

• Say what implications there are between
– ”(𝑃(𝑛) ∧ 𝑄(𝑛)) is valid eventually” and
– ”𝑃(𝑛) is valid eventually and 𝑄(𝑛) is valid eventually”.

• Similarly for propositions
– ”(𝑃(𝑛) ∨ 𝑄(𝑛)) is valid eventually” and
– ”𝑃(𝑛) is valid eventually or 𝑄(𝑛) is valid eventually”.

Also formulate similar results for the notion of ”frequently”.
Hidden solution: [UNACCESSIBLE UUID '01H']

E4.g.7 Let again 𝑃(𝑛), 𝑄(𝑛) be two propositions. If ”𝑃(𝑛) is valid eventually and 𝑄(𝑛) [29G]

is valid frequently” then ”(𝑃(𝑛) ∧ 𝑄(𝑛)) is valid frequently”.
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§5 Groups, Rings, Fields [1ZD]

We review these definitions.

Definition 5.1. A group is a set 𝐺 equipped with a binary operation ∗, that associates [1ZF]
(Solved on
2022-11-15)

an element 𝑎 ∗ 𝑏 ∈ 𝐺 to each pair 𝑎, 𝑏 ∈ 𝐺, respecting these properties.

1. Associative property: for any given 𝑎, 𝑏, 𝑐 ∈ 𝐺 we have (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐).

2. Existence of the neutral element: an element denoted by 𝑒 such that 𝑎∗𝑒 = 𝑒∗𝑎 =
𝑎.

3. Existence of the inverse: each element 𝑎 ∈ 𝐺 is associated with an inverse
element 𝑎′, such that 𝑎 ∗ 𝑎′ = 𝑎′ ∗ 𝑎 = 𝑒. The inverse of the element 𝑎 is often
denoted by 𝑎−1 (or −𝑎 if the group is commutative). †40

A group is said to be commutative (or abelian) if moreover 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 for each pair
𝑎, 𝑏 ∈ 𝐺.

Definition 5.2. A ring is a set 𝐴 with two binary operations [1ZG]
(Solved on
2022-11-15)• + (called sum or addition) and

• ⋅ (called ”multiplication”, also indicated by the symbol × or ∗, and often omit-
ted),

such that

• 𝐴 + is a commutative group (usually the neutral element is denoted by 0);

• the operation · has neutral element (usually the neutral element is indicated by
1) and is associative;

• multiplication distributes on addition, both on the left

𝑎 ⋅ (𝑏 + 𝑐) = (𝑎 · 𝑏) + (𝑎 · 𝑐) ∀𝑎, 𝑏, 𝑐 ∈ 𝐴

and on the right

(𝑏 + 𝑐) · 𝑎 = (𝑏 · 𝑎) + (𝑐 · 𝑎) ∀𝑎, 𝑏, 𝑐 ∈ 𝐴

A ring is called commutative if multiplication is commutative. (In which case the right
or left distributions are equivalent.)

We assume that 0 ≠ 1 (otherwise {0} would be a ring).
Examples of commutative rings are: integer numbers ℤ, polynomials 𝐴[𝑥] with

coefficients in a commutative ring 𝐴.
An example of a non-commutative ring is given by matrixes ℝ𝑛×𝑛, with the usual

operation of multiplication and addition.

Definition 5.3. A field 𝐹 is a ring in which multiplication is commutative, and every [1ZH]
(Solved on
2022-11-15)

element 𝑥 ∈ 𝐹 with 𝑥 ≠ 0 has an inverse 𝑥−1 for multiplication.
(So 𝐹 ⧵ {0} is a commutative group for multiplication, see 5.13).

Some field examples are: rational numbers ℚ, the real numbers ℝ and the complex
numbers ℂ.
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§5 GROUPS, RINGS, FIELDS

Remark 5.4. Typically†41 you use the notations on the left instead of the writings on [20R]
(Solved on
2022-11-15)

the right (where 𝑥, 𝑦, 𝑧 are in the field and 𝑛 is positive integer)

𝑥 − 𝑦 𝑥 + (−𝑦)
𝑥
𝑦

𝑥 ⋅ 𝑦−1

𝑥 + 𝑦 + 𝑧 (𝑥 + 𝑦) + 𝑥
𝑥𝑦𝑧 (𝑥 ⋅ 𝑦) ⋅ 𝑧
𝑛𝑥 𝑥 + … + 𝑥⏟⎵⎵⏟⎵⎵⏟

𝑛 times

𝑥𝑛 𝑥 ⋅ … ⋅ 𝑥⏟⎵⏟⎵⏟
𝑛 times

𝑥−𝑛 (𝑥−1)𝑛

Precisely, 𝑛𝑥 means ”add 𝑥 to itself 𝑛 times”; the operation 𝑛 ↦ 𝑛 ⋅ 𝑥 can be defined
recursively setting 0 ⋅ 𝑥 = 0 and (𝑛 + 1) ⋅ 𝑥 = 𝑛 ⋅ 𝑥 + 𝑥. Similarly 𝑥𝑛 means ”multiply
𝑥 by itself 𝑛 times”: see the exercise 5.21.

Remark 5.5. Hurwitz’s theorem [39] asserts that if 𝑉 is a field and is also a real [1ZW]

vector space with a scalar product, then 𝑉 = ℝ or 𝑉 = ℂ.

Definition 5.6. An ordered ring 𝐹 is a ring with a total order relation ≤ for which, [1ZJ]

for every 𝑥, 𝑦, 𝑧 ∈ 𝐹,

• 𝑥 ≤ 𝑦 ⇒ 𝑥 + 𝑧 ≤ 𝑦 + 𝑧;

• 𝑥, 𝑦 ≥ 0 ⇒ 𝑥 · 𝑦 ≥ 0 .

Due to 5.13, if 𝐹 is a field, in the second hypothesis we may equivalently write 𝑥, 𝑦 >
0 ⇒ 𝑥 · 𝑦 > 0 . (Regarding the second hypothesis, see also 5.14) For further informa-
tions see the references in [32]. We will assume that in an ordered ring the multiplica-
tion is commutative.

Examples of ordered field are: rational numbersℚ the real numbersℝ. The complex
numbers ℂ do not allow an ordering satisfying the above properties (see exercise 5.19).

Definition 5.7. An ordered field 𝐹 is archimedean if ∀𝑥, 𝑦 ∈ 𝐹 with 𝑥 > 0, 𝑦 > 0 [1ZK]

there is a 𝑛 ∈ ℕ for which 𝑛𝑥 > 𝑦. (See 5.4 for the definition of 𝑛𝑥).
†42

Exercises

E5.8 The neutral element of a group is unique. Hidden solution: [UNACCESSIBLE UUID [1ZM]

'1ZN']

E5.9 In a group, the inverse of an element is unique. Hidden solution: [UNACCESSIBLE [1ZP]

UUID '1ZQ']

E5.10 Having fixed an element 𝑔 ∈ 𝐺 in a group, the left and right multiplications [29C]

†40The notation 𝑎−1 is justified by the fact that the inverse element is unique: cf 5.9.
†41Taken from 1.13 in [22]
†42Parts of the following exercises are from Chap. 2 Sec. 2 in [2], or Chap. 1 in [22].
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𝐿𝑔 ∶ 𝐺 → 𝐺 and 𝑅𝑔 ∶ 𝐺 → 𝐺

𝐿𝑔(ℎ) = 𝑔 ∗ ℎ , 𝑅𝑔(ℎ) = ℎ ∗ 𝑔

are bijections.

E5.11 Prove†43 that in a group: [1ZR]

1. If 𝑥 + 𝑦 = 𝑥 + 𝑧 then 𝑦 = 𝑧.
2. If 𝑥 + 𝑦 = 𝑥 then 𝑦 = 0.
3. If 𝑥 + 𝑦 = 0 then 𝑦 = −𝑥.
4. −(−𝑥) = 𝑥.

E5.12 Prove†44 that in a ring: [1ZS]

1. 0 · 𝑥 = 0
2. (−𝑥)𝑦 = −(𝑥𝑦) = 𝑥(−𝑦).
3. (−𝑥)(−𝑦) = 𝑥𝑦.
4. (−1)𝑥 = −𝑥.

Hidden solution: [UNACCESSIBLE UUID '299']

E5.13 Consider the property [203]

∀𝑥, 𝑦 ∈ 𝐴 , 𝑥 ⋅ 𝑦 = 0 ⇒ 𝑥 = 0 ∨ 𝑦 = 0

this property may be false in a ring 𝐴; if it holds in a specific ring, then this ring is
said to be an integral domain [41].
Show that a field 𝐹 is always an integral domain. Consequently 𝐹 ⧵ {0} is a commu-
tative group for multiplication. Hidden solution: [UNACCESSIBLE UUID '204']

E5.14 Suppose that in a ring𝐴 there is a total ordering≤ such that for every 𝑥, 𝑦, 𝑧 ∈ 𝐴 [1ZT]

you have 𝑥 ≤ 𝑦 ⇒ 𝑥 + 𝑧 ≤ 𝑦 + 𝑧; then show that these are equivalent

• 𝑥 ≤ 𝑦 ∧ 0 ≤ 𝑧 ⇒ 𝑥 · 𝑧 ≤ 𝑦 · 𝑧;
• 𝑥 ≥ 0 ∧ 𝑦 ≥ 0 ⇒ 𝑥 · 𝑦 ≥ 0 .

E5.15 Prerequisites:3.d.4,5.12,5.14. Prove †45 than in an ordered ring 𝐹: [1ZV]

1. for each 𝑥 ∈ 𝐹, 𝑥2 ≥ 0 , in particular 1 = 12 > 0;
2. 𝑥 > 0 ⇒ −𝑥 < 0
3. 𝑦 > 𝑥 ⇒ −𝑦 < −𝑥 ;
4. 𝑥 ≤ 𝑦 ∧ 𝑎 ≤ 0 ⇒ 𝑎 · 𝑥 ≥ 𝑎 · 𝑦 ;
5. 𝑥 ≥ 𝑎 ∧ 𝑦 ≥ 𝑏 ⇒ 𝑥 + 𝑦 ≥ 𝑎 + 𝑏 ;
6. 𝑥 > 𝑎 ∧ 𝑦 ≥ 𝑏 ⇒ 𝑥 + 𝑦 > 𝑎 + 𝑏 ;
7. 𝑥 ≥ 𝑎 ≥ 0 ∧ 𝑦 ≥ 𝑏 ≥ 0 ⇒ 𝑥 · 𝑦 ≥ 𝑎 · 𝑏 ;

†43[22] Prop. 1.14
†44[22] Prop. 1.16
†45From Cap. 2 Sec. 7 in [2], or [22] Prop. 1.18
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§5 GROUPS, RINGS, FIELDS

Prove than in an ordered field 𝐹:

1. 𝑥 > 𝑎 > 0 ∧ 𝑦 > 𝑏 ≥ 0 ⇒ 𝑥 · 𝑦 > 𝑎 · 𝑏 ;
2. 𝑥 > 0 ⇒ 𝑥−1 > 0 ;
3. 𝑦 > 𝑥 > 0 ⇒ 𝑥−1 > 𝑦−1 > 0 ;
4. 𝑥 · 𝑦 > 0 if and only if 𝑥 and 𝑦 agree on sign (i.e. either both > 0 or both < 0);

Hidden solution: [UNACCESSIBLE UUID '29B']

E5.16 In an ordered field 𝐹 we call 𝑃 = {𝑥 ∈ 𝐹 ∶ 𝑥 ≥ 0} the set of positive (or zero) [1ZX]

numbers; it satisfies the following properties: †46

• 𝑥, 𝑦 ∈ 𝑃 ⇒ 𝑥 + 𝑦, 𝑥 · 𝑦 ∈ 𝑃,
• 𝑃 ∩ (−𝑃) = {0} and
• 𝑃 ∪ (−𝑃) = 𝐹.

vice versa if in a field 𝐹 we can find a set 𝑃 ⊆ 𝐹 that satisfies them, then 𝐹 is an
ordered field by defining 𝑥 ≤ 𝑦 ⇔ 𝑦 − 𝑥 ∈ 𝑃.

E5.17 Not all fields are infinite sets. Consider 𝑋 = {0, 1} and operations 0 + 0 = [1ZY]

1 + 1 = 0, 0 + 1 = 1 + 0 = 1, 0 ⋅ 0 = 0 ⋅ 1 = 1 ⋅ 0 = 0 and 1 ⋅ 1 = 1. Check that it is
a field. Show that it cannot be an ordered field.

E5.18 Consider the ring of matrixes ℝ2×2 let’s define [1ZZ]

𝐴 = (0 1
1 0) , 𝐵 = (0 1

0 0) ,

then check that
𝐴𝐵 = (0 0

0 1) , 𝐵𝐴 = (1 0
0 0) ;

you conclude that the ring of matrixes is not commutative.

E5.19 Show that there is no ordering ≤ on ℂ such that (ℂ, ≤) is an ordered field. [08V]

Hidden solution: [UNACCESSIBLE UUID '20S']

E5.20 Let’s fix an integer 𝑁 ≥ 2 that it is not a perfect square. Consider the subset 𝐹 [200]

of ℝ given by the numbers 𝑥 that can be written as 𝑥 = 𝑎 + 𝑏√𝑁, with 𝑎, 𝑏 ∈ ℚ; we
associate the operations of ℝ: show that 𝐹 is a field. Hidden solution: [UNACCESSIBLE

UUID '201']

E5.21 Let 𝐹 be a field; given 𝛼 ≠ 0 and ℎ ∈ ℕ consider the recursive definition [202]

of exponentiation 𝛼ℎ defined from 𝛼0 = 1 and 𝛼(𝑛+1) = 𝛼𝑛 ⋅ 𝛼; then prove that
𝛼ℎ+𝑘 = 𝛼ℎ𝛼𝑘 and (𝛼ℎ)𝑘 = 𝛼(ℎ𝑘) for every 𝑘, ℎ ∈ ℕ.

E5.22 Prerequisites:5.21.Given 𝛼 ≠ 0 in a field, define that 𝛼0 = 1 and let 𝛼−𝑛 be the [20T]

multiplicative inverse of 𝛼𝑛 when 𝑛 ≥ 1 natural. (Use 5.21). For 𝑛, 𝑚 ∈ ℤ show
that

𝛼𝑛𝛼𝑚 = 𝛼𝑛+𝑚 , (𝛼ℎ)𝑘 = 𝛼(ℎ𝑘) ;
if the field is ordered and 𝛼 > 1 show that 𝑛 ↦ 𝛼𝑛 is strictly monotonic increasing.
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E5.23 Let 𝐹 be a commutative ring, 𝑎, 𝑏 ∈ 𝐹, 𝑛 ∈ ℕ then [205]

(𝑎 + 𝑏)𝑛 =
𝑛

∑
𝑘=0

(𝑛
𝑘)𝑎𝑛−𝑘𝑏𝑘

where the factor

(𝑛
𝑘) def= 𝑛!

𝑘!(𝑛 − 𝑘)!
is called the ”binomial coefficient”. (This result is known as the binomial theorem,
Newton’s formula, Newton’s binomial). To prove it by induction, check that

(𝑛 + 1
𝑘 + 1) = ( 𝑛

𝑘 + 1) + (𝑛
𝑘)

for 0 ≤ 𝑘, 𝑘 + 1 ≤ 𝑛.

†46From Chap. 2 Sect. 7 in [2]
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§6 REAL LINE

§6 Real line [09X]

We will indicate in the following with ℝ the real line, and with ℝ = ℝ ∪ {+∞, −∞} its
extension. †47

We will use intervals (see definition in 3.d.44).

Remark 6.1. Given a set 𝐼 ⊂ ℝ there are various ways of saying that a function [2DJ]

𝑓 ∶ 𝐼 → ℝ is monotonic. Let’s first list the different types of monotonicity

∀𝑥, 𝑦 ∈ 𝐼,𝑥 < 𝑦 ⟹ 𝑓(𝑥) ≤ 𝑓(𝑦) (6.2)
∀𝑥, 𝑦 ∈ 𝐼,𝑥 < 𝑦 ⟹ 𝑓(𝑥) < 𝑓(𝑦) (6.3)
∀𝑥, 𝑦 ∈ 𝐼,𝑥 < 𝑦 ⟹ 𝑓(𝑥) ≥ 𝑓(𝑦) (6.4)
∀𝑥, 𝑦 ∈ 𝐼,𝑥 < 𝑦 ⟹ 𝑓(𝑥) > 𝑓(𝑦) (6.5)

Unfortunately in common use there are different and incompatible conventions used
when naming the previous definitions. Here is a table, in which every convention is a
column.

(6.2) non-decreasing increasing weakly increasing
(6.3) increasing strictly increasing strictly increasing
(6.4) non-increasing decreasing weakly decreasing
(6.5) decreasing strictly decreasing strictly decreasing

In this text, the convention in the last column is used.
(The first column is, in my opinion, problematic. It often leads to the use, unfor-

tunately common, of phrases such as ”𝑓 is a non-decreasing function” or ”we take a
function 𝑓 not decreasing”; this can give rise to confusion: seems to say that 𝑓 does
not meet the requirement to be ”decreasing”, but it does not specify whether it is mono-
tonic. People who follow the convention in the first column (in my opinion) should
always say ”monotonic”).

Exercises

E6.6 Prerequisites:3.d.49. [09Y]

Show that any interval 𝐼 in ℝ falls in one of the categories seen in 3.d.45. Hidden
solution: [UNACCESSIBLE UUID '09Z']

E6.7 Prerequisites:5.22.Let 𝛼 > 0, 𝛼 ∈ ℝ be fixed. We know that, for every natural [20V]

𝑛 ≥ 1, there exists an unique 𝛽 > 0 such that 𝛽𝑛 = 𝛼, and 𝛽 is denoted by the
notation 𝑛√𝛼. (See e.g. Proposition 2.6.6 Chap. 2 Sec. 6 of the course notes [2] or
Theorem 1.21 in [22]). Given 𝑞 ∈ ℚ, we write 𝑞 = 𝑛/𝑚 with 𝑛, 𝑚 ∈ ℤ, 𝑚 ≥ 1, we
define

𝛼𝑞 def= 𝑚√𝛼𝑛 .
Show that this definition does not depend on the choice of representation 𝑞 = 𝑛/𝑚;
that

𝛼𝑞 = (𝑚√𝛼)
𝑛

;
that for 𝑝, 𝑞 ∈ ℚ

𝛼𝑞𝛼𝑝 = 𝛼𝑝+𝑞 , (𝛼𝑝)𝑞 = 𝛼(𝑝𝑞) ;
show that when 𝛼 > 1 then 𝑝 ↦ 𝛼𝑝 is strictly monotonic increasing.
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§6.a Neighbourhoods

E6.8 Prerequisites:6.7.Difficulty:*.Having fixed 𝛼 > 1, we define, for 𝑥 ∈ ℝ, [20W]

𝛼𝑥 = sup{𝛼𝑝 ∶ 𝑝 ∈ ℚ, 𝑝 ≤ 𝑥} ;

show that:

• this is a good definition (i.e. that the set on the right is bounded above and not
empty).

• Iff 𝑥 is rational then 𝛼𝑥 (as above defined) coincides with the definition in the
previous exercise 6.7.

• show that 𝑥 ↦ 𝛼𝑥 is strictly increasing.
• Show that

𝛼𝑥𝛼𝑦 = 𝛼𝑥+𝑦 , (𝛼𝑥)𝑦 = 𝛼(𝑥𝑦) .

See also the exercise 14.a.5.

E6.9 Let 𝑎, 𝑏 ∈ ℝ be such that [20X]

∀𝐿 ∈ ℝ, 𝐿 > 𝑏 ⇒ 𝐿 > 𝑎 .

Prove that 𝑏 ≥ 𝑎.

E6.10 Fix 𝐼 = {1, … 𝑛}. Let 𝑛 distinct points 𝑦1, … 𝑦𝑛 ∈ ℝ be given; let 𝜎 ∶ 𝐼 → 𝐼 be a [0B0]

permutation for which triangle inequalities between successive points are equalities
i.e.

|𝑦𝜎(𝑖+2) − 𝑦𝜎(𝑖+1)| + |𝑦𝜎(𝑖+1) − 𝑦𝜎(𝑖)| = |𝑦𝜎(𝑖+2) − 𝑦𝜎(𝑖)|
for 𝑖 = 1, … 𝑛 − 2. Show that there are only two, we call them 𝜎1, 𝜎2. Tip: Show that
any such permutation necessarily puts the points ”in order”, i.e. you have

∀𝑖, 𝑦𝜎1(𝑖+1) > 𝑦𝜎1(𝑖) , ∀𝑖, 𝑦𝜎2(𝑖+1) < 𝑦𝜎2(𝑖)

(up to deciding which is 𝜎1 and which is 𝜎2).
Hidden solution: [UNACCESSIBLE UUID '0B1']

§6.a Neighbourhoods [29H]
(Solved on
2022-11-24)Neighbourhoods are a family of sets associated with a point 𝑥0 ∈ ℝ, or 𝑥0 = ±∞. The

neighbourhoods are sets that contain an ”example” set. Let’s see here some definitions.

Definition 6.a.1 (Neighbourhoods). The deleted neighbourhoods (sometimes called [0B2]

punctured neighbourhoods) of points 𝑥0 ∈ ℝ are divided into three classes.

• Neighborhoods of 𝑥0 ∈ ℝ, which contain a set of the type (𝑥0 −𝛿, 𝑥0)∪(𝑥0, 𝑥0 +
𝛿) for a 𝛿 > 0;

• right neighborhoods of 𝑥0 ∈ ℝ , which contain a set of the type (𝑥0, 𝑥0 + 𝛿) for
a 𝛿 > 0;

• left neighborhoods of 𝑥0 ∈ ℝ , which contain a set of the type (𝑥0 − 𝛿, 𝑥0) for a
𝛿 > 0;

†47The topological structure of ℝ will be discussed further in 8.b.2.
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§6 REAL LINE

In any case, the deleted neighborhoods must not contain the point 𝑥0. The ”full” neigh-
borhoods are obtained by adding 𝑥0. The ”full neighborhoods” are the base for the
standard topology on ℝ.

To the previous ones we then add the neighborhoods of ±∞:

• neighborhoods of ∞ , which contain a set of the type (𝑦, ∞) as 𝑦 ∈ ℝ varies;

• neighborhoods of −∞ , which contain a set of the type (−∞, 𝑦) as 𝑦 ∈ ℝ varies;

In this case we do not distinguish ”deleted” neighborhoods and ”full” neighborhoods.

Exercise 6.a.2. Prerequisites:3.d.13.Difficulty:*. Let 𝑥0 ∈ ℝ and ℱ all the neighbour- [29J]
(Proposed on
2022-11-24)

hoods of 𝑥0. We associate the ordering

𝐼, 𝐽 ∈ ℱ , 𝐼 ≤ 𝐽 ⟺ 𝐼 ⊇ 𝐽

show that this is a filtering ordering.
(This holds both for “deleted” and for “full” neighbourhoods; for ‘left”, “right”,

or “bilateral” neighbourhoods).
(See also 8.15 for the similar statement in topological spaces).

§6.b Frequently, eventually [29K]

We will write ℝ for ℝ ∪ {±∞}.
Definition 6.b.1 (accumulation point). Given 𝐴 ⊆ ℝ, a point 𝑥 ∈ ℝ is called [0BG]

accumulation point for 𝐴 if every deleted neighborhood of 𝑥 intersects 𝐴.

Definition 6.b.2 (frequently, eventually). Let 𝐼 ⊆ ℝ be a set, 𝑥0 ∈ ℝ an accumulation [0B3]

point for 𝐼. Let P(x) be a logical proposition that we can evaluate for 𝑥 ∈ 𝐼. We define
that
”P(x) holds eventually for 𝑥 tending to
𝑥0” if

there is a neighborhood 𝑈 of 𝑥0 ∀𝑥 ∈
𝑈 ∩ 𝐼, P(x) is true ;

”P(x) frequently holds for 𝑥 tending to
𝑥0” if

for every neighborhood 𝑈 of 𝑥0 ∃𝑥 ∈
𝑈 ∩ 𝐼 for which P(x) ;

where it is meant that the neighbourhoods are ”deleted”.

Remark 6.b.3. As already seen in 4.g.4, again in this case the following two propo- [0B4]

sitions are equivalent.

• ”not ( 𝑃(𝑥) definitely applies, for 𝑥 tending to 𝑥0 )”,

• ” ( not 𝑃(𝑥) ) frequently applies, for 𝑥 tending to 𝑥0”.

Remark 6.b.4. If 𝑥0 ∈ ℝ is not an accumulation point for 𝐼, then we always have [22X]

that ”𝑃(𝑥) definitely is true, for 𝑥 tending to 𝑥0” .

Proposition 6.b.5. Suppose for simplicity that 𝐼 = ℝ. Putting together the previous [20C]

ideas, we can write equivalently:

• if 𝑥0 ∈ ℝ,
∃𝛿 > 0, ∀𝑥 ≠ 𝑥0, |𝑥 − 𝑥0| <
𝛿 ⇒ 𝑃(𝑥)

𝑃(𝑥) definitely applies for 𝑥 tending to 𝑥0

∀𝛿 > 0, ∃𝑥 ≠ 𝑥0, |𝑥 − 𝑥0| <
𝛿 ∧ 𝑃(𝑥)

𝑃(𝑥) frequently applies for 𝑥 tending to 𝑥0
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§6.c Supremum and infimum

• whereas in case 𝑥0 = ∞
∃𝑦 ∈ ℝ, ∀𝑥, 𝑥 > 𝑦 ⇒ 𝑃(𝑥) 𝑃(𝑥) definitely applies for 𝑥 tending to ∞
∀𝑦 ∈ ℝ, ∃𝑥, 𝑥 > 𝑦 ∧ 𝑃(𝑥) 𝑃(𝑥) frequently applies for 𝑥 tending to ∞

• and similarly 𝑥0 = −∞
∃𝑦 ∈ ℝ, ∀𝑥, 𝑥 < 𝑦 ⇒ 𝑃(𝑥) 𝑃(𝑥) definitely applies for 𝑥 tending to −∞
∀𝑦 ∈ ℝ, ∃𝑥, 𝑥 < 𝑦 ∧ 𝑃(𝑥) 𝑃(𝑥) frequently applies for 𝑥 tending to −∞

§6.c Supremum and infimum [29M]

Let’s first review the characterizations of the supremum and infimum in ℝ, as seen in
Sec. §3.d.c (or in Chap. 1 Sect. 5 in the notes [2]). Let 𝐴 ⊆ ℝ be a non empty set.

Definition 6.c.1. Let 𝐴 ⊆ ℝ be not be empty. Recall that the supremum, or least [08T]

upper bound, of a set 𝐴 is the minimum of majorants; We will indicate it with the
usual writing sup𝐴. If 𝐴 is bounded above then sup𝐴 is a real number; otherwise, by
convention, it is set to sup𝐴 = +∞.

Proposition 6.c.2. Let therefore 𝐴 ⊆ ℝ be not empty, let 𝑙 ∈ ℝ ∪ {+∞}; you can [208]
(Solved on
2022-11-24)

easily demonstrate the following properties:
sup𝐴 ≤ 𝑙 ∀𝑥 ∈ 𝐴, 𝑥 ≤ 𝑙
sup𝐴 > 𝑙 ∃𝑥 ∈ 𝐴, 𝑥 > 𝑙
sup𝐴 < 𝑙 ∃ℎ < 𝑙, ∀𝑥 ∈ 𝐴, 𝑥 ≤ ℎ
sup𝐴 ≥ 𝑙 ∀ℎ < 𝑙, ∃𝑥 ∈ 𝐴, 𝑥 > ℎ

the first and third derive from the definition of supremum, †48 the second and fourth by
negation; in the third we can conclude equivalently that 𝑥 < ℎ, and in the fourth that
𝑥 ≥ ℎ.

If 𝑙 ≠ +∞ then also we can also write (replacing ℎ = 𝑙 − 𝜀)
sup𝐴 < 𝑙 ∃𝜀 > 0, ∀𝑥 ∈ 𝐴, 𝑥 ≤ 𝑙 − 𝜀
sup𝐴 ≥ 𝑙 ∀𝜀 > 0, ∃𝑥 ∈ 𝐴, 𝑥 > 𝑙 − 𝜀

Combining the previous results, we get the result already seen in 3.d.41

Corollary 6.c.3. Having fixed a set 𝐴 ⊆ ℝ not empty, then sup𝐴 is the only number [20K]
(Solved on
2022-11-24)

𝛼 ∈ ℝ ∪ {+∞} which satisfies these two properties

∀𝑥 ∈ 𝐴, 𝑥 ≤ 𝛼
∀ℎ < 𝛼, ∃𝑥 ∈ 𝐴, 𝑥 > ℎ

as already seen in 3.d.41 for the more general case of totally ordered sets.

Definition 6.c.4. Similarly, given 𝐴 ⊆ ℝ not empty, the greatest lower boundary, or [209]

infimum, of 𝐴 is the maximum of minorants; we will indicate it with the usual writing
inf𝐴. If 𝐴 is bounded below then inf𝐴 is a real number; otherwise, by convention, we
set inf𝐴 = −∞.

Remark 6.c.5. Note that if we replace 𝐴 with [0B5]
(Proposed on
2022-11-24)−𝐴 = {−𝑥 ∶ 𝑥 ∈ 𝐴}

and 𝑙 with −𝑙, we switch from the definitions of sup to those of inf (and vice versa).
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§6 REAL LINE

Proposition 6.c.6. Let 𝐴 ⊆ ℝ not empty, let 𝑙 ∈ ℝ ∪ {−∞}; the following properties [20B]

apply:
inf𝐴 ≥ 𝑙 ∀𝑥 ∈ 𝐴, 𝑥 ≥ 𝑙
inf𝐴 < 𝑙 ∃𝑥 ∈ 𝐴, 𝑥 < 𝑙
inf𝐴 > 𝑙 ∃ℎ > 𝑙, ∀𝑥 ∈ 𝐴, 𝑥 ≥ ℎ
inf𝐴 ≤ 𝑙 ∀ℎ > 𝑙, ∃𝑥 ∈ 𝐴, 𝑥 < ℎ
If 𝑙 ≠ −∞ then also we write (substituting ℎ = 𝑙 + 𝜀)

inf𝐴 > 𝑙 ∃𝜀 > 0, ∀𝑥 ∈ 𝐴, 𝑥 ≥ 𝑙 + 𝜀
inf𝐴 ≤ 𝑙 ∀𝜀 > 0, ∃𝑥 ∈ 𝐴, 𝑥 ≤ 𝑙 + 𝜀

Corollary 6.c.7. Having fixed 𝐴 ⊆ ℝ not empty, then inf𝐴 is the only number [20M]
(Proposed on
2022-11-24)

𝛼 ∈ ℝ ∪ {−∞} which satisfies these two properties

∀𝑥 ∈ 𝐴, 𝑥 ≥ 𝛼
∀ℎ > 𝛼, ∃𝑥 ∈ 𝐴, 𝑥 < ℎ

Often the above definitions and properties are used in this form.

Definition 6.c.8. Given 𝐽 an index set (not empty), let 𝑎𝑛 ∈ ℝ for 𝑛 ∈ 𝐽. The [20H]
(Solved on
2022-11-24)

supremum and infimum are defined as

sup
𝑛∈𝐽

𝑎𝑛 = sup𝐴 , inf
𝑛∈𝐽

𝑎𝑛 = inf𝐴

where 𝐴 = {𝑎𝑛 ∶ 𝑛 ∈ 𝐽} is the image of the sequence.
Given 𝐷 not empty, let 𝑓 ∶ 𝐷 → ℝ be a function. The supremum and infimum are

defined as
sup
𝑥∈𝐷

𝑓(𝑥) = sup𝐴 , inf
𝑥∈𝐷

𝑓(𝑥) = inf𝐴

where 𝐴 = {𝑓(𝑥) ∶ 𝑥 ∈ 𝐷} is the image of the function.

§6.c.a Exercises

Let 𝐼, 𝐽 be generic non-empty sets. See definitions in Sec. §6.c

Exercises

E6.c.9 Let 𝑎𝑛 be a real-valued sequence, for 𝑛 ∈ 𝐼 a set of indexes; let 𝑟 > 0, 𝑡 ∈ [0B6]
(Solved on
2022-11-24)

ℝ, 𝜌 < 0; show that

sup
𝑛∈𝐼

(𝑎𝑛 + 𝑡) = 𝑡 + sup
𝑛∈𝐼

𝑎𝑛 , sup
𝑛∈𝐼

(𝑟𝑎𝑛) = 𝑟 sup
𝑛∈𝐼

𝑎𝑛 , sup
𝑛∈𝐼

(𝜌𝑎𝑛) = 𝜌 inf
𝑛∈𝐼

𝑎𝑛 .

Hidden solution: [UNACCESSIBLE UUID '22W']

E6.c.10 Let 𝑎𝑛,𝑚 be a real sequence with two indices 𝑛 ∈ 𝐼, 𝑚 ∈ 𝐽, show that [0B7]
(Solved on
2022-11-24)

sup
𝑛∈𝐼,𝑚∈𝐽

𝑎𝑛,𝑚 = sup
𝑛∈𝐼

( sup
𝑚∈𝐽

𝑎𝑛,𝑚) .

Hidden solution: [UNACCESSIBLE UUID '0B8']
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E6.c.11 Prerequisites:6.c.10,6.c.9. Let 𝑎𝑛, 𝑏𝑛 be real sequences, for 𝑛 ∈ 𝐼, show that [0B9]
(Solved on
2022-11-24)sup

𝑛,𝑚∈𝐼
(𝑎𝑛 + 𝑏𝑚) = (sup

𝑛∈𝐼
𝑎𝑛) + (sup

𝑛∈𝐼
𝑏𝑛) ,

but
sup
𝑛∈𝐼

(𝑎𝑛 + 𝑏𝑛) ≤ (sup
𝑛∈𝐼

𝑎𝑛) + (sup
𝑛∈𝐼

𝑏𝑛) ;

find a case where inequality is strict. Hidden solution: [UNACCESSIBLE UUID '0BB']

E6.c.12 Prerequisites:6.c.10. Let 𝐴, 𝐵 ⊆ ℝ and let [0BC]

𝐴 ⊕ 𝐵 = {𝑥 + 𝑦 ∶ 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}

theMinkowski sum †49 of the two sets: show that

sup(𝐴 ⊕ 𝐵) = (sup𝐴) + (sup𝐵) .

Hidden solution: [UNACCESSIBLE UUID '0BD']

E6.c.13 Let 𝐼𝑛 ⊆ ℝ (for 𝑛 ∈ ℕ) be closed and bounded non-empty intervals, such that [0BF]

𝐼𝑛+1 ⊆ 𝐼𝑛: show that ⋂∞
𝑛=0 𝐼𝑛 is not empty.

This result is known as Cantor’s intersection theorem [36]. It is valid in more
general contexts, see 10.j.11 and 8.d.4.
If we replace ℝ with ℚ and assume that 𝐼𝑛 ⊆ ℚ, is the result still valid?

E6.c.14 Study the equivalences in proposition 6.c.2 for the case in which sup𝐴 = +∞: [20P]
(Solved on
2022-11-24)

What do the formulas on the right say?

E6.c.15 Rewrite the properties of the clause 6.c.6 for the cases seen in 6.c.8. [20J]

E6.c.16 Calculate supremum and infimum of the following sets (where 𝑛, 𝑚 are inte- [20Y]
(Proposed on
2022-12)

gers).

{ 𝑚𝑛
𝑚2 + 𝑛2 ∶ 𝑛, 𝑚 ≥ 1} , { 𝑚𝑛

𝑚 + 𝑛 ∶ 𝑛, 𝑚 ≥ 1}
{2𝑛 + 2𝑚 ∶ 𝑛, 𝑚 ∈ ℕ} , {2𝑛 + 2𝑚 ∶ 𝑛, 𝑚 ∈ ℤ}

{ 𝑚2 − 2
𝑛 ∶ 𝑛, 𝑚 ∈ ℤ, 𝑛 ≠ 0} , { 𝑚 + 1

𝑚2 ∶ 𝑚 ∈ ℤ, 𝑚 ≠ 0}

§6.d Limits [29N]

We will write ℝ for ℝ ∪ {±∞}.

Definition 6.d.1. Let 𝐼 ⊂ ℝ, 𝑥0 ∈ ℝ accumulation point of 𝐼, 𝑓 ∶ 𝐼 → ℝ function, [20D]

𝑙 ∈ ℝ.
The idea of limit (right or left or bilateral) is thus expressed.

lim𝑥→𝑥0 𝑓(𝑥) = 𝑙 for every ”full” neighbourhood 𝑉 of 𝑙, there exists a
“deleted” neighbourhood 𝑈 of 𝑥0 such that for every 𝑥 ∈
𝑈 ∩ 𝐼, you have 𝑓(𝑥) ∈ 𝑉

where the neighborhood 𝑈 will be “right” or “left’ if the limit is “right” or “left”; it
†48In particular in the third you can think that ℎ = sup𝐴.
†49TheMinkowski sum will return in the section §12.f.
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§6 REAL LINE

can also be said that
lim𝑥→𝑥0 𝑓(𝑥) = 𝑙 for every ”full” neighbourhood 𝑉 of 𝑙, you have 𝑓(𝑥) ∈ 𝑉

eventually for 𝑥 tending to 𝑥0
adding that 𝑥 > 𝑥0 if the limit is “right”, or 𝑥 < 𝑥0 if the limit is “left”.

Let us now write these ideas explicitly.

Proposition 6.d.2. Let 𝐼 be a set, 𝑥0 ∈ ℝ accumulation point for 𝐼, 𝑓 ∶ 𝐼 → ℝ [0BH]

function, 𝑙 ∈ ℝ.
Putting together all the definitions seen above, we get these definitions of limit.
In the case 𝑥0 ∈ ℝ and 𝑙 ∈ ℝ:

lim𝑥→𝑥0 𝑓(𝑥) = 𝑙 ∀𝜀 > 0, ∃𝛿 > 0, ∀𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 ≠ 𝑥0, 𝑥 ∈ 𝐼 ⇒ |𝑓(𝑥) −
𝑙| < 𝜀

lim𝑥→𝑥+
0

𝑓(𝑥) = 𝑙 ∀𝜀 > 0, ∃𝛿 > 0, ∀𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 > 𝑥0, 𝑥 ∈ 𝐼 ⇒ |𝑓(𝑥) −
𝑙| < 𝜀

lim𝑥→𝑥−
0

𝑓(𝑥) = 𝑙 ∀𝜀 > 0, ∃𝛿 > 0, ∀𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 < 𝑥0, 𝑥 ∈ 𝐼 ⇒ |𝑓(𝑥) −
𝑙| < 𝜀

Be 𝑥0 ∈ ℝ, 𝑙 = ±∞.
lim𝑥→𝑥0 𝑓(𝑥) = ∞ ∀𝑧, ∃𝛿 > 0, ∀𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 ≠ 𝑥0, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) > 𝑧
lim𝑥→𝑥0 𝑓(𝑥) = −∞ ∀𝑧, ∃𝛿 > 0, ∀𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 ≠ 𝑥0, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) < 𝑧
lim𝑥→𝑥+

0
𝑓(𝑥) = ∞ ∀𝑧, ∃𝛿 > 0, ∀𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 > 𝑥0, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) > 𝑧

lim𝑥→𝑥+
0

𝑓(𝑥) = −∞ ∀𝑧, ∃𝛿 > 0, ∀𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 > 𝑥0, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) < 𝑧
lim𝑥→𝑥−

0
𝑓(𝑥) = ∞ ∀𝑧, ∃𝛿 > 0, ∀𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 < 𝑥0, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) > 𝑧

lim𝑥→𝑥−
0

𝑓(𝑥) = −∞ ∀𝑧, ∃𝛿 > 0, ∀𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 < 𝑥0, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) < 𝑧
Let 𝑙 ∈ ℝ, 𝑥0 = ±∞.
lim𝑥→∞ 𝑓(𝑥) = 𝑙 ∀𝜀 > 0, ∃𝑦, ∀𝑥, 𝑥 > 𝑦, 𝑥 ∈ 𝐼 ⇒ |𝑓(𝑥) − 𝑙| < 𝜀
lim𝑥→−∞ 𝑓(𝑥) = 𝑙 ∀𝜀 > 0, ∃𝑦, ∀𝑥, 𝑥 < 𝑦, 𝑥 ∈ 𝐼 ⇒ |𝑓(𝑥) − 𝑙| < 𝜀
lim𝑥→∞ 𝑓(𝑥) = ∞ ∀𝑧, ∃𝑦, ∀𝑥, 𝑥 > 𝑦, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) > 𝑧
lim𝑥→−∞ 𝑓(𝑥) = ∞ ∀𝑧, ∃𝑦, ∀𝑥, 𝑥 < 𝑦, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) > 𝑧
lim𝑥→∞ 𝑓(𝑥) = −∞ ∀𝑧, ∃𝑦, ∀𝑥, 𝑥 > 𝑦, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) < 𝑧
lim𝑥→−∞ 𝑓(𝑥) = −∞ ∀𝑧, ∃𝑦, ∀𝑥, 𝑥 < 𝑦, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) < 𝑧
Remark 6.d.3. Note that if you replace 𝑓 ↦ −𝑓, you switch from definitions with [0BJ]

𝑙 = ∞ to those of 𝑙 = −∞ (and vice versa). Another symmetry is achieved by switching
𝑥0 → −𝑥0 and the right and left neighbourhoods.

§6.e Upper and lower limits [29P]

From the previous definition we move on to the definitions of “limit superior” lim sup
and “limit inferior” lim inf. The idea is so expressed.

Definition 6.e.1. Let 𝐼 ⊂ ℝ, 𝑥0 ∈ ℝ accumulation point of 𝐼, 𝑓 ∶ 𝐼 → ℝ function. [20F]

We define

lim sup
𝑥→𝑥0

𝑓(𝑥) = inf
𝑈neighbourhood of𝑥0

sup
𝑥∈𝑈∩𝐼

𝑓(𝑥) (6.e.2)

lim inf
𝑥→𝑥0

𝑓(𝑥) = sup
𝑈neighbourhood of𝑥0

inf
𝑥∈𝑈∩𝐼

𝑓(𝑥) (6.e.3)

where the first ”inf” (resp. the ”sup”) is performed with respect to the family of all the
deleted neighbourhoods 𝑈 of 𝑥0; and the neighbourhoods will be right or left neigh-
bourhoods if the limit is from right or left.
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§6.e Upper and lower limits

Remark 6.e.4. Using the properties of inf, sup, we obtain for example these charac- [20G]
(Solved on
2022-11-29)

terizations

lim sup
𝑥→𝑥0

𝑓(𝑥) ≤ 𝑙 ⟺ ∀𝑧 > 𝑙, eventually for 𝑥 → 𝑥0, 𝑓(𝑥) < 𝑧 ;

lim sup
𝑥→𝑥0

𝑓(𝑥) ≥ 𝑙 ⟺ ∀𝑧 < 𝑙, frequently for 𝑥 → 𝑥0, 𝑓(𝑥) > 𝑧 ;

and so on. (In this simplified writing, we assume that 𝑥 ∈ 𝐼).

In particular, defining 𝑙 = lim sup𝑥→𝑥0
𝑓(𝑥), the previous formulas characterize

exactly the ”limsup”.

Corollary 6.e.5. You have 𝛼 = lim sup𝑥→𝑥0
𝑓(𝑥) if and only if [20N]

∀𝑧 > 𝛼, eventually for 𝑥 → 𝑥0, 𝑓(𝑥) < 𝑧 ;

∀𝑧 < 𝛼, frequently for 𝑥 → 𝑥0, 𝑓(𝑥) > 𝑧 .

Wemake them explicit further in what follows. (It is recommended to try to rewrite
autonomously some items, by way of exercise).

Proposition 6.e.6. In the case 𝑥0 ∈ ℝ and 𝑙 ∈ ℝ, we divide the definition into two [0BK]

conditions: †50

lim sup𝑥→𝑥0
𝑓(𝑥) ≤ 𝑙

lim sup𝑥→𝑥0
𝑓(𝑥) ≥ 𝑙

∀𝜀 > 0, ∃𝛿 > 0, ∀𝑥, |𝑥 −𝑥0| < 𝛿, 𝑥 ≠ 𝑥0, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) <
𝑙 + 𝜀
∀𝜀 > 0, ∀𝛿 > 0, ∃𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 ≠ 𝑥0, 𝑥 ∈ 𝐼, 𝑓(𝑥) >
𝑙 − 𝜀

lim sup𝑥→𝑥+
0

𝑓(𝑥) ≤ 𝑙
lim sup𝑥→𝑥+

0
𝑓(𝑥) ≥ 𝑙

∀𝜀 > 0, ∃𝛿 > 0, ∀𝑥, |𝑥 −𝑥0| < 𝛿, 𝑥 > 𝑥0, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) <
𝑙 + 𝜀
∀𝜀 > 0, ∀𝛿 > 0, ∃𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 > 𝑥0, 𝑥 ∈ 𝐼, 𝑓(𝑥) >
𝑙 − 𝜀

lim sup𝑥→𝑥−
0

𝑓(𝑥) ≤ 𝑙
lim sup𝑥→𝑥−

0
𝑓(𝑥) ≥ 𝑙

∀𝜀 > 0, ∃𝛿 > 0, ∀𝑥, |𝑥 −𝑥0| < 𝛿, 𝑥 < 𝑥0, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) <
𝑙 + 𝜀
∀𝜀 > 0, ∀𝛿 > 0, ∃𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 < 𝑥0, 𝑥 ∈ 𝐼, 𝑓(𝑥) >
𝑙 − 𝜀

lim inf𝑥→𝑥0 𝑓(𝑥) ≥ 𝑙
lim inf𝑥→𝑥0 𝑓(𝑥) ≤ 𝑙

∀𝜀 > 0, ∃𝛿 > 0, ∀𝑥, |𝑥 −𝑥0| < 𝛿, 𝑥 ≠ 𝑥0, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) >
𝑙 − 𝜀
∀𝜀 > 0, ∀𝛿 > 0, ∃𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 ≠ 𝑥0, 𝑥 ∈ 𝐼, 𝑓(𝑥) <
𝑙 + 𝜀

lim inf𝑥→𝑥+
0

𝑓(𝑥) ≥ 𝑙
lim inf𝑥→𝑥+

0
𝑓(𝑥) ≤ 𝑙

∀𝜀 > 0, ∃𝛿 > 0, ∀𝑥, |𝑥 −𝑥0| < 𝛿, 𝑥 > 𝑥0, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) >
𝑙 − 𝜀
∀𝜀 > 0, ∀𝛿 > 0, ∃𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 > 𝑥0, 𝑥 ∈ 𝐼, 𝑓(𝑥) <
𝑙 + 𝜀

lim inf𝑥→𝑥−
0

𝑓(𝑥) ≥ 𝑙
lim inf𝑥→𝑥−

0
𝑓(𝑥) ≤ 𝑙

∀𝜀 > 0, ∃𝛿 > 0, ∀𝑥, |𝑥 −𝑥0| < 𝛿, 𝑥 < 𝑥0, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) >
𝑙 − 𝜀
∀𝜀 > 0, ∀𝛿 > 0, ∃𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 < 𝑥0, 𝑥 ∈ 𝐼, 𝑓(𝑥) <
𝑙 + 𝜀

†50In the following tables all commas ”,” after the last quantifier should be interpreted as conjunctions ”∧”,
but were written as ”,” for lighten the notation.
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§6 REAL LINE

In the case 𝑥0 ∈ ℝ and 𝑙 = ±∞:
lim sup𝑥→𝑥0

𝑓(𝑥) = ∞ ∀𝑧, ∀𝛿 > 0, ∃𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 ≠ 𝑥0, 𝑥 ∈ 𝐼, 𝑓(𝑥) > 𝑧
lim sup𝑥→𝑥+

0
𝑓(𝑥) = ∞ ∀𝑧, ∀𝛿 > 0, ∃𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 > 𝑥0, 𝑥 ∈ 𝐼, 𝑓(𝑥) > 𝑧

lim sup𝑥→𝑥−
0

𝑓(𝑥) = ∞ ∀𝑧, ∀𝛿 > 0, ∃𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 < 𝑥0, 𝑥 ∈ 𝐼, 𝑓(𝑥) > 𝑧
lim sup𝑥→𝑥0

𝑓(𝑥) = −∞ ∀𝑧, ∃𝛿 > 0, ∀𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 ≠ 𝑥0, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) < 𝑧
lim sup𝑥→𝑥+

0
𝑓(𝑥) = −∞ ∀𝑧, ∃𝛿 > 0, ∀𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 > 𝑥0, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) < 𝑧

lim sup𝑥→𝑥−
0

𝑓(𝑥) = −∞ ∀𝑧, ∃𝛿 > 0, ∀𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 < 𝑥0, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) < 𝑧
lim inf𝑥→𝑥0 𝑓(𝑥) = ∞ ∀𝑧, ∃𝛿 > 0, ∀𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 ≠ 𝑥0, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) > 𝑧
lim inf𝑥→𝑥+

0
𝑓(𝑥) = ∞ ∀𝑧, ∃𝛿 > 0, ∀𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 > 𝑥0, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) > 𝑧

lim inf𝑥→𝑥−
0

𝑓(𝑥) = ∞ ∀𝑧, ∃𝛿 > 0, ∀𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 < 𝑥0, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) > 𝑧
lim inf𝑥→𝑥0 𝑓(𝑥) = −∞ ∀𝑧, ∀𝛿 > 0, ∃𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 ≠ 𝑥0, 𝑥 ∈ 𝐼, 𝑓(𝑥) < 𝑧
lim inf𝑥→𝑥+

0
𝑓(𝑥) = −∞ ∀𝑧, ∀𝛿 > 0, ∃𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 > 𝑥0, 𝑥 ∈ 𝐼, 𝑓(𝑥) < 𝑧

lim inf𝑥→𝑥−
0

𝑓(𝑥) = −∞ ∀𝑧, ∀𝛿 > 0, ∃𝑥, |𝑥 − 𝑥0| < 𝛿, 𝑥 < 𝑥0, 𝑥 ∈ 𝐼, 𝑓(𝑥) < 𝑧

In the case 𝑥0 = ±∞ and 𝑙 = ±∞:
lim sup𝑥→∞ 𝑓(𝑥) = ∞ ∀𝑧, ∀𝑦, ∃𝑥, 𝑥 > 𝑦, 𝑥 ∈ 𝐼, 𝑓(𝑥) > 𝑧
lim sup𝑥→−∞ 𝑓(𝑥) = ∞ ∀𝑧, ∀𝑦, ∃𝑥, 𝑥 < 𝑦, 𝑥 ∈ 𝐼, 𝑓(𝑥) > 𝑧
lim sup𝑥→∞ 𝑓(𝑥) = −∞ ∀𝑧, ∃𝑦, ∀𝑥, 𝑥 > 𝑦, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) < 𝑧
lim sup𝑥→−∞ 𝑓(𝑥) =
−∞

∀𝑧, ∃𝑦, ∀𝑥, 𝑥 < 𝑦, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) < 𝑧

lim inf𝑥→∞ 𝑓(𝑥) = ∞ ∀𝑧, ∃𝑦, ∀𝑥, 𝑥 > 𝑦, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) > 𝑧
lim inf𝑥→−∞ 𝑓(𝑥) = ∞ ∀𝑧, ∃𝑦, ∀𝑥, 𝑥 < 𝑦, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) > 𝑧
lim inf𝑥→∞ 𝑓(𝑥) = −∞ ∀𝑧, ∀𝑦, ∃𝑥, 𝑥 > 𝑦, 𝑥 ∈ 𝐼, 𝑓(𝑥) < 𝑧
lim inf𝑥→−∞ 𝑓(𝑥) = −∞ ∀𝑧, ∀𝑦, ∃𝑥, 𝑥 < 𝑦, 𝑥 ∈ 𝐼, 𝑓(𝑥) < 𝑧

In the case 𝑥0 = ±∞ and 𝑙 ∈ ℝ:
lim sup𝑥→∞ 𝑓(𝑥) ≤ 𝑙
lim sup𝑥→∞ 𝑓(𝑥) ≥ 𝑙

∀𝜀 > 0, ∃𝑦, ∀𝑥, 𝑥 > 𝑦, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) < 𝑙 + 𝜀
∀𝜀 > 0, ∀𝑦, ∃𝑥, 𝑥 > 𝑦, 𝑥 ∈ 𝐼, 𝑓(𝑥) > 𝑙 − 𝜀

lim sup𝑥→−∞ 𝑓(𝑥) ≤ 𝑙
lim sup𝑥→−∞ 𝑓(𝑥) ≥ 𝑙

∀𝜀 > 0, ∃𝑦, ∀𝑥, 𝑥 < 𝑦, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) < 𝑙 + 𝜀
∀𝜀 > 0, ∀𝑦, ∃𝑥, 𝑥 < 𝑦, 𝑥 ∈ 𝐼, 𝑓(𝑥) > 𝑙 − 𝜀

lim inf𝑥→∞ 𝑓(𝑥) ≤ 𝑙
lim inf𝑥→∞ 𝑓(𝑥) ≥ 𝑙

∀𝜀 > 0, ∀𝑦, ∃𝑥, 𝑥 > 𝑦, 𝑥 ∈ 𝐼, 𝑓(𝑥) < 𝑙 + 𝜀
∀𝜀 > 0, ∃𝑦, ∀𝑥, 𝑥 > 𝑦, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) > 𝑙 − 𝜀

lim inf𝑥→−∞ 𝑓(𝑥) ≤ 𝑙
lim inf𝑥→−∞ 𝑓(𝑥) ≥ 𝑙

∀𝜀 > 0, ∀𝑦, ∃𝑥, 𝑥 < 𝑦, 𝑥 ∈ 𝐼, 𝑓(𝑥) < 𝑙 + 𝜀
∀𝜀 > 0, ∃𝑦, ∀𝑥, 𝑥 < 𝑦, 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥) > 𝑙 − 𝜀

Remark 6.e.7. Note that [0BM]

lim inf
𝑥→𝑥0

𝑓(𝑥) = ∞ ⟺ lim
𝑥→𝑥0

𝑓(𝑥) = ∞

and
lim sup

𝑥→𝑥0
𝑓(𝑥) = −∞ ⟺ lim

𝑥→𝑥0
𝑓(𝑥) = −∞

Remark 6.e.8. Note that if you replace 𝑓 ↦ −𝑓, 𝑙 ↦ −𝑙, you pass from the defini- [0BN]

tions of lim sup to those of lim inf (and vice versa). Another symmetry is achieved by
switching 𝑥0 → −𝑥0 and right and left neighbourhoods/limits.

Exercises
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§6.e Upper and lower limits

E6.e.9 Let 𝐴1, 𝐴2 … be sets , for 𝑛 ∈ ℕ; let 𝑋 = ⋃𝑛 𝐴𝑛. We define the characteristic [0BP]

function 𝟙𝐴 ∶ 𝑋 → ℝ as

𝟙𝐴(𝑥) = {1 if 𝑥 ∈ 𝐴
0 if 𝑥 ∉ 𝐴 .

We will use the definitions lim sup𝑛 𝐴𝑛 and lim inf𝑛 𝐴𝑛 seen in eqn. (3.k.9) and
(3.k.10). You have

𝟙(lim sup𝑛 𝐴𝑛) = lim sup
𝑛

𝟙𝐴𝑛 , (6.e.10)

𝟙(lim inf𝑛 𝐴𝑛) = lim inf
𝑛

𝟙𝐴𝑛 . (6.e.11)

E6.e.12 We fix a real valued sequence 𝑎𝑛. Now consider the definition of 6.e.1 setting [0BQ]

𝐼 = ℕ and 𝑥0 = ∞, so that neighborhoods of 𝑥0 are sets containing [𝑛, ∞) = {𝑚 ∈
ℕ ∶ 𝑚 ≥ 𝑛}; with these assumptions show that you have

lim sup
𝑛→∞

𝑎𝑛 = inf
𝑛
sup
𝑚≥𝑛

𝑎𝑛 = lim
𝑛→∞

sup
𝑚≥𝑛

𝑎𝑛 ,

lim inf
𝑛→∞

𝑎𝑛 = sup
𝑛

inf
𝑚≥𝑛

𝑎𝑛 = lim
𝑛→∞

inf
𝑚≥𝑛

𝑎𝑛 ., (6.e.13)

E6.e.14 Prerequisites:6.e.1,6.a.2,3.d.13,7.d.4,7.d.9.Difficulty:*. [29R]
(Proposed on
2022-11-24)Let 𝐼 ⊂ ℝ, 𝑥0 ∈ ℝ accumulation point of 𝐼, 𝑓 ∶ 𝐼 → ℝ function. As in 6.a.2 ℱ all

the neighbourhoods of 𝑥0 with associated the filtering ordering

𝑈, 𝑉 ∈ ℱ , 𝑈 ≤ 𝑉 ⟺ 𝑈 ⊇ 𝑉 .
Let

𝑠, 𝑖 ∶ ℱ → ℝ , 𝑠(𝑈) = sup
𝑥∈𝑈∩𝐼

𝑓(𝑥) , 𝑖(𝑈) = inf
𝑥∈𝑈∩𝐼

𝑓(𝑥)

note that these are monotonic functions, and show that †51

lim sup
𝑥→𝑥0

𝑓(𝑥) def= inf
𝑈∈ℱ

𝑠(𝑈) = lim
𝑈∈ℱ

𝑠(𝑈) (6.e.15)

lim inf
𝑥→𝑥0

𝑓(𝑥) def= sup
𝑈∈ℱ

𝑖(𝑈) = lim
𝑈∈ℱ

𝑖(𝑈) (6.e.16)

where the limits are defined in 7.d.4.

E6.e.17 Prerequisites:6.e.14. [29S]
(Solved on
2022-11-24)Let 𝐼 ⊂ ℝ, 𝑥0 ∈ ℝ accumulation point of 𝐼, and 𝑓, 𝑔 ∶ 𝐼 → ℝ functions. Prove that

lim sup
𝑥→𝑥0

(𝑓(𝑥) + 𝑔(𝑥)) ≤ lim sup
𝑥→𝑥0

𝑓(𝑥) + lim sup
𝑥→𝑥0

𝑔(𝑥) .

E6.e.18 Let 𝐼 ⊂ ℝ, 𝑥0 ∈ ℝ accumulation point of 𝐼, 𝑓 ∶ 𝐼 → ℝ function. Let [29T]

𝑟 > 0, 𝑡 ∈ ℝ, 𝜌 < 0; show that

lim sup
𝑥→𝑥0

(𝑓(𝑥) + 𝑡) = 𝑡 + lim sup
𝑥→𝑥0

𝑓(𝑥) , lim sup
𝑥→𝑥0

(𝑟𝑓(𝑥)) = 𝑟 lim sup
𝑥→𝑥0

𝑓(𝑥) ,

lim sup
𝑥→𝑥0

(𝜌𝑓(𝑥)) = 𝜌 lim inf
𝑥→𝑥0

𝑓(𝑥) .

Other exercises on limits of sequences can be found in Sec. §7.a.
†51cf 6.e.2, (6.e.3).
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§6 REAL LINE

§6.f Approximation of irrational numbers [29Q]

In the next exercises we will use the following definitions.

Definition 6.f.1. For 𝑥 ∈ ℝ we define ⌊𝑥⌋ to be the floor function defined as the [0BS]

greatest integer less than or equal to 𝑥, as in

⌊𝑥⌋ def= max{𝑛 ∈ ℤ ∶ 𝑛 ≤ 𝑥} .

Definition 6.f.2. 𝑥 − ⌊𝑥⌋ is the fractional part of 𝑥. [0BT]

(We define 𝜑(𝑥) = 𝑥 − ⌊𝑥⌋, note that 𝜑(3, 1415) = 0, 1415 but 𝜑(−4, 222) = 0, 778
because ⌊−4, 222⌋ = −5).

Exercises

E6.f.3 Note that 𝑘 = ⌊𝑥⌋ is the only integer for which you have 𝑘 ≤ 𝑥 < 𝑘 + 1 or [0BV]

equivalently 0 ≤ (𝑥 − 𝑘) < 1 or equivalently 𝑥 − 1 < 𝑘 ≤ 𝑥.

E6.f.4 Prerequisites:6.f.1.Given 𝑥 ∈ ℝ and 𝑁 ∈ ℕ, 𝑁 ≥ 2, prove that at least one [0BW]

element of the set {𝑥, 2𝑥, … , (𝑁 − 1)𝑥} is at most distance 1/𝑁 from an integer, that
is, there exist 𝑛, 𝑚 ∈ ℤ with 1 ≤ 𝑛 ≤ 𝑁 − 1 such that |𝑛𝑥 − 𝑚| ≤ 1/𝑁.
Hidden solution: [UNACCESSIBLE UUID '0BX']

E6.f.5 Prerequisites:6.f.1,6.f.4.Given 𝑥, 𝑏 ∈ ℝ with 𝑥 ≠ 0 irrational, and 𝜀 > 0, prove [0BY]

that there is a natural 𝑀 such that 𝑀𝑥 − 𝑏 is at most 𝜀 from an integer.
Let 𝜑(𝑥) = 𝑥 − ⌊𝑥⌋ be the fractional part of 𝑥, we have 𝜑(𝑥) ∈ [0, 1). The above
result implies that the sequence 𝜑(𝑛𝑥) is dense in the interval [0, 1].
Note that instead if 𝑥 ≠ 0 is rational i.e. 𝑥 = 𝑛/𝑑 with 𝑛, 𝑑 coprime integers and 𝑑 >
0, then the sequence 𝜑(𝑛𝑥) assumes all and only the values {0, 1/𝑑, 2/𝑑, … (𝑑−1)/𝑑}.
(This is demonstrated by the Bézout’s lemma [35]).
Hidden solution: [UNACCESSIBLE UUID '0BZ']

E6.f.6 Prerequisites:6.f.4. (Dirichlet’s approximation theorem) Given an irrational [0C1]

number 𝑥, show that there are infinitely many rationals 𝛼 such that we can represent
𝛼 = 𝑚/𝑛 in order to satisfy the relation

||𝑥 − 𝑚
𝑛

|| < 1
𝑛2 .

Some comments.

• Note for every fixed 𝑛 ≥ 2 there is at most an 𝑚 for which the previous relation
holds; but there may not be one.

• Note that if the relation holds for a rational 𝛼, there are only finite choices of
representations for which it holds,

• and certainly it holds for the ”canonical” representation with 𝑛, 𝑚 coprimes.
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Hidden solution: [UNACCESSIBLE UUID '0C2']

Note that Hurwitz’s theorem [40] states that for every irrational number 𝜉 there are [2B0]

infinitely many coprime integers 𝑚, 𝑛 ∈ ℤ such that

||𝜉 − 𝑚
𝑛

|| < 1
√5 𝑛2

.

E6.f.7 Fixed 𝑘 > 0, 𝜀 > 0 and a rational number 𝑥, prove that there exist only finitely [0C3]

many rationals 𝛼 that can be represented as 𝛼 = 𝑚/𝑛 in order to satisfy the relation

||𝑥 − 𝑚
𝑛

|| ≤ 𝑘
𝑛1+𝜀 .

Hidden solution: [UNACCESSIBLE UUID '0C4']

E6.f.8 Prove that for every rational 𝑚/𝑛 you have [0C5]

||√2 − 𝑚
𝑛

|| > 1
4𝑛2 .

We obtain that the set 𝐴 = ⋃𝑚∈ℤ,𝑛∈ℕ∗ ( 𝑚
𝑛

− 1
4𝑛2 , 𝑚

𝑛
+ 1

4𝑛2 ) is an open set that con-
tains every rational number, but 𝐴 ≠ ℝ.
Hidden solution: [UNACCESSIBLE UUID '0C6']

§6.g Algebraic
Definition 6.g.1. A number 𝛼 ∈ ℝ is said algebraic if there exists a polynomial [0C7]

𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛 with rational coefficients such that 𝑝(𝛼) = 0. Otherwise
𝛼 is said transcendental.

We note that every rational 𝛼 = 𝑛/𝑚 is algebraic, as the root of 𝑝(𝑥) = 𝑚𝑥 − 𝑛.

Definition 6.g.2. Given a commutative ring 𝐴, the set of polynomials 𝑝(𝑥) = 𝑎0 + [0C8]

𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛 with coefficients 𝑎𝑖 ∈ 𝐴 is usually denoted by 𝐴[𝑥]; this set, endowed
with the usual operations of sum and product of polynomials, is a commutative ring.

We want to show that algebraic numbers are a field.

Exercises

E6.g.3 Given 𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛, 𝑝 ∈ ℚ[𝑧] such that 𝑝(𝛼) = 0, build a [0C9]

polynomial 𝑞 ∈ ℤ[𝑧] such that 𝑞(𝛼) = 0.
So the definition of algebraic can be given equivalently with polynomials with inte-
ger coefficients.

E6.g.4 Given 𝛼 ≠ 0 and 𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛, 𝑝 ∈ ℚ[𝑧] such that 𝑝(𝛼) = 0, [0CB]

build a polynomial 𝑞 ∈ ℚ[𝑧] such that 𝑞(1/𝛼) = 0.
So if 𝛼 ≠ 0 is algebraic then 1/𝛼 is algebraic.
Hidden solution: [UNACCESSIBLE UUID '0BR']
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E6.g.5 Given 𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛, 𝑝 ∈ ℚ[𝑧] such that 𝑝(𝛼) = 0, given [0CC]

𝑏 ∈ ℚ build a 𝑞 ∈ ℚ[𝑧] such that 𝑞(𝑏𝛼) = 0.
So if 𝛼 is algebraic then 𝑏𝛼 is algebraic.

E6.g.6 Given 𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛, 𝑝 ∈ ℚ[𝑧] such that 𝑝(𝛼) = 0, given [0CD]

𝑏 ∈ ℚ build a 𝑞 ∈ ℚ[𝑧] such that 𝑞(𝑏 + 𝛼) = 0.
So if 𝛼 is algebraic then 𝑏 + 𝛼 is algebraic.

E6.g.7 Difficulty:*.More generally, given 𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛, 𝑝 ∈ ℚ[𝑧] [0CF]

𝑞(𝑥) = 𝑏0 + 𝑏1𝑥 + ⋯ + 𝑏𝑚𝑥𝑚, 𝑞 ∈ ℚ[𝑧], and given 𝛼, 𝛽 such that 𝑝(𝛼) = 0 = 𝑞(𝛽),
construct a polynomial 𝑟 ∈ ℚ[𝑧] such that 𝑟(𝛼 + 𝛽) = 0.
(Hint: use the theory of the resultant [44]).
So if 𝛼, 𝛽 are algebraic then 𝛼 + 𝛽 is algebraic.
Hidden solution: [UNACCESSIBLE UUID '0CG']

E6.g.8 Show that if 𝛼 is algebraic then 𝛼2 is algebraic. Hidden solution: [UNACCESSIBLE [0CH]

UUID '0CJ']

E6.g.9 If 𝛼, 𝛽 are algebraic, prove that 𝛼𝛽 is algebraic. Hidden solution: [UNACCESSIBLE [0CK]

UUID '0CM']

The above shows that algebraic numbers are a field.
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§7 Sequences and series [0CN]

§7.a Sequences
Let (𝑎𝑛)𝑛∈ℕ ⊆ ℝ be a real-valued sequence (as defined in 3.e.2).

Given𝑁 ∈ ℕwewill write sup𝑛≥𝑁 𝑎𝑛 in the following, instead of sup{𝑎𝑁 , 𝑎𝑁+1 …},
and similarly for the infimum. (This is in accordance with 6.c.8)

Exercises

E7.a.1 Prerequisites:6.c.7. [0CP]

We have that sup𝑛≥𝑁 𝑎𝑛 = 𝜎 ∈ ℝ if and only if

∀𝑛 ≥ 𝑁, 𝑎𝑛 ≤ 𝜎 e (7.a.2)
∀𝐿 < 𝜎, ∃𝑛 ≥ 𝑁, 𝑎𝑛 > 𝐿 (7.a.3)

(note that if 𝜎 = ∞ the first is trivially true, while if 𝜎 = −∞ the latter is true because
there are no 𝐿).

Solution. 7.a.4. It follows from the characterization 6.c.3. [0CQ]

E7.a.5 Let (𝑎𝑛)𝑛∈ℕ be a sequence with 𝑎𝑛 ∼ 𝑛𝑛 . Prove that, setting 𝑠𝑛
def= ∑𝑛

𝑘=0 𝑎𝑛 [0CR]

we have 𝑠𝑛 ∼ 𝑎𝑛 .

E7.a.6 Let 𝑒𝑛, 𝑑𝑛 be two real sequences such that 𝑑𝑛 ≤ 𝑒𝑛 for each 𝑛, and suppose [0CS]

that lim sup𝑛 𝑒𝑛 = lim inf𝑛 𝑑𝑛 = 𝑏 (possibly infinite): then show that lim𝑛 𝑒𝑛 =
lim𝑛 𝑑𝑛 = 𝑏. Hidden solution: [UNACCESSIBLE UUID '0CT']

E7.a.7 Prerequisites:6.c.11,6.e.12. Let 𝑎𝑛, 𝑏𝑛 real valued sequences, show that [0CV]
(Solved on
2022-11-24)lim sup

𝑛→∞
(𝑎𝑛 + 𝑏𝑛) ≤ (lim sup

𝑛→∞
𝑎𝑛) + (lim sup

𝑛→∞
𝑏𝑛) ;

find a case where inequality is strict. Hidden solution: [UNACCESSIBLE UUID '0CW']

E7.a.8 Difficulty:*. [0CX]

Let 𝑎𝑛,𝑚 be a real valued sequence †52 with two indexes 𝑛, 𝑚 ∈ ℕ. Suppose that

• for every 𝑚 the limit lim𝑛→∞ 𝑎𝑛,𝑚 exists, and that
• the limit lim𝑚→∞ 𝑎𝑛,𝑚 = 𝑏𝑛 exists uniformly in 𝑛 and is finite, i.e.

∀𝜀 > 0, ∃𝑚 ∈ ℕ ∀𝑛 ∈ ℕ, ∀ℎ ≥ 𝑚 |𝑎𝑛,ℎ − 𝑏𝑛| < 𝜀 .

then
lim

𝑛→∞
lim

𝑚→∞
𝑎𝑛,𝑚 = lim

𝑚→∞
lim

𝑛→∞
𝑎𝑛,𝑚 (7.a.9)

in the sense that if one of the two limits exists (possibly infinite), then the other also
exists, and they are equal.
Find a simple example where the two limits in (7.a.9) are infinite.
Find an example where lim𝑚→∞ 𝑎𝑛,𝑚 = 𝑏𝑛 but the limit is not uniform and the
previous equality (7.a.9) does not apply.
Hidden solution: [UNACCESSIBLE UUID '0CZ']
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1 2 3 4 5 6 7 8 9 10 11 12

Figure 1: Representation of Euler-Mascheroni constant
Image by William Demchick, Creative Commons Attribution 3.0 Unported License, taken from wikipedia.

E7.a.10 Prerequisites:7.a.8,7.a.6.Let again 𝑎𝑛,𝑚 be a real valued sequence with two [0D0]

indices 𝑛, 𝑚 ∈ ℕ; suppose that, for every 𝑛, the limit lim𝑚→∞ 𝑎𝑛,𝑚 = 𝑏𝑛 exists, is
finite and is uniform in 𝑛; suppose that the limit lim𝑛 𝑏𝑛 exists and is finite. Can it
be concluded that the limits lim𝑛→∞ 𝑎𝑛,𝑚 exist for each fixed 𝑚? Can we write an
equality as in eqn. (7.a.9) in which, however, on the RHS we use the upper or lower
limits of 𝑎𝑛,𝑚 for 𝑛 → ∞, instead of the limits lim𝑛→∞ 𝑎𝑛,𝑚?
Hidden solution: [UNACCESSIBLE UUID '0D1']

E7.a.11 Difficulty:*. Show that from any sequence (𝑎𝑛)𝑛 we can extract a monotonic [0D2]

subsequence. Hidden solution: [UNACCESSIBLE UUID '0D3']

E7.a.12 Difficulty:*. Show that from any sequence (𝑎𝑛)𝑛 ⊆ ℝ we can extract a mono- [0D4]

tonic subsequence such that

lim
𝑘→∞

𝑎𝑛𝑘 = lim sup
𝑛→∞

𝑎𝑛 .

Hidden solution: [UNACCESSIBLE UUID '0D5']

E7.a.13 Topics:Euler-Mascheroni constant.Prerequisites:3.f.4. [0D6]

Show that the limit

𝛾 = lim
𝑛→∞

(
𝑛

∑
𝑘=1

1
𝑘 − log(𝑛)) .

exists and is finite. This 𝛾 is called Costante di Eulero -Mascheroni. It can be defined
in many different ways (see the previous link) including

𝛾 = ∫
∞

1
( 1

⌊𝑥⌋ − 1
𝑥 ) 𝕕𝑥

where the parentheses ⌊⋅⌋ indicate the floor function ⌊𝑥⌋ def= max{𝑛 ∈ ℤ ∶ 𝑛 ≤ 𝑥}. In
the image 1 the constant 𝛾 is the blue area.
Hidden solution: [UNACCESSIBLE UUID '0D8']

E7.a.14 [0D9]

†52This result applies more generally when 𝑎𝑛,𝑚 are elements of a metric space; moreover a similar result
occurs when the limits 𝑛 → ∞ and/or 𝑚 → ∞ are replaced with limits 𝑥 → �̂� and/or 𝑦 → ̂𝑦 where the
above variables move in metric spaces. See for example 18.12.
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Let 𝑎𝑘 = 3√𝑘3 + 𝑘 − 𝑘. Prove that
𝑛

∑
𝑘=1

𝑎𝑘 ∼ 1
3 log(𝑛)

that is, the ratio between the two above sequences tends to 1 when 𝑛 → ∞. Hidden
solution: [UNACCESSIBLE UUID '0DB'][UNACCESSIBLE UUID '0DC']

E7.a.15 Note:Exercise 1 from the written exam 9 April 2011.Let (𝑎𝑛) be a sequence of real numbers, [0DD]

with 𝑎𝑛 ≥ 0.

1. Show that if ∑∞
𝑛=1 𝑎𝑛 converges then also

∞
∑
𝑛=1

𝑎2
𝑛 e

∞
∑
𝑛=1

(𝑎𝑛

∞
∑

𝑚=𝑛+1
𝑎𝑚)

converge.
2. Assuming moreover that ∑∞

𝑛=1 𝑎𝑛 is convergent, let’s define

𝑎 =
∞
∑
𝑛=1

𝑎𝑛 , 𝑏 =
∞
∑
𝑛=1

(𝑎𝑛

∞
∑

𝑚=𝑛+1
𝑎𝑚) , 𝑐 =

∞
∑
𝑛=1

𝑎2
𝑛

then show that 𝑎2 = 2𝑏 + 𝑐.

Exercise 7.a.16. Let 𝑎𝑛, 𝑏𝑛 be real sequences (which can have variable signs, take [0DJ]

value zero, and are not necessarily infinitesimal).
Recall that the notation 𝑎𝑛 = 𝑜(𝑏𝑛) means:

∀𝜀 > 0, ∃𝑛 ∈ ℕ, ∀𝑛 ∈ ℕ, 𝑛 ≥ 𝑛 ⇒ |𝑎𝑛| ≤ 𝜀|𝑏𝑛| .

Shown that these two clauses are equivalent.

• Eventually in 𝑛 we have that 𝑎𝑛 = 0 ⟺ 𝑏𝑛 = 0; having specified this, we have
lim𝑛

𝑎𝑛
𝑏𝑛

= 1, where it is decided that 0/0 = 1 (in particular 𝑎𝑛, 𝑏𝑛 eventually
have the same sign, when they are not both null);

• we have that 𝑎𝑛 = 𝑏𝑛 + 𝑜(𝑏𝑛).

The second condition appears in Definition 3.2.7 in [2] where it is indicated by the
notation 𝑎𝑛 ∼ 𝑏𝑛.

Deduct that 𝑎𝑛 ∼ 𝑏𝑛 is an equivalence relation.
Hidden solution: [UNACCESSIBLE UUID '29Y']

Exercise 7.a.17. Prerequisites:3.g.3.Let 𝑎𝑛, 𝑏𝑛 be real sequences (which can have vari- [02F]

able signs, take value zero, and are not necessarily infinitesimal); let 𝑋 = ℝℕ the space
of all sequences.

Recall that the notation 𝑎𝑛 = 𝑂(𝑏𝑛) means:

∃𝑀 > 0, ∃𝑛 ∈ ℕ, ∀𝑛 ∈ ℕ, 𝑛 ≥ 𝑛 ⇒ |𝑎𝑛| ≤ 𝑀|𝑏𝑛| .

Show these results:
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• for 𝑎, 𝑏 ∈ 𝑋, 𝑎 = (𝑎𝑛)𝑛, 𝑏 = (𝑏𝑛)𝑛 consider the relation

𝑎𝑅𝑏 ⟺ 𝑎𝑛 = 𝑂(𝑏𝑛)

prove that 𝑅 is a preorder;

• define 𝑥 ≍ 𝑦 ⟺ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) then ≍ is an equivalence relation, 𝑅 is in-
variant for ≍, and the projection ⪯ is an order relation on 𝑋/ ≍ (hint: use the
Prop. 3.g.3).

• Define (as usually done)

̂𝑎 ≺ ̂𝑏 ⟺ ( ̂𝑎 ⪯ ̂𝑏 ∧ ̂𝑎 ≠ ̂𝑏)

for ̂𝑎, ̂𝑏 ∈ 𝑋/ ≍, (𝑎𝑛)𝑛 ∈ ̂𝑎, (𝑏𝑛)𝑛 ∈ ̂𝑏 representatives; assuming 𝑏𝑛 ≠ 0
(eventually in 𝑛), prove that

̂𝑎 ≺ ̂𝑏 ⟺ 0 = lim inf
𝑛

𝑎𝑛
𝑏𝑛

≤ lim sup
𝑛

𝑎𝑛
𝑏𝑛

< ∞ .

The above discussion is related to Definition 3.2.3 (and following) in [2].

See also exercises 6.c.11 and 6.c.10.

§7.a.a Summation by parts

Exercises

E7.a.18 Suppose (𝑎𝑛)𝑛, (𝑏𝑛)𝑛 are sequences of real numbers and 𝑐𝑛 is defined by 7.c.29; [217]

let then

𝐴𝑛 =
𝑛

∑
ℎ=0

𝑎ℎ , 𝐵𝑛 =
𝑛

∑
ℎ=0

𝑏ℎ , 𝐶𝑛 =
𝑛

∑
ℎ=0

𝑐ℎ

the partial sums of the three series; suppose that ∑∞
𝑛=0 𝑏𝑛 = 𝐵 is convergent: show

that

𝐶𝑛 =
𝑛

∑
𝑖=0

𝑎𝑛−𝑖𝐵𝑖 =
𝑛

∑
𝑖=0

𝑎𝑛−𝑖(𝐵𝑖 − 𝐵) + 𝐴𝑛𝐵 .

Hidden solution: [UNACCESSIBLE UUID '216']

E7.a.19 Note:Taken from Rudin [22] Prop. 3.41. [21H]

Let (𝑎𝑛)𝑛(𝑏𝑛)𝑛, be sequences, let 𝐴𝑛 = ∑𝑛
𝑘=0 𝑎𝑘 and 𝐴−1 = 0, 0 ≤ 𝑝 ≤ 𝑞, then

𝑞
∑
𝑛=𝑝

𝑎𝑛𝑏𝑛 =
𝑞−1
∑
𝑛=𝑝

𝐴𝑛(𝑏𝑛 − 𝑏𝑛+1) + 𝐴𝑞𝑏𝑞 − 𝐴𝑝−1𝑏𝑝 .
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§7.b Recursive sequences

§7.b Recursive sequences
Exercises

E7.b.1 Let 𝑓(𝑥) = 𝑥 − 𝑥3 and 𝑥0 ∈ ℝ, and (𝑥𝑛)𝑛∈ℕ a sequence defined by recurrence [0DK]

by 𝑥𝑛+1 = 𝑓(𝑥𝑛). Prove that there is a 𝜆 > 0 such that if |𝑥0| < 𝜆 then 𝑥𝑛 → 0,
while if |𝑥0| > 𝜆 then |𝑥𝑛| → ∞; and possibly calculate this 𝜆.
Hidden solution: [UNACCESSIBLE UUID '0DM']

E7.b.2 Note:Babylonian method for square root. Let 𝑆 > 0 and consider the sequence defined by [0DN]

recurrence as
𝑥𝑛+1 = 1

2 (𝑥𝑛 + 𝑆
𝑥𝑛

) ;

show that 𝑥𝑛 → √𝑆 and that, for 𝑆 ∈ [1/4, 1] and 𝑥0 = 1, convergence is su-
perquadratic, i.e.

||𝑥𝑛 − √𝑆|| ≤ 21−2𝑛 .

Find a function 𝑓(𝑥) (dependent on 𝑆 ) such that the previous iteration can be seen
as a Newton’s method, i.e.

𝑥 − 𝑓(𝑥)
𝑓′(𝑥) = 1

2 (𝑥 + 𝑆
𝑥 ) .

Generalize the Babylonian method to find a root 𝑘√𝑆.
Hidden solution: [UNACCESSIBLE UUID '0DP']

§7.c Series
§7.c.a Tests

Theorem 7.c.1 (Root test). Let 𝛼 = lim sup𝑛→∞
𝑛√|𝑎𝑛| then [219]

• if 𝛼 < 1 the series ∑∞
𝑛=1 𝑎𝑛 converges absolutely;

• if 𝛼 = 1 nothing can be concluded;

• if 𝛼 > 1 the series ∑∞
𝑛=1 𝑎𝑛 does not converge, and also ∑∞

𝑛=1 |𝑎𝑛| diverges.

Proof. [21B]

• If 𝛼 < 1, having fixed 𝐿 ∈ (𝛼, 1) you have eventually 𝑛√|𝑎𝑛| < 𝐿 so there is a 𝑁
for which |𝑎𝑛| ≤ 𝐿𝑁−𝑛 for each 𝑛 ≥ 𝑁 and we conclude by comparison with the
geometric series.

• For the two series 1/𝑛 and 1/𝑛2 you have 𝛼 = 1.

• If 𝛼 > 1 you have frequently 𝑛√|𝑎𝑛| > 1 So |𝑎𝑛| > 1, contrary to the necessary
criterion.

Theorem 7.c.2 (Ratio test). Assume that 𝑎𝑛 ≠ 0. Let 𝛼 = lim sup𝑛→∞
|𝑎𝑛+1|

|𝑎𝑛|
then [21C]
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• if 𝛼 < 1 the series ∑∞
𝑛=1 𝑎𝑛 converges absolutely;

• if 𝛼 ≥ 1 nothing can be concluded.

Proof. • If 𝛼 < 1, taken 𝐿 ∈ (𝛼, 1) you have eventually |𝑎𝑛+1|
|𝑎𝑛|

< 𝐿 so there

is a 𝑁 for which |𝑎𝑛+1|
|𝑎𝑛|

< 𝐿 for each 𝑛 ≥ 𝑁, by induction it is shown that

|𝑎𝑛| ≤ 𝐿𝑛−𝑁 |𝑎𝑁 | and ends by comparison with the geometric series.
• Let’s see some examples. For the two series 1/𝑛 and 1/𝑛2 you have 𝛼 = 1.
Defining

𝑎𝑛 = {2−𝑛 𝑛 even
22−𝑛 𝑛 odd

(7.c.3)

we obtain a convergent series but for which 𝛼 = 2.

Remark 7.c.4. If the ratio test 7.c.2 can be applied, we have seen in the demonstration [0F1]

that, for a 𝐿 < 1, there is a 𝑁 for which |𝑎𝑛| ≤ 𝐿𝑛−𝑁𝑎𝑁 for every 𝑛 ≥ 𝑁, and therefore
lim sup𝑛→∞

𝑛√|𝑎𝑛| ≤ 𝐿 < 1, that is the root test 7.c.5 holds.
Theorem 7.c.5. If (𝑎𝑛)𝑛 ⊂ ℝ has positive terms and is monotonic (weakly) decreas- [21D]

ing, the series converges if and only if the series
∞
∑
𝑛=1

2𝑛𝑎2𝑛

converges.

Proof. Since the sequence (𝑎𝑛)𝑛 is decreasing, then for ℎ ∈ ℕ

2ℎ𝑎2(ℎ+1) ≤
2(ℎ+1)

∑
𝑘=2ℎ+1

𝑎𝑘 ≤ 2ℎ𝑎2ℎ . (7.c.6)

We note now that
𝑁
∑
ℎ=0

2(ℎ+1)

∑
𝑘=2ℎ+1

𝑎𝑘 =
2𝑁+1

∑
𝑛=2

𝑎𝑛

and therefore

∞
∑
ℎ=0

2(ℎ+1)

∑
𝑘=2ℎ+1

𝑎𝑘 = lim
𝑁→∞

𝑁
∑
ℎ=0

2(ℎ+1)

∑
𝑘=2ℎ+1

𝑎𝑘 = lim
𝑁→∞

2(𝑁+1)

∑
𝑛=2

𝑎𝑛=
∞
∑
𝑛=2

𝑎𝑛 .

so we can add the terms in (7.c.6) to get
∞
∑
ℎ=0

2ℎ𝑎2(ℎ+1) ≤
∞
∑
𝑛=2

𝑎𝑛 ≤
∞
∑
ℎ=0

2ℎ𝑎2ℎ

where the term on the right is finite if and only if the one on the left is finite, because
∞
∑
ℎ=0

2ℎ𝑎2ℎ = 𝑎1 + 2
∞
∑
ℎ=0

2ℎ𝑎2(ℎ+1) ∶

the proof ends by the comparison theorem
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§7.c Series

The Dirichlet criteria implies the Liebniz “alternating series test” criteria.

Theorem 7.c.7 (Dirichlet criterion). Let {𝑎𝑛} and {𝑏𝑛} be two sequences. If 𝑏𝑛 tends [21F]

monotonically to 0 and if the series of partial sums of 𝑎𝑛 is bounded, i.e. if

𝑏𝑛 ≥ 𝑏𝑛+1 > 0 , lim
𝑛→∞

𝑏𝑛 = 0 , ∃𝑀 > 0, ∀𝑁 ∈ ℕ ,
||||

𝑁
∑
𝑛=1

𝑎𝑛
||||

< 𝑀 ,

then the series
+∞
∑
𝑛=1

𝑎𝑛𝑏𝑛

is convergent.
The proof is left as an exercise (Hint: use 7.a.19)
Hidden solution: [UNACCESSIBLE UUID '21G']

In particular, if we set 𝑎𝑛 = (−1)𝑛 we prove the existence of the limit in Leibniz
test.

Theorem 7.c.8 (Alternating series test, or Leibniz test). Let 𝑏𝑛 be a sequence for [238]

which
𝑏𝑛 ≥ 𝑏𝑛+1 > 0 , lim

𝑛→∞
𝑏𝑛 = 0 ,

then the series
+∞
∑
𝑛=0

(−1)𝑛𝑏𝑛

is convergent; also, called ℓ the value of the series, letting

𝐵𝑁 =
𝑁
∑
𝑛=0

(−1)𝑛𝑏𝑛

the partial sums, we have that the sequence 𝐵2𝑁 is decreasing , the sequence 𝐵2𝑁+1 is
increasing, and both converge to ℓ.

Theorem 7.c.9. Consider the series ∑∞
𝑛=1 𝑎𝑛 where the terms are positive: 𝑎𝑛 > 0. [0DR]

(Solved on
2022-12-13)

Define

𝑧𝑛 = 𝑛 ( 𝑎𝑛
𝑎𝑛+1

− 1)

for convenience.

• If 𝑧𝑛 ≤ 1 eventually in 𝑛, then the series does not converge.

• If there exists 𝐿 > 1 such that 𝑧𝑛 ≥ 𝐿 eventually in 𝑛, i.e. equivalently if

lim inf
𝑛→∞

𝑧𝑛 > 1 ,

then the series converges.

In addition, fixed ℎ ∈ ℤ, we can define

𝑧𝑛 = (𝑛 + ℎ) ( 𝑎𝑛
𝑎𝑛+1

− 1)
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or
𝑧𝑛 = 𝑛 ( 𝑎𝑛+ℎ

𝑎𝑛+ℎ+1
− 1)

such as
𝑧𝑛 = 𝑛 ( 𝑎𝑛−1

𝑎𝑛
− 1)

and the criterion applies in the same way. Hidden solution: [UNACCESSIBLE UUID '0DS']

§7.c.b Exercises

Exercises

E7.c.10 Let 𝛼 > 0; use Raabe’s criterion 7.c.9 to study the convergence of the series [214]
(Solved on
2022-12-13)∞

∑
𝑛=1

1
𝑛𝛼

Hidden solution: [UNACCESSIBLE UUID '215']

E7.c.11 Let 𝛼 > 0; use the condensation criterion 7.c.5 to study the convergence of [23D]
(Solved on
2022-12-13)

the series
∞
∑
𝑛=1

1
𝑛𝛼

E7.c.12 Given a series ∑∞
𝑛 𝑎𝑛 tell if the following conditions are necessary and/or [0DW]

sufficient for convergence.

∀𝜀 > 0 ∃𝑚 ∈ ℕ ∀𝑛 > 𝑚 ∀𝑘 ∈ ℕ
||||

𝑛+𝑘
∑
𝑗=𝑛

𝑎𝑘
||||

< 𝜀 (7.c.13)

∀𝜀 > 0 ∀𝑘 ∈ ℕ ∃𝑚 ∈ ℕ ∀𝑛 > 𝑚
||||

𝑛+𝑘
∑
𝑗=𝑛

𝑎𝑘
||||

< 𝜀 (7.c.14)

∀𝜀 > 0 ∃𝑚 ∈ ℕ ∀𝑛 > 𝑚∀𝑘 ∈ ℕ
𝑛+𝑘
∑
𝑗=𝑛

|𝑎𝑘| < 𝜀 (7.c.15)

∀𝜀 > 0 ∀𝑘 ∈ ℕ ∃𝑚 ∈ ℕ ∀𝑛 > 𝑚
𝑛+𝑘
∑
𝑗=𝑛

|𝑎𝑘| < 𝜀 (7.c.16)

Hidden solution: [UNACCESSIBLE UUID '0DX']

E7.c.17 Find two sequences (𝑎𝑛)𝑛, (𝑏𝑛)𝑛 with 𝑎𝑛, 𝑏𝑛 > 0 such that ∑∞
𝑛=0(−1)𝑛𝑎𝑛 [0DY]

(Proposed on
2022-12-13)is convergent, ∑∞

𝑛=0(−1)𝑛𝑏𝑛 is non-convergent, and lim𝑛→∞ 𝑎𝑛/𝑏𝑛 = 1. Hidden
solution: [UNACCESSIBLE UUID '0DZ']

E7.c.18 Note:Exam of 9th APr 2011.Let (𝑎𝑛) be a sequence of real numbers (not necessarily [0F0]

positive) such that the series ∑∞
𝑛=1 𝑎𝑛 converges to 𝑎 ∈ ℝ; let 𝑏𝑛 = 𝑎1+⋯+𝑎𝑛

𝑛
; show

that if the series ∑∞
𝑛=1 𝑏𝑛 converges then 𝑎 = 0.
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E7.c.19 Find two examples of 𝑎𝑖,𝑗 ∶ ℕ × ℕ → ℝ [0F2]
(Proposed on
2022-12)• such that, for each 𝑖, ∑𝑗 𝑎𝑖,𝑗 = 0, while for each 𝑗, ∑𝑖 𝑎𝑖,𝑗 = ∞;

• such that, for each 𝑖, ∑𝑗 𝑎𝑖,𝑗 = 0, while for each 𝑗, ∑𝑖 𝑎𝑖,𝑗 = 1.

Can you find examples where moreover we have that |𝑎𝑖,𝑗 | ≤ 1 for every 𝑖, 𝑗?

E7.c.20 Note:Written exam of 4th Apr 2009, exee 1. Given a sequence (𝑎𝑛)𝑛 of strictly positive [0F4]
(Proposed on
2022-12-13)

numbers, it is said that the infinite product ∏∞
𝑛=0 𝑎𝑛 converges if there exists finite

and strictly positive the limit of partial products, i.e.

lim
𝑁→+∞

𝑁
∏
𝑛=0

𝑎𝑛 ∈ (0, +∞) .

Prove that

1. if ∏∞
𝑛=0 𝑎𝑛 converges then lim𝑛→+∞ 𝑎𝑛 = 1;

2. if the series ∑∞
𝑛=0 |𝑎𝑛 − 1| converges, then it also converges ∏∞

𝑛=0 𝑎𝑛;

3. find an example where the series ∑∞
𝑛=0(𝑎𝑛 − 1) converges but ∏∞

𝑛=0 𝑎𝑛 = 0.

E7.c.21 We indicate with 𝒫𝔣(ℕ) the set of subsets 𝐵 ⊆ ℕ which are finite sets. This is [0F5]

said the set of finite parts.
We abbreviate 𝒫 = 𝒫𝔣(ℕ) in the following.
Given a sequence (𝑎𝑛)𝑛 of real numbers and a 𝐵 ∈ 𝒫 we indicate with 𝑠(𝐵) =
∑𝑛∈𝐵 𝑎𝑛 the finite sum with indices in 𝐵.
Suppose the series ∑∞

𝑛=0 𝑎𝑛 converge but not converge at all. Then:

• {𝑠(𝐹) ∶ 𝐹 ∈ 𝒫} it is dense in ℝ.
• There is a reordering 𝜎 of ℕ, that is, a bijective function 𝜎 ∶ ℕ → ℕ, such that
all partial sums ∑𝑁

𝑛=0 𝑎𝜎(𝑛) (at the variation of 𝑁) is dense in ℝ.

E7.c.22 Note:This result is attributed to Riemann , see 3.54 in [22].. [0F7]

Let be given a sequence (𝑎𝑛)𝑛 of real numbers such that ∑∞
𝑛=0 𝑎𝑛 converges (to a

finite value) but ∑∞
𝑛=0 |𝑎𝑛| = ∞; for each 𝑙, 𝐿 with −∞ ≤ 𝑙 ≤ 𝐿 ≤ +∞ there is a

permutation 𝜋 ∶ ℕ → ℕ such that, defining 𝑆𝑁 = ∑𝑁
𝑘=0 𝑎𝜋(𝑘), we have that

lim sup
𝑁→∞

𝑆𝑁 = 𝐿 , lim inf
𝑁→∞

𝑆𝑁 = 𝑙 .

E7.c.23 A sequence is given (𝑎𝑛)𝑛∈ℕ of positive real numbers such that lim𝑛→∞ 𝑎𝑛 = [0F8]

0 and ∑∞
𝑛=0 𝑎𝑛 = ∞: prove that for every 𝑙 ∈ ℝ there is a sequence (𝜀𝑛)𝑛∈ℕ with

𝜀𝑛 ∈ {1, −1} for each n, such that
∞
∑
𝑛=0

(𝜀𝑛𝑎𝑛) = 𝑙 .

If instead∑∞
𝑛=0 𝑎𝑛 = 𝑆 < ∞, what can be said about the set𝐸 of the sums∑∞

𝑛=0(𝜀𝑛𝑎𝑛) =
𝑙, for all possible choices of (𝜀𝑛)𝑛∈ℕ with 𝜀𝑛 ∈ {1, −1} for every n?
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• Analyze cases where 𝑎𝑛 = 2−𝑛 or 𝑎𝑛 = 3−𝑛

• Show that 𝐸 is always closed.
• Under what assumptions do you have that 𝐸 = [−𝑆, 𝑆]?

Hint. Let ̃𝐸 be the set of sums ∑𝑛(𝜀𝑛𝑎𝑛) = 𝑙, to vary by (𝜀𝑛)𝑛∈ℕ with 𝜀𝑛 ∈ {0, 1} for
each n; note that ̃𝐸 = {(𝑆 + 𝑥)/2 ∶ 𝑥 ∈ 𝐸}.

E7.c.24 Note:Written exam of 12th Jan 2019. [0F9]

Show that the following series converges

∞
∑
𝑛=1

( 1 ⋅ 4 ⋅ 7 ⋅ 10 ⋯ (3𝑛 − 2)
3 ⋅ 6 ⋅ 9 ⋅ 12 ⋯ (3𝑛) )

2

Hidden solution: [UNACCESSIBLE UUID '0FB']

E7.c.25 Say for which 𝛼 > 0, 𝛽 > 0, 𝛾 > 0 you have that [21M]
(Proposed on
2022-12)∞

∑
𝑛=4

1
𝑛𝛼 (log𝑛)𝛽 (log(log𝑛))𝛾

converges.

E7.c.26 Note:Written exam 29th January 2021.Let it be 𝛼 > 0. Say (justifying) for which 𝛼 the [23F]
(Proposed on
2022-12-13)

following series converge or diverge

•
∞
∑
𝑛=1

(4√𝑛8 + 𝑛𝛼 − 𝑛2)

•
∞
∑
𝑛=2

( 1
𝑛𝛼 − 1

𝑛𝛼 + 1 )

•
∞
∑
𝑛=2

1
(log2 𝑛)𝛼 log2(𝑛)

where the logarithms are in base 2.

Hidden solution: [UNACCESSIBLE UUID '23G']

E7.c.27 Note:Task of 26 Jan 2016. [20Z]
(Solved on
2022-01-20)Let

𝑧𝑛 = 1 ⋅ 3 ⋅ 5 ⋅ 7 ⋯ (2𝑛 − 1)
2 ⋅ 4 ⋅ 6 ⋅ 8 ⋯ (2𝑛) ;

Show that lim𝑛→∞ 𝑧𝑛 = 0 but
∞
∑
𝑛=1

𝑧𝑛 = ∞ .

Hidden solution: [UNACCESSIBLE UUID '213']
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§7.d Generalized sequences, or “nets’

E7.c.28 Note:exercise 2, written exam 15 January 2014. Let (𝑎𝑛)𝑛≥0 be a sequence of positive real [210]

numbers. Having defined 𝑠𝑛 = ∑𝑛
𝑖=0 𝑎𝑖 prove that:

• the series ∑∞
𝑛=0 𝑎𝑛 converges if and only if the series ∑∞

𝑛=0 𝑎𝑛/𝑠𝑛 converges;

• the series ∑∞
𝑛=0 𝑎𝑛/(𝑠𝑛)2 converges.

Hidden solution: [UNACCESSIBLE UUID '21K']

See also exercise 24.1.

§7.c.c Cauchy product

Definition 7.c.29. Give two sequences (𝑎𝑛)𝑛 and (𝑏𝑛)𝑛 to real or complex values, [0FH]

their Cauchy product is the sequence (𝑐𝑛)𝑛 given by

𝑐𝑛
def=

𝑛
∑
𝑘=0

𝑎𝑘𝑏𝑛−𝑘 .

Exercises

E7.c.30 If ∀𝑛 ∈ ℕ, 𝑎𝑛, 𝑏𝑛 ≥ 0 show that [0FJ]

∞
∑
𝑛=0

𝑐𝑛 =
∞
∑
𝑛=0

𝑎𝑛

∞
∑
𝑛=0

𝑏𝑛

with the convention that 0 ⋅ ∞ = 0.

E7.c.31 If the series ∑∞
𝑛=0 𝑎𝑛 and ∑∞

𝑛=0 𝑏𝑛 converge absolutely, show that the series [0FK]
(Proposed on
2022-12-13)∑∞

𝑛=0 𝑐𝑛 converges absolutely and

∞
∑
𝑛=0

𝑐𝑛 =
∞
∑
𝑛=0

𝑎𝑛

∞
∑
𝑛=0

𝑏𝑛 .

E7.c.32 Prerequisites:7.a.18.Note:Known as: Mertens’ theorem.. [0FM]

If the series ∑∞
𝑛=0 𝑎𝑛 converges absolutely and ∑∞

𝑛=0 𝑏𝑛 converges, show that the
series ∑∞

𝑛=0 𝑐𝑛 converges and

∞
∑
𝑛=0

𝑐𝑛 =
∞
∑
𝑛=0

𝑎𝑛

∞
∑
𝑛=0

𝑏𝑛 .

Hidden solution: [UNACCESSIBLE UUID '0FN']

E7.c.33 Discuss the Cauchy product of the series ∑∞
𝑛=0

(−1)𝑛

√𝑛+1
with itself. Hidden so- [0FP]

lution: [UNACCESSIBLE UUID '0FQ']

See also exercise 19.a.1.
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§7 SEQUENCES AND SERIES

§7.d Generalized sequences, or “nets’ [29X]

Definition 7.d.1. Let in the following (𝐽, ≤) be an ordered set with the filtering prop- [21J]

erty
∀𝑥, 𝑦 ∈ 𝐽 ∃𝑧 ∈ 𝐽, 𝑥 < 𝑧 ∧ 𝑦 < 𝑧 (7.d.2)

(See section §3.d.a).
A function 𝑓 ∶ 𝐽 → 𝑋 is called net.
This 𝑓 is a generalization of the concept of sequence; indeed the set 𝐽 = ℕ with its

usual ordering has the filtering property

In this Section we will concentrate on the case 𝑋 = ℝ.

Remark 7.d.3. Note that this definition differs from the one generally used; see [42] [2B3]

or [14]; but it is equivalent for all practical purposes, as explained in 3.d.32, 7.d.12,
8.15.

Definition 7.d.4. Prerequisites:3.d.24, 3.d.28, Sec. §3.d.a. [0FR]

Given 𝐽 a (possibly partially) ordered and filtering set, and given 𝑓 ∶ 𝐽 → ℝ, we
want to define the concept of limit of 𝑓(𝑗) ”for 𝑗 → ∞”. †53.

• We will say that
lim
𝑗∈𝐽

𝑓(𝑗) = 𝑙 ∈ ℝ

if
∀𝜀 > 0 ∃𝑘 ∈ 𝐽 ∀𝑗 ∈ 𝐽, 𝑗 ≥ 𝑘 ⇒ |𝑙 − 𝑓(𝑗)| < 𝜀 .

Similarly limits are defined 𝑙 = ±∞ (imitating the definitions used when 𝐽 = ℕ.)
(This is the definition in the course notes, chap. 4 sect. 2 in [2])

• Equivalently we can say that

lim
𝑗∈𝐽

𝑓(𝑗) = 𝑙 ∈ ℝ

if for every neighborhood 𝑈 of 𝑙 we have that 𝑓(𝑗) ∈ 𝑈 eventually for 𝑗 ∈ 𝐽;
where eventually has been defined in 3.d.28.

• We recall from 3.d.21 that ”a neighborhood of ∞ in 𝐽” is a subset 𝑈 ⊆ 𝐽 such
that ∃𝑘 ∈ 𝐽∀𝑗 ∈ 𝐽, 𝑗 ≥ 𝑘 ⇒ 𝑗 ∈ 𝑈 . Then we can imitate the definition 6.d.1.

Fixed 𝑙 ∈ ℝ we have lim𝑗∈𝐽 𝑓(𝑗) = 𝑙 when for every ”full” neighborhood 𝑉 of 𝑙
in ℝ, there exists a neighborhood 𝑈 of ∞ in 𝐽 such that 𝑓(𝑈) ⊆ 𝑉 .

In particular, this last definition can be used to define the limits of 𝑓 ∶ 𝐽 → 𝐸 where 𝐸
is a topological space.

Definition 7.d.5. Having fixed (𝑎𝑛)𝑛∈ℕ a real sequence, (𝑎𝑛𝑘 )𝑘∈ℕ is a subsequence [230]

when 𝑛𝑘 is a strictly increasing sequence of natural numbers.
Similarly having fixed 𝑓 ∶ 𝐽 → ℝ, let 𝐻 ⊆ 𝐽 be a cofinal subset (as defined in

3.d.18): We know from 3.d.25 that 𝐻 is filtering. Then the restriction ℎ = 𝑓
𝐻
is a net

ℎ ∶ 𝐻 → ℝ, and is called ”a subnet of 𝑓”.
†53Note that ∞ is a symbol but it is not an element of 𝐽 : if it were it should be the maximum, but a filtering

set cannot have maximum, cf 3.d.24
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§7.e Generalized series

More in general, suppose that (𝐻, ≤𝐻) is cofinal in (𝐽, ≤) by means of a map 𝑖 ∶
𝐻 → 𝐽; this means (adapting (3.d.20)) that

(∀ℎ1, ℎ2 ∈ 𝐻, ℎ1 ≤𝐻 ℎ2 ⇒ 𝑖(ℎ1) ≤ 𝑖(ℎ2)) ∧ (∀𝑗 ∈ 𝐽 ∃ℎ ∈ 𝐻, 𝑖(ℎ) ≥ 𝑗) ; (7.d.6)

then ℎ = 𝑓 ∘ 𝑖 is a subnet.

Exercises

E7.d.7 Prove that the assertions in 7.d.4 are equivalent. [22Z]

E7.d.8 Prerequisites:7.d.4,7.d.1,3.d.26.Show that if the limit lim𝑗∈𝐽 𝑓(𝑗) exists, then it [0FS]

is unique.

E7.d.9 Suppose 𝑓 is monotonic, show that lim𝑗∈𝐽 𝑓(𝑗) exists (possibly infinite) and [0FT]

coincides with sup𝐽 𝑓 (if it is increasing) or with inf𝐽 𝑓 (if it is decreasing).
Infer that

lim sup
𝑗∈𝐽

𝑓(𝑗) def= lim
𝑗∈𝐽

sup
𝑘≥𝑗

𝑓(𝑘)

lim inf
𝑗∈𝐽

𝑓(𝑗) def= lim
𝑗∈𝐽

inf
𝑘≥𝑗

𝑓(𝑘)

are always well defined.

E7.d.10 Show that the limit exists lim𝑗∈𝐽 𝑓(𝑗) = ℓ ∈ ℝ if and only if [0FV]

lim sup
𝑗∈𝐽

𝑓(𝑗) = lim inf
𝑗∈𝐽

𝑓(𝑗) = ℓ .

E7.d.11 Prerequisites:3.d.13,3.d.25,7.d.4,7.d.1,3.d.27.Suppose 𝐻 ⊆ 𝐽 is cofinal and let [22Y]

ℎ = 𝑓
𝐻
be the subnet (as defined in 7.d.5);

Suppose that lim𝑗∈𝐽 𝑓(𝑗) = 𝑙 ∈ ℝ show that lim𝑗∈𝐻 ℎ(𝑗) = 𝑙.
Similarly if (𝐻, ≤𝐻) is cofinal in (𝐽, ≤) by means of a map 𝑖 ∶ 𝐻 → 𝐽, and ℎ = 𝑓 ∘ 𝑖.

Remark 7.d.12. Suppose that the set 𝐽 is directed but not filtering; then by 3.d.24 it [237]

admits a maximum element that we call ∞; the above definitions and properties can
also be stated in this case, but they are trivial, since

lim
𝑗∈𝐽

𝑓(𝑗) = lim inf
𝑗∈𝐽

𝑓(𝑗) = lim sup
𝑗∈𝐽

𝑓(𝑗) = 𝑓(∞) .

§7.e Generalized series
§7.e.a Generalized series with positive terms

Definition 7.e.1. Let 𝐼 be an infinite family of indices and let 𝑎𝑖 ∶ 𝐼 → [0, ∞] be a [0FW]

generalized sequence, we define the sum ∑𝑖∈𝐼 𝑎𝑖 as

∑
𝑖∈𝐼

𝑎𝑖 = sup { ∑
𝑖∈𝐾

𝑎𝑖 ∶ 𝐾 ∈ 𝒫𝔣(𝐼)}

where 𝒫𝔣(𝐼) is the set of finite subsets 𝐾 ⊆ 𝐼.
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§7 SEQUENCES AND SERIES

Exercises

E7.e.2 Prerequisites:3.l.1.Note:From the written exam of March 27, 2010..Say for which 𝛼 ∈ ℝ the [0FX]

series
∑

(𝑚,𝑛)∈ℕ2

1
(𝑛 + 𝑚 + 1)𝛼 .

converges. Then discuss, for 𝑁 ≥ 3, the convergence of

∑
(𝑚1,…𝑚𝑁 )∈ℕ𝑁

1
(1 + 𝑚1 + … + 𝑚𝑁)𝛼 .

Hidden solution: [UNACCESSIBLE UUID '0FY']

E7.e.3 Let 𝐼 be a family of indices, let 𝑎𝑖 be a sequence with 𝑎𝑖 ≥ 0; let moreover ℱ [0FZ]

be a partition of 𝐼 (not necessarily of finite cardinality); then prove that

∑
𝐹∈ℱ

∑
𝑖∈𝐹

𝑎𝑖 = ∑
𝑖∈𝐼

𝑎𝑖 .

E7.e.4 Difficulty:*. Let 𝐼 be a family of indices; let 𝑎𝑖,𝑗 ∶ 𝐼 ×ℕ → [0, ∞] a generalised [0G0]

succession, such that 𝑗 ↦ 𝑎𝑖,𝑗 is weakly increasing for every fixed 𝑖; prove that

∑
𝑖∈𝐼

lim
𝑗→∞

𝑎𝑖,𝑗 = lim
𝑗→∞

∑
𝑖∈𝐼

𝑎𝑖,𝑗 .

(This is a version of the well-known Monotone convergence theorem).
Hidden solution: [UNACCESSIBLE UUID '0G2']

E7.e.5 Extend the previous 7.e.4, replacing ℕ with a set of indexes 𝐽 endowed with [0G3]

filtering ordering ≤.

Copyright A. C. G. Mennucci
The sections comprising theory and exercises’ statements are released under License WP:CC BY-SA

101

https://coldoc.sns.it/UUID/EDB/0FX/
https://coldoc.sns.it/UUID/EDB/0FY
https://coldoc.sns.it/UUID/EDB/0FZ/
https://coldoc.sns.it/UUID/EDB/0G0/
https://coldoc.sns.it/UUID/EDB/0G2
https://coldoc.sns.it/UUID/EDB/0G3/
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License


§8 Topology [0G5]

Let 𝑋 be a fixed and non-empty set. We will use this notation. For each set 𝐴 ⊆ 𝑋 we
define that 𝐴𝑐 = 𝑋 ⧵ 𝐴 is the complement to A.

Definition 8.1. A topological space is a pair (𝑋, 𝜏) where 𝑋 is a non-empty set with [2DY]

associated the family 𝜏 of the open sets, which is called topology.

Definition 8.2. A topology 𝜏 ⊆ 𝒫(𝑋) is a family of subsets of 𝑋 that are called open [0G6]

sets. This family enjoys three properties: ∅, 𝑋 are open; the intersection of a finite
number of open sets is an open sets; the union of an arbitrary number of open sets is
an open set.

A set 𝐴 is closed if 𝐴𝑐 is open.

Definition 8.3. Let 𝐴, 𝐵 ⊆ 𝑋 be two subsets. [0G7]

1. The interior of 𝐴, denoted by 𝐴∘, is the union of all the open sets contained in 𝐴,
and therefore is the biggest open set contained in 𝐴;

2. the closure of𝐵, denoted by𝐵, is the intersection of all the closed sets that contain
𝐵, i.e. is the smallest closed that contains 𝐵.

3. We say that 𝐴 is dense in 𝐵 if 𝐴 ⊇ 𝐵.†54

4. The boundary 𝜕𝐴 of 𝐴 is 𝜕𝐴 = 𝐴 ⧵ 𝐴∘.

Definition 8.4. A topological space (𝑋, 𝜏) is said to be 𝑇2, or ”Hausdorff space”, if [0G8]

∀𝑥, 𝑦 ∈ 𝑋 exist 𝑈, 𝑉 ∈ 𝜏 open disjoint with 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉 .

Definition 8.5. Any set 𝑋 can be endowed with many different topologies. Here are [2F6]

two simple examples:

• When a set 𝑋 is endowed with the discrete topology, then all sets are open, and
therefore closed. Equivalently, the discrete topology is caracterized by: every
singleton is an open set.

• When a set 𝑋 is endowed with the indiscrete topology, then the only open (and,
closed) sets are 𝑋, ∅.

Further informations on these subjects may be found in Chap. 2 of [22] or in [14].

Remark 8.6. A metric space is a special case of topological space, because the open [2DH]

subsets of the metric space satisfy the Definition 8.2; the associated topology is always
Hausdorff. The following results therefore also apply to metric spaces.

Exercises

E8.7 Show that if the space is 𝑇2 then every singleton {𝑥} is closed. [0G9]

E8.8 Show that if 𝐴 ⊆ 𝐵 then 𝐴 ⊆ 𝐵 and 𝐴∘ ⊆ 𝐵∘ [0GB]

E8.9 Show that if 𝐴 = 𝐵𝑐 then (𝐵)𝑐 = 𝐴∘, using the definitions 8.2 and 8.3. [0GC]

E8.10 Note that 𝐴 ⊇ 𝐴∘ and 𝐵 ⊆ 𝐵, generally. Show that 𝐴 is open if and only if [0GD]

𝐴 = 𝐴∘; and that 𝐵 is closed if and only if 𝐵 = 𝐵, using definitions 8.2 and 8.3.
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§8 TOPOLOGY

E8.11 Topics:interior. Given 𝑋 , a topological space, and 𝐴 ⊆ 𝑋 , show that [0GF]

𝐴∘ = (𝐴∘)∘ .
using the definition of 𝐴∘ given above.
(For the case of 𝑋 metric space, see also 10.b.16)
Hidden solution: [UNACCESSIBLE UUID '0GG']

E8.12 Topics:closing. Given 𝑋 topological space and 𝐴 ⊆ 𝑋 , show that [0GH]

𝐴 = (𝐴)

or by switching to complement with respect to 8.11, and using the definition of 𝐴
like ”intersection of all the locks they contain 𝐴”.
(For the case of 𝑋 metric space, see also 10.b.19)

E8.13 Topics:closure, interior. Let 𝑋 be a topological space and 𝐴 ⊆ 𝑋 open. [0GJ]

1. Show that 𝐴 ⊆ (𝐴)
∘
(the interior of the closure of 𝐴).

2. Find an example of an open set 𝐴 ⊂ ℝ for which 𝐴 ≠ (𝐴)
∘
.

3. Then formulate a similar statement for 𝐴 closed, transitioning on to the com-
plement.

Hidden solution: [UNACCESSIBLE UUID '0GK']

E8.14 Given the sets 𝐴, 𝐵 ⊆ ℝ, determine the relations between the following pairs of [0GM]

sets

𝐴 ∪ 𝐵 and 𝐴 ∪ 𝐵 ,
𝐴 ∩ 𝐵 and 𝐴 ∩ 𝐵 ,

(𝐴 ∪ 𝐵)∘ and 𝐴∘ ∪ 𝐵∘ ,
(𝐴 ∩ 𝐵)∘ and 𝐴∘ ∩ 𝐵∘ .

Hidden solution: [UNACCESSIBLE UUID '0GP']

E8.15 Prerequisites:3.d.15,3.d.13,3.d.24.Difficulty:*.(Replaces 29W) Let (𝑋, 𝜏) be a topo- [0GQ]

logical space. Consider the descending ordering between sets †55, with this ordering
𝜏 is a directed set; we note that it has minimum, given by ∅.
Now suppose the topology is Hausdorff. Then taken 𝑥 ∈ 𝐴, let𝒰 = {𝐴 ∈ 𝜏 ∶ 𝑥 ∈ 𝐴}
be the family of the open sets that contain 𝑥: show that 𝒰 is a directed set; show that
it has minimum if and only if the singleton {𝑥} is open (and in this case the minimum
is {𝑥}). †56
Hidden solution: [UNACCESSIBLE UUID '0GR']

By the exercise 3.d.24, when {𝑥} is not open then 𝒰 is a filtering set, and therefore
can be used as a family of indices to define a nontrivial ”limit” (see Remark 7.d.12).
We will see applications in section §8.g.

†54Often when you say ”𝐴 is dense in 𝐵” it happens that 𝐵 is closed and 𝐴 ⊆ 𝐵: in this case “dense” is
just 𝐴 = 𝐵.
†55To formally reconnect to the definition seen in 3.d.15 we define 𝐴 ⪯ 𝐵 ⟺ 𝐴 ⊇ 𝐵 and associate the

ordering ⪯ with 𝜏.
†56Note that, the singleton {𝑥} is open iff 𝑥 is an isolated point.
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§8.a Neighbourhood; adherent, isolated and accumulation point

E8.16 Note:Written exam of 25 March 2017.Let (𝑋, 𝜏), (𝑌, 𝜃) be two topological spaces with non- [0GS]

empty intersection and assume that the topologies restricted to 𝐶 = 𝑋 ∩ 𝑌 coincide
(i.e. 𝜏|𝐶 = 𝜃|𝐶) †57 and that 𝐶 is open in both topologies (i.e. 𝐶 ∈ 𝜏, 𝐶 ∈ 𝜃). Prove
that there is only one topology 𝜎 on 𝑍 = 𝑋 ∪ 𝑌 such that 𝜎|𝑋 = 𝜏 and 𝜎|𝑌 = 𝜃 and
that 𝑋, 𝑌 ∈ 𝜎. Hidden solution: [UNACCESSIBLE UUID '0GT'][UNACCESSIBLE UUID '0GV']

§8.a Neighbourhood, adherent point, isolated point, accumulation
point [29V]

Definition 8.a.1 (Neighbourhoods). †58 Let (𝑋, 𝜏) be a topological space and let 𝑥0 ∈ [0GW]

𝑋 .

• We denote as neighbourhood of 𝑥0 any superset of an open set containing 𝑥0 .

• We call fundamental system of neighbourhoods of 𝑥0 a family {𝑈𝑖}𝑖∈𝐼 of neigh-
borhoods 𝑥0 with the property that each neighborhood of 𝑥0 contains at least
one of the 𝑈𝑖 .

We will say that 𝑈 is an open neighborhood of 𝑥0 simply to say that 𝑈 is an open set
that contains 𝑥0.

Definition 8.a.2. Let 𝐸, 𝐹 ⊆ 𝑋 be sets: [0GX]

• a point 𝑥0 ∈ 𝑋 is an adherent point of 𝐸 if every neighborhood 𝑈 of 𝑥0 has
non-empty intersection with 𝐸;

• a point 𝑥0 ∈ 𝐸 is isolated in 𝐸 if there exists a neighborhood 𝑈 of 𝑥0 such that
𝐸 ∩ 𝑈 = {𝑥0};

(Note that, in some cases, sets can have at most a countable number of isolated
points: see 10.g.7 and 8.i.3, and also 10.g.8).

We also define this concept (already seen in 6.b.1 for the case 𝑋 = ℝ).

Definition 8.a.3 (accumulation point). Given 𝐴 ⊆ 𝑋 , a point 𝑥 ∈ 𝑋 is an accu- [0GY]

mulation point for 𝐴 if, for every neighborhood 𝑈 of 𝑥, 𝑈 ∩ 𝐴 ⧵ {𝑥} is not empty. †59

The set of all accumulation points of 𝐴 is called derived set and will be indicated
with 𝐷(𝐴).

In the literature accumulation point is also called ”limit point” (which can be con- [2BN]

fused with the definition 10.b.39); for this reason we will not use this wording. †60

Exercises

E8.a.4 Check that in the definitions 8.a.2 and 8.a.3 you can equivalently use, instead [0GZ]

of the neighborhoods 𝑈 of 𝑥0, the open neighborhoods 𝑈 of 𝑥0.

E8.a.5 Check that in the definitions 8.a.2 and 8.a.3 you can equivalently use neighbor- [0H0]

hoods 𝑈 of 𝑥0 chosen from a fixed fundamental system of neighborhoods.
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§8 TOPOLOGY

E8.a.6 Check that the set of points adhering to 𝐴 coincides with the closure of 𝐴. [0H1]

Hidden solution: [UNACCESSIBLE UUID '0H2']

E8.a.7 Prerequisites:8.a.6.Check that 𝐴 = 𝐴 ∪ 𝐷(𝐴). Hidden solution: [UNACCESSIBLE [0H3]

UUID '0H4']

E8.a.8 A point 𝑥 ∈ 𝑋 is an accumulation point for 𝑋 †61 if and only if the singleton [0H5]

{𝑥} is not open. Hidden solution: [UNACCESSIBLE UUID '0H6']

E8.a.9 Topics:boundary. Let 𝐴 ⊂ 𝑋 . Let’s remember the definition of boundary 𝜕𝐴 = [0H7]

𝐴 ⧵ 𝐴∘.Note that 𝜕𝐴 is closed: indeed setting 𝐵 = 𝐴𝑐 to be the complement, it is
easily verified that 𝜕𝐴 = 𝐴 ∩ 𝐵. In particular we showed that 𝜕𝐴 = 𝜕𝐵.
Show that the three sets 𝜕𝐴, 𝐴∘, 𝐵∘ are disjoint, and that their union is 𝑋; in particular,
show that the three sets are characterized by these three properties:

• Each neighborhood of 𝑥 intersects both 𝐴 and 𝐵;
• there exists a neighborhood 𝑥 contained in 𝐴;
• there exists a neighborhood 𝑥 contained in 𝐵.

(See also 10.b.26 for the case of metric spaces). Hidden solution: [UNACCESSIBLE UUID

'0H8']

E8.a.10 Topics:boundary.Difficulty:*. [0H9]

Given 𝑋 topological space and 𝐴 ⊆ 𝑋; if 𝐴 is open (or closed) the boundary 𝜕𝐴 has
empty interior; we have 𝜕𝐴 ⊇ 𝜕𝜕𝐴 with equality if 𝜕𝐴 has empty interior; in addition
𝜕𝜕𝐴 = 𝜕𝜕𝜕𝐴. Hidden solution: [UNACCESSIBLE UUID '0HB'][UNACCESSIBLE UUID '0HC']

E8.a.11 Prerequisites:8.a.7.If (𝑋, 𝜏) is a topological space and 𝐴 ⊂ 𝑋 has no isolated [0HD]

points, then also 𝐴 does not have isolated points. Hidden solution: [UNACCESSIBLE UUID

'0HF']

E8.a.12 Note:written exam, 12/1/2013.Let A be an open subset of 𝑋 . Prove that, for any subset [0HG]

B of 𝑋 , the following inclusion holds: 𝐴 ∩ 𝐵 ⊆ 𝐴 ∩ 𝐵. Show, by an example, that
the conclusion does not hold if you remove the assumption that A is open. Hidden
solution: [UNACCESSIBLE UUID '0HH']

E8.a.13 Given 𝐸 ⊆ 𝑋 , we distinguish the points 𝑥 ∈ 𝑋 in three distinct sets that are a [0HJ]

partition of 𝑋 .

• For every neighborhood𝑈 of𝑥,𝑈⧵{𝑥} intersects𝐸. These are the accumulation
points of 𝐸.

• 𝑥 ∈ 𝐸 and there is a neighborhood 𝑈 of 𝑥 such that 𝑈 ∩ 𝐸 = {𝑥}. These are
the isolated points in 𝐸.

• Now describe the third set of points

Hidden solution: [UNACCESSIBLE UUID '0HK']
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§8.b Examples

§8.b Examples [2BD]

Exercises

E8.b.1 Let’s consider on ℝ the family 𝜏+ = {(𝑎, +∞) ∶ 𝑎 ∈ ℝ} ∪ {∅, ℝ}. Show that [0HM]

it is a topology. Is it Hausdorff? Calculate closure, interior, boundary and derivative
of these sets:

{0} , {0, 1} , [0, 1] , (0, 1) ,
[0, ∞) , (−∞, 0] , (0, ∞) , (−∞, 0) .

Hidden solution: [UNACCESSIBLE UUID '0HN']

E8.b.2 Prerequisites:8.h.7,8.h.8.Let𝑋 = ℝ∪{+∞, −∞}, consider the familyℬ of parts [0HP]

of 𝑋 that contains

• open intervals (𝑎, 𝑏) with 𝑎, 𝑏 ∈ ℝ and 𝑎 < 𝑏,
• half-lines (𝑎, +∞] = (𝑎, +∞) ∪ {+∞} with 𝑎 ∈ ℝ,
• the half-lines [−∞, 𝑏) = (−∞, 𝑏) ∪ {−∞} with 𝑏 ∈ ℝ.

(Note the similarity of sets in the second and third points with the ”neighbourhoods
of infinity” seen in Sec. §6.a).
Show that ℬ satisfies the properties (a),(b) seen in 8.h.7. Let 𝜏 therefore be the
topology generated from this base. The topological space (𝑋, 𝜏) is called extended
line, often denoted ℝ.
This topological space is 𝑇2, it is compact (Exercise 8.d.6), and is homoemorphic
to the interval [0, 1]. It can be equipped with a distance that generates the topology
described above.
Hidden solution: [UNACCESSIBLE UUID '0HQ']

E8.b.3 Prerequisites:8.h.7,8.h.8.Let 𝑋 = ℝ ∪ {∞}, let’s consider the family ℬ of parts [0HR]

of 𝑋 comprised of

• the open intervals (𝑎, 𝑏) with 𝑎, 𝑏 ∈ ℝ and 𝑎 < 𝑏,
• the sets (𝑎, +∞) ∪ (−∞, 𝑏) ∪ {∞} with 𝑎, 𝑏 ∈ ℝ and 𝑎 < 𝑏.

Show that ℬ satisfies the properties (a),(b) seen in 8.h.7. Let 𝜏 therefore be the topol-
ogy generated by this base.The topological space (𝑋, 𝜏) is called one-point compact-
ified line. This topological space is 𝑇2 and it is compact (Exer. 8.d.7); it is homeo-
morphic to the circle (Exer. 10.o.8); therefore it can be equipped with a distance that
generates the topology described above.

E8.b.4 Topics:directed ordering.Prerequisites:3.d.15. [0HS]

†57Remember that 𝜏|𝐶 = {𝐵 ∩ 𝐶 ∶ 𝐵 ∈ 𝜏}.
†58Definition 5.6.4 in the notes [2]
†59We could call 𝑈 ⧵{𝑥} a ”deleted neighborhood”; so we are asking that the deleted neighborhood 𝑈 ⧵{𝑥}

has non-empty intersection with 𝐴; as we already did in 6.b.1.
†60See in this regard [34].
†61We are taking 𝐴 = 𝑋 in the definition 8.a.3.
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§8 TOPOLOGY

Let (𝐽, ≤) be a set with direct ordering. We decide that an ”open set” in 𝐽 is a set 𝐴
that contains a ”half-line” of the form {𝑘 ∈ 𝐽 ∶ 𝑘 ≥ 𝑗} (for a 𝑗 ∈ 𝐽) †62. Let therefore
𝜏 be the family of all such open sets, to which we add ∅, 𝐽. Show that 𝜏 is a topology.
Is this topology Hausdorff? What are the accumulation points?

E8.b.5 Topics:accumulation point, maximum, direct ordering.Prerequisites:3.d.15, 8.b.4. [0HT]

Find a simple example of a set (𝐽, ≤) with direct ordering that has maximum but,
when we associate to 𝐽 the topology 𝜏𝐽 of the previous example, (𝐽, 𝜏𝐽) has no accu-
mulation points.
Hidden solution: [UNACCESSIBLE UUID '0HV']

E8.b.6 Topics:direct ordering. Prerequisites:3.d.13, 3.d.15, 3.d.24. [0HW]

Let (𝐼, ≤) be a set with direct ordering and with a maximum that we call ∞. We call
𝐽 = 𝐼 ⧵ {∞} and assume that 𝐽 is filtering (with induced sorting) and non-empty. In
this case we propose a finer topology. The topology 𝜏 for 𝐼 contains:

• ∅, 𝐼;
• sets 𝐴 that contain a ”half-line” {𝑘 ∈ 𝐼 ∶ 𝑘 ≥ 𝑗}, for a 𝑗 < ∞, (these are called
“neighborhoods of ∞”);

• subsets of 𝐼 that do not contain ∞.

Show that 𝜏 is a topology. Is this topology Hausdorff? Show that ∞ is the only
accumulation point.
Hidden solution: [UNACCESSIBLE UUID '0HX']

The previous construction can be used in this way.

Remark 8.b.7. Let (𝐽, ≤) be a non-empty set with filtering order. We know from 3.d.24 [0HY]

that 𝐽 has no maximum. We extend (𝐽, ≤) by adding a point ”∞”: Let’s set 𝐼 = 𝐽 ∪ {∞}
and decide that 𝑥 ≤ ∞ for every 𝑥 ∈ 𝐽. It is easy to verify that (𝐼, ≤) is a direct order,
and obviously ∞ is the maximum 𝐼. †63 Let 𝜏 be the topology defined in 8.b.6. We know
that ∞ is an accumulation point. This topology can explain, in a topological sense, the
limit already defined in 7.d.4, and other examples that we will see in Sec. §8.g.

§8.c Generated topologies [2BJ]

Exercises

E8.c.1 Prerequisites:3.b.23.Let 𝑋 be a set and 𝒱 ⊆ 𝒫(𝑋) a family of parts of 𝑋; we [0J1]

define 𝜏 as the intersection of all topologies that contain 𝒱 i.e.

𝜏 def= ⋂{𝜎, 𝜎 ⊇ 𝒱, 𝜎 topology in 𝑋}

Show that 𝜏 is a topology.
𝜏 is the ”topology generated by 𝒱”; it is also called ”the smallest topology that
contains 𝒱”.

See also the exercises 8.h.8.
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§8.d Compactness

§8.d Compactness [2BF]

Definition 8.d.1. A subset 𝐾 ⊆ 𝑋 is compact †64 if, from every family of open sets [0J3]

(𝐴𝑖)𝑖∈𝐼 whose union ⋃𝑖∈𝐼 𝐴𝑖 covers 𝐾, we can choose a finite number 𝐽 ⊂ 𝐼 of open
set whose union ⋃𝑖∈𝐽 𝐴𝑖 covers 𝐾.

If you formulate these exercises in metric spaces, you can use the theorem 10.j.1 on
page 137 to deal with compact sets.

Exercises

E8.d.2 Suppose the topological space is compact. Show that every closed subset is [0J4]

compact.

E8.d.3 Suppose the topological space is 𝑇2 (see Definition 8.4). Prove that every com- [0J5]

pact subset is closed.

E8.d.4 Topics:compact sets.Prerequisites:8.d.3. Note:For the real case, see 6.c.13. For the case of [0J6]

metric spaces, see 10.j.11..

Let (𝑋, 𝜏) be a 𝑇2 topological space and let 𝐴𝑛 ⊆ 𝑋 be compact nonempty subsets
such that 𝐴𝑛+1 ⊆ 𝐴𝑛: then ⋂𝑛∈ℕ 𝐴𝑛 ≠ ∅.
What happens if the space is not 𝑇2? Hidden solution: [UNACCESSIBLE UUID '0J7']

E8.d.5 Prerequisites:8.d.3.Let (𝑋, 𝜏) and (𝑌 , 𝜎) be topological spaces, with 𝑋 compact [0J8]

and 𝑌 𝑇2. Let 𝑓 ∶ 𝑋 → 𝑌 be continuous and injective; show that 𝑓 is a homeomor-
phism between 𝑋 and its image 𝑓(𝑋).
Hidden solution: [UNACCESSIBLE UUID '0J9']

E8.d.6 Prerequisites:8.b.2.Show that the extended line (the topological space shown in [0JB]

8.b.2) is compact. Hidden solution: [UNACCESSIBLE UUID '0JC']

E8.d.7 Prerequisites:8.b.3.Show that the compacted line (the topological space shown [0JD]

in 8.b.3) is compact.

See also the exercise 8.f.7 for a characterization of compact sets by nets.

§8.e Connection [2BG]

Definition 8.e.1. Let (𝑋, 𝜏) be a topological space. Given 𝐴, 𝐵 ⊆ 𝑋 , to shorten the [2BR]

formulas we will use the (nonstandard) notation

• 𝐴i𝐵 to say that 𝐴, 𝐵 have non-empty intersection,

• 𝐴d𝐵 to say that they are disjointed, and

• n𝐴 to say that 𝐴 it is not empty.

we recall the definition of connectedness (Chap. 5 Sec. 11 of the notes [2] or, Chap. 2
in [22]).

• The space 𝑋 is disconnected if it is the disjoint union of two open non-empty sets.
†62We could call such a 𝐴 a neighborhood of infinity, as was already done in Sec. §6.a.
†63So (𝐼, ≤) is not a filtering order.
†64The definition shows that the empty set is compact. Some texts however explicitly exclude this case.
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• The space 𝑋 is connected if it is not disconnected. This may be rewritten in
different fashions, as for example

∀𝐴, 𝐵 ∈ 𝜏, (n𝐴 ∧ n𝐵 ∧ 𝑋 ⊆ 𝐴 ∪ 𝐵) ⇒ 𝐴i𝐵 .

• A non-empty subset 𝐸 ⊆ 𝑋is disconnected if it is disconnected with the induced
topology; that is, if 𝐸 is covered by the union of two open sets, each of which
intersects 𝐸, but which are disjointed in 𝐸; in symbols,

∃𝐴, 𝐵 ∈ 𝜏, 𝐸i𝐴 ∧ 𝐸i𝐵 ∧ 𝐸 ⊆ 𝐴 ∪ 𝐵 ∧ 𝐴 ∩ 𝐵 ∩ 𝐸 = ∅ . (8.e.2)

• Similarly a non-empty set 𝐸 ⊆ 𝑋 is connected if it is connected with the induced
topology. This may be written as

∀𝐴, 𝐵 ∈ 𝜏, (𝐸i𝐴 ∧ 𝐸i𝐵 ∧ 𝐸 ⊆ 𝐴 ∪ 𝐵) ⇒ 𝐴 ∩ 𝐵 ∩ 𝐸 ≠ ∅ . (8.e.3)

or equivalently

∀𝐴, 𝐵 ∈ 𝜏, (𝐸 ⊆ 𝐴 ∪ 𝐵 ∧ 𝐴 ∩ 𝐵 ∩ 𝐸 = ∅) ⇒ (𝐸 ⊆ 𝐴 ∨ 𝐸 ⊆ 𝐵) . (8.e.4)

Remark 8.e.5. It is customary to assume that the empty set is connected; this case, [2BS]

however, is of little interest, generally we will exclude it in the following exercises.

There are many equivalent ways of expressing the above definitions; we leave them
as (simple) exercises. This Lemma may also be useful.

Lemma 8.e.6. If 𝑌 ⊆ 𝑋 is connected and 𝑌 ⊆ 𝐸 ⊆ 𝑌 , then 𝐸 is connected. [2FY]

For the proof, See Teorema 5.11.6 in [2], or Theorem 20 in Cap. 1 in [14].

Exercises

E8.e.7 Show that the assertions (8.e.3),(8.e.4) in 8.e.1 are equivalent. Hidden solution: [2BT]

[UNACCESSIBLE UUID '2BV']

E8.e.8 The space 𝑋 is disconnected if and only if it is the disjoint union of two non- [0JF]

empty closed sets.

E8.e.9 A non-empty subset 𝐸 ⊆ 𝑋 is disconnected if 𝐸 is covered by the union of two [0JG]

closed sets, each of which intersects 𝐸, but which are disjoint inside 𝐸.

E8.e.10 Prerequisites:8.e.1.𝑋 is disconnected if and only if there exist non-empty sets [0JH]

𝐴, 𝐵 ⊆ 𝑋 whose union covers 𝑋 , but such that 𝐵d𝐴 and 𝐵d𝐴.
Hidden solution: [UNACCESSIBLE UUID '0JJ']

E8.e.11 Difficulty:*.Suppose 𝐸 ⊆ 𝑋 is disconnected, can we assume that [0JK]

∃𝐴, 𝐵 ∈ 𝜏, 𝐸i𝐴 ∧ 𝐸i𝐵 ∧ 𝐸 ⊆ 𝐴 ∪ 𝐵 ∧ 𝐴d𝐵 . (8.e.12)

that is, that there exist two disjoint open sets, each of which intersects 𝐸, and that 𝐸
is covered by their union?
Hidden solution: [UNACCESSIBLE UUID '0JM'][UNACCESSIBLE UUID '0JP'] See also 10.e.6.
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§8.f Nets

E8.e.13 Let (𝑋, 𝜏𝑋 ) be a topological space, 𝑌 ⊆ 𝑋 the topological space with the in- [2DK]

duced topology
𝜏𝑌 = {𝐴 ∩ 𝑌 ∶ 𝐴 ∈ 𝜏𝑋 } .

Fix 𝐸 ⊆ 𝑌 , consider these statements.

(cX) 𝐸 is a connected set in the topological space (𝑋, 𝜏𝑋 );
(cY) 𝐸 is a connected set in the topological space (𝑌, 𝜏𝑌 ).

Are the two statements equivalent?
Hidden solution: [UNACCESSIBLE UUID '113']

E8.e.14 Note:Proposition 5.11.2 notes [2]. [2BW]

A set𝐸 ⊆ 𝑋 is disconnected if and only there exists a continuous function 𝑓 ∶ 𝐸 → ℝ
that assumes exactly two values, for example 𝑓(𝐸) = {0, 1}.

E8.e.15 Note:Theorem 5.11.7 notes [2]. [0JQ]

Let 𝐼 be a family of indices. Show that if 𝐸𝑖 is a family of connected subsets of 𝑋
such that

∀𝑖, 𝑗 ∈ 𝐼 , 𝐸𝑖 ∩ 𝐸𝑗 ≠ ∅ ,
then 𝐸 = ⋃𝑖∈𝐼 𝐸𝑖 is connected.
Hidden solution: [UNACCESSIBLE UUID '0JR']

Definition 8.e.16. Given 𝑥 ∈ 𝑋 , we will say that the connected component of 𝑋 [0JT]

containing 𝑥 is the union of all the connected sets that contain 𝑥 (note that the singleton
{𝑥} is connected). The previous exercise 8.e.15 shows that the connected component is
connected.

Exercises

E8.e.17 Note:Section 5.11.2 in the text [2].Show that two connected components are either dis- [0JV]

joint or coincide. So the space 𝑋 is partitioned into connected components.
Hidden solution: [UNACCESSIBLE UUID '0JW']

E8.e.18 Let 𝐶 ⊆ 𝑋 be a closed set; let 𝐾 be a connected component of 𝐶: show that [0JY]

𝐾 is closed. Hidden solution: [UNACCESSIBLE UUID '0JZ']

E8.e.19 Find an example of a space (𝑋, 𝜏) where there is a connected component that [2FZ]

is not open. Hidden solution: [UNACCESSIBLE UUID '2G0']

E8.e.20 Let now (𝑋, 𝑑) be a metric space where open balls 𝐵(𝑥, 𝑟) are also closed. [0K0]

Show that the connected components of 𝑋 are all and only singletons {𝑥}.
(A space where connected sets are always singletons, is called totally disconnected).

Hidden solution: [UNACCESSIBLE UUID '0K1']

See also the exercises in Sec. §10.e.
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§8.f Nets [2B6]

Wewill use the concepts of direct order, filtering order and cofinal set already discussed
in Sec. §3.d.a. In the following (𝑌 , 𝜎) will be a Hausdorff topological space.

Definition 8.f.1. Let (𝑌, 𝜎) be a Hausdorff topological space. Let (𝐽, ≤) be a set with [0K4]

filtering order (defined in 3.d.13). Let 𝜑 ∶ 𝐽 → 𝑌 be a net (already met in Sec. §7.d).
We define that lim𝑗∈𝐽 𝜑(𝑥) = ℓ ∈ 𝑌 if and only if, for every neighborhood 𝑉 of ℓ

in 𝑌 you have that 𝜑(𝑗) ∈ 𝑉 eventually for 𝑗 ∈ 𝐽.

The definition of eventually is in 3.d.28, and it means that there exists 𝑘 ∈ 𝐽 such
that for every 𝑗 ≥ 𝑘 you have 𝜑(𝑗) ∈ 𝑉 .

The remark 7.d.3 holds in this case as well.

Definition 8.f.2. Given a net 𝑥 ∶ 𝐽 → 𝑌 , a point 𝑧 ∈ 𝑌 is said to be a limit point [2B4]

for 𝑥 if there is a subnet 𝑦 ∶ 𝐻 → 𝑌 such that lim𝑗∈𝐻 𝑦(𝑗) = 𝑧.
(Note that “subnet” is intended in the general sense presented at the end of 7.d.5,

where 𝑦 = 𝑥 ∘ 𝑖 by means of a map 𝑖 ∶ 𝐻 → 𝐽 satisfying (7.d.6)).

Exercises

E8.f.3 Prerequisites:3.d.24.Let 𝐽 be a directed but non-filtering set; then let 𝑚 ∈ 𝐽 be [0K5]

its maximum (which exists as seen in 3.d.24); if we define lim𝑗∈𝐽 𝜑(𝑥) as in 8.f.1,
show that the limit always exists and it is 𝜑(𝑚).

E8.f.4 Let (𝑌 , 𝜎) be a Hausdorff topological space and 𝐴 ⊆ 𝑌 . Show that 𝐴 coincides [0K6]

with the set of all possible limits of nets 𝜑 ∶ 𝐽 → 𝐴 (varying 𝐽 and then 𝜑).

E8.f.5 Let (𝑌 , 𝜎) be a Hausdorff topological space and 𝐴 ⊆ 𝑌 . Show that 𝑥 ∈ 𝑌 is [0K7]

an accumulation point for 𝐴 if and only if there is a 𝐽 filtering set and there is a net
𝜑 ∶ 𝐽 → 𝐴 ⧵ {𝑥} such that lim𝑗∈𝐽 𝜑(𝑥) = 𝑥.

E8.f.6 Prerequisites:3.d.18,7.d.5.Difficulty:**. [2B7]

Let (𝑌, 𝜎) be a Hausdorff topological space. Let 𝐽 be a filtering set and 𝑥 ∶ 𝐽 → 𝑌
be a net in 𝑌 . For every 𝛼 ∈ 𝐽 define 𝐸𝛼

def= {𝑥𝛽 ∶ 𝛽 ∈ 𝐽, 𝛽 ≥ 𝛼} and

𝐸 = ⋂
𝛼∈𝐽

𝐸𝛼

Prove that 𝐸 coincides with the set 𝐿 of limit points (defined in 8.f.2).
Hidden solution: [UNACCESSIBLE UUID '2FK']

E8.f.7 Prerequisites:3.d.18,7.d.5,8.f.6.Difficulty:**. [0K8]

Let (𝑌, 𝜎) be a Hausdorff topological space. Show that 𝑌 is compact if and only if
every net taking values in 𝑌 admits a converging subnet.
Hidden solution: [UNACCESSIBLE UUID '0K9']
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§8.g Continuity and limits

§8.g Continuity and limits [2B8]

Definition 8.g.1 (Limit). †65 Let (𝑋, 𝜏) and (𝑌 , 𝜎) be two topological spaces, with [0KB]

(𝑌 , 𝜎) Hausdorff. †66 Let 𝐸 ⊆ 𝑋 and 𝑓 ∶ 𝐸 → 𝑌 . Let also 𝑥0 be an accumulation point
of 𝐸 in 𝑋 . We define that lim𝑥→𝑥0 𝑓(𝑥) = ℓ ∈ 𝑌 if and only if, for every neighborhood
𝑉 of ℓ in 𝑌 , there exists 𝑈 neighbourhood of 𝑥0 in 𝑋 such that 𝑓(𝑈 ∩ 𝐸 ⧵ {𝑥0}) ⊆ 𝑉 .

Definition 8.g.2. Let (𝑋, 𝜏) and (𝑌 , 𝜎) be two topological spaces, with (𝑌 , 𝜎) Haus- [2B9]

dorff; let 𝑓 ∶ 𝑋 → 𝑌 be a function.
It is said that 𝑓 is continuous in 𝑥0 if lim𝑥→𝑥0 𝑓(𝑥) = 𝑓(𝑥0).
It is said that 𝑓 is continuous if (equivalently)

• if 𝑓 is continuous at every point, that is lim𝑥→𝑦 𝑓(𝑥) = 𝑓(𝑦) for every 𝑦 ∈ 𝑋 , or

• if 𝑓−1(𝐴) ∈ 𝜏 for each 𝐴 ∈ 𝜎.

(Thm. 5.7.4 in the notes [2].).
A continuous bijective function 𝑓 ∶ 𝑋 → 𝑌 such that the inverse function 𝑓−1 ∶

𝑌 → 𝑋 is again continuous, is called homeomorphism.

Exercises

E8.g.3 Consider this statement. [2BB]
(Proposed on
2022-12)«Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑥0 ∈ 𝑋 , then 𝑓 is continuous at 𝑥0 when, for every open set

𝐵 ⊆ 𝑌 with 𝑓(𝑥0) ∈ 𝐵, we have that 𝑓−1(𝐵) is open.»
This statement is incorrect.
Build an example of a function 𝑓 ∶ ℝ → ℝ that is continuous at 𝑥0 = 0 but such that,
for every 𝐽 = (𝑎, 𝑏) open non-empty bounded interval, 𝑓−1(𝐽) is not open. Hidden
solution: [UNACCESSIBLE UUID '2BC']

E8.g.4 Difficulty:*. [225]

Let 𝑌 be a topological space. We say that 𝑌 satisfies the property (P) with respect to
a topological space 𝑋 when it satisfies this condition: for every dense subset 𝐴 ⊆ 𝑋
and every pair of continuous functions 𝑓, 𝑔 ∶ 𝑋 → 𝑌 such that 𝑓(𝑎) = 𝑔(𝑎) for every
𝑎 ∈ 𝐴, necessarily there follows that 𝑓 = 𝑔.
Prove that 𝑌 is Hausdorff if and only if it satisfies the property (P) with respect to
any topological space 𝑋 .

E8.g.5 Prerequisites:8.b.7.Explain how Definition 8.f.1 can be seen as a special case of [0KC]

Definition 8.g.1. (Hint. proceed as in the note 8.b.7 and set 𝐸 = 𝐽, 𝑋 = 𝐼, 𝑥0 = ∞).

E8.g.6 Prerequisites:8.g.5.Let 𝑋, 𝑌 be topological Hausdorff space. Let 𝐸 ⊆ 𝑋 , let [0KD]

𝑓 ∶ 𝐸 → 𝑌 , and suppose that 𝑥0 is an accumulation point of 𝐸 in 𝑋 .

• If lim𝑥→𝑥0 𝑓(𝑥) = ℓ then, for each net 𝜑 ∶ 𝐽 → 𝑋 with lim𝑗∈𝐽 𝜑(𝑗) = 𝑥0 we
have lim𝑗∈𝐽 𝑓(𝜑(𝑗)) = ℓ.

†65Definition 5.7.2 in the notes [2].
†66To have uniqueness of the limit and therefore to give an unique meaning to lim𝑥→𝑥0 𝑓(𝑥) as an element

of 𝑌 .
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• Consider the filtering set 𝐽 given by the neighborhoods of 𝑥0; †67 consider nets
𝜑 ∶ 𝐽 → 𝑋 with the property that 𝜑(𝑈) ∈ 𝑈 ⧵ {𝑥0} for each 𝑈 ∈ 𝐽. We note
that lim𝑗∈𝐽 𝜑(𝑗) = 𝑥0.
If for each such net lim𝑗∈𝐽 𝑓(𝜑(𝑗)) = ℓ, then lim𝑥→𝑥0 𝑓(𝑥) = ℓ.

Hidden solution: [UNACCESSIBLE UUID '0KF']

E8.g.7 Prerequisites:8.f.3,8.g.5.Let 𝑋, 𝑌 be Hausdorff topological spaces. Let 𝑓 ∶ [0KG]

𝑋 → 𝑌 , 𝑥0 ∈ 𝑋 . The following are equivalent.

1. 𝑓 is continuous at 𝑥0;
2. for each net 𝜑 ∶ 𝐽 → 𝑋 such that

lim
𝑗∈𝐽

𝜑(𝑗) = 𝑥0

we have
lim
𝑗∈𝐽

𝑓(𝜑(𝑗)) = 𝑓(𝑥0) .

Hint, for proving that 2 implies 1. Suppose that 𝑥0 is an accumulation point. Consider
the filtering set 𝐽 given by the neighborhoods of 𝑥0; consider nets 𝜑 ∶ 𝐽 → 𝑋 with
the property that 𝜑(𝑈) ∈ 𝑈 for each 𝑈 ∈ 𝐽; note that lim𝑗∈𝐽 𝜑(𝑗) = 𝑥0.
Hidden solution: [UNACCESSIBLE UUID '0KH']

§8.h Bases [2B5]

Definition 8.h.1 (Base). Given a topological space (𝑋, 𝜏), a base †68 is a collection [0KK]

ℬ of open sets (i.e. ℬ ⊆ 𝜏) with the property that every element of 𝜏 is an union of
elements of ℬ.

For example, if 𝑋 is a metric space, then the family of all open balls is a base.

Exercises

E8.h.2 Let ℬ be a base for a topology 𝜏 on 𝑋; chosen an open set 𝐴 ∈ 𝜏, for every [0KM]

𝑥 ∈ 𝐴 we can choose a 𝐵𝑥 ∈ ℬ with 𝑥 ∈ 𝐵𝑥, and such that 𝐴 = ⋃𝑥∈𝐴 𝐵𝑥.
Hidden solution: [UNACCESSIBLE UUID '0KN'][UNACCESSIBLE UUID '0KP']

E8.h.3 Prerequisites:8.h.2.Let ℬ be a base for a topology 𝜏 on 𝑋 . Show that, given [0KQ]

𝑥 ∈ 𝑋 ,
{𝐵 ∈ ℬ ∶ 𝑥 ∈ 𝐵}

is a fundamental system of neighbourhoods for 𝑥 .

E8.h.4 Prerequisites:8.a.5, 8.h.3, 8.h.2.Let ℬ be a base for a topology 𝜏 on 𝑋 . Show [0KS]

that, for any given 𝐴 ⊆ 𝑋 ,

𝐴∘ = ⋃{𝐵 ∈ ℬ ∶ 𝐵 ⊆ 𝐴}

†67The fact that this is filtering was shown in 3.d.24, 8.15 and 8.a.8
†68Also known as basis. See [14] page 46, or Chapter 5 Section 6 Definition 5.6.4 in the notes [2], or [49]

for an introduction.
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while
𝐴 = {𝑥 ∈ 𝑋 ∶ ∀𝐵 ∈ ℬ, 𝑥 ∈ 𝐵 ⇒ 𝐵 ∩ 𝐴 ≠ ∅}

Hidden solution: [UNACCESSIBLE UUID '0KT']

E8.h.5 Prerequisites:8.h.2.Given 𝑋 , given a base 𝒞 for a topology 𝜎 on 𝑋 , and a base ℬ [0M7]

for a topology 𝛽 on𝑋 , we have that 𝜎 ⊇ 𝛽 if and only if for every 𝑥 ∈ 𝑋 and for every
𝐵 ∈ ℬ, 𝐵 ∋ 𝑥 there exists 𝐶 ∈ 𝒞, 𝐶 ∋ 𝑥, 𝐶 ⊆ 𝐵. Hidden solution: [UNACCESSIBLE

UUID '0M8']

E8.h.6 Prerequisites:8.c.1.Let 𝑋 = {1, 2, 3} and let ℬ = {{1, 2}, {2, 3}}; let 𝜏 be the [0KV]

smallest topology that contains ℬ, show that ℬ is not a base for 𝜏.
Hidden solution: [UNACCESSIBLE UUID '0KW']

It is therefore interesting to try to understand when a family ℬ can be the base for a
topology.

E8.h.7 Let ℬ be a base for a topology 𝜏 on 𝑋; then the following two properties apply. [0KX]

(a) ⋃ℬ = 𝑋 that is, the union of all the elements of the base is 𝑋 .
(b) Given 𝐵1, 𝐵2 ∈ ℬ for each 𝑥 ∈ 𝐵1 ∩ 𝐵2 there exists 𝐵3 ∈ ℬ such that 𝑥 ∈ 𝐵3 ⊆

𝐵1 ∩ 𝐵2.

Hidden solution: [UNACCESSIBLE UUID '0KY']

E8.h.8 Prerequisites:8.c.1,ZF:4.Conversely, let 𝑋 be a set and ℬ a family of subsets that [0KZ]

verify the previous properties (a),(b) seen in 8.h.7. Let 𝜎 the family of sets that are
obtained as a union of elements of ℬ, in symbols †69

𝜎 def= {⋃
𝑖∈𝐼

𝐴𝑖 ∶ 𝐼 family of indexes and 𝐴𝑖 ∈ ℬ∀𝑖 ∈ 𝐼} ;

it is meant that also ∅ ∈ 𝜎. Show that 𝜎 is a topology.
Hidden solution: [UNACCESSIBLE UUID '0M0']

E8.h.9 Prerequisites:Generated topology 8.c.1, 8.h.7, 8.h.8.Let’s resume 8.h.8. Let again [0M1]

𝑋 be a set and ℬ a family of subsets that satisfy the above properties (a),(b) seen in
8.h.7; suppose 𝜏 the smallest topology that contains ℬ. Prove that ℬ is a base for 𝜏.
Hidden solution: [UNACCESSIBLE UUID '0M2']

We can therefore say that a family that satisfies (a),(b) is a base for the topology it
generates. This answers the question posed in 8.h.6.

E8.h.10 Prerequisites:8.c.1,8.h.7,8.h.8. Let now 𝑋1, … 𝑋𝑛 be topological spaces with [0M3]

topologies, respectively, 𝜏1, … 𝜏𝑛; let 𝑋 = ∏𝑛
𝑖=1 𝑋𝑖 be the Cartesian product. We

apply the above results to define the product topology 𝜏: this can be described in
two equivalent ways.

†69 As already discussed in ZF:4, you could also use the more compact notation 𝜎 def= {⋃ℱ ∶ ℱ ⊆ ℬ}.
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§8 TOPOLOGY

• Union of all Cartesian products of open sets †70

𝜏 = { ⋃
𝑗∈𝐽

𝑛
∏
𝑖=1

𝐴𝑖,𝑗 ∶ 𝐴1,𝑗 ∈ 𝜏1, … 𝐴𝑛,𝑗 ∈ 𝜏𝑛∀𝑗 ∈ 𝐽, 𝐽

arbitrarily chosen sets of indexes} .

• 𝜏 is the smallest topology that contains Cartesian products of open sets.

Hidden solution: [UNACCESSIBLE UUID '0M4']

E8.h.11 Prerequisites:8.h.10,8.h.7,8.h.8.Let now 𝑋1, … 𝑋𝑛 be topological spaces with [0M5]

topologies 𝜏1, … 𝜏𝑛 respectively and suppose that ℬ1, ℬ2, … ℬ𝑛 are bases for these
spaces. Let 𝑋 = ∏𝑛

𝑖=1 𝑋𝑖 be the Cartesian product, and let

ℬ = {
𝑛

∏
𝑖=1

𝐴𝑖 ∶ 𝐴1 ∈ ℬ1, 𝐴2 ∈ ℬ2, … 𝐴𝑛 ∈ ℬ𝑛}

The family of all cartesian products of elements chosen from their respective bases.
Show that ℬ is a base for the product topology. (This exercise generalizes the previ-
ous 8.h.10, taking ℬ𝑖 = 𝜏𝑖).
Hidden solution: [UNACCESSIBLE UUID '0M6']

See also the exercise 10.b.33 for an application to the case of metric spaces.

E8.h.12 Prerequisites:8.h.10,8.h.11,8.h.5. Let, more in general, 𝐼 be a non-empty index [2F7]

set, and let (𝑋𝑖, 𝜏𝑖) be topological spaces, for 𝑖 ∈ 𝐼; let ℬ𝑖 be a base for 𝜏𝑖. (Note that
the choice ℬ𝑖 = 𝜏𝑖 is allowed.)
Let 𝑋 = ∏𝑖∈𝐼 𝑋𝑖 be the Cartesian product.
We define the product topology 𝜏 on 𝑋 , similarly to 8.h.10, but with a twist.
A base ℬ for 𝜏 is the family of all sets of the form 𝐴 = ∏𝑖∈𝐼 𝐴𝑖 where

∀𝑖 ∈ 𝐼, 𝐴𝑖 ∈ ℬ𝑖 ∨ 𝐴𝑖 = 𝑋𝑖 ,

and moreover 𝐴𝑖 = 𝑋𝑖 but for finitely many 𝑖.
Show that ℬ satisfies the requirements in 8.h.7, so it is a base for the topology 𝜏 that
it generates. Show that the product topology does not depend on the choice of the
bases ℬ𝑖. Hidden solution: [UNACCESSIBLE UUID '2F8']

E8.h.13 Prerequisites:3.d.15, 8.h.7. We verify that what is expressed in 8.15 also ap- [0M9]

plies to the ”base”. Let ℬ be a base for a topology 𝜏 on 𝑋; consider the descending
order between sets (formally 𝐴 ⪯ 𝐵 ⟺ 𝐴 ⊇ 𝐵); with this order (ℬ, ⪯) is a
directed set, whose minimum is ∅. Now suppose the topology is Hausdorff. Then
taken 𝑥 ∈ 𝑋 , let 𝒰 = {𝐴 ∈ ℬ ∶ 𝑥 ∈ 𝐴} be the family of elements of the base that
contain 𝑥: show that 𝒰 is a directed set. Show that it has minimum if and only if the
singleton {𝑥} is open. Hidden solution: [UNACCESSIBLE UUID '0MB']

E8.h.14 Consider a totally ordered set𝑋 (that has at least two elements), and the family [2F5]

†70As defined at the beginning of section 6, chapter 5, of the notes [2].

Copyright A. C. G. Mennucci
The sections comprising theory and exercises’ statements are released under License WP:CC BY-SA

115

https://coldoc.sns.it/UUID/EDB/0M4
https://coldoc.sns.it/UUID/EDB/0M5/
https://coldoc.sns.it/UUID/EDB/0M6
https://coldoc.sns.it/UUID/EDB/2F7/
https://coldoc.sns.it/UUID/EDB/2F8
https://coldoc.sns.it/UUID/EDB/0M9/
https://coldoc.sns.it/UUID/EDB/0MB
https://coldoc.sns.it/UUID/EDB/2F5/
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License


§8.i First- and second-countable spaces

ℱ of all open-ended intervals

(𝑥, ∞) def= {𝑧 ∈ 𝑋 ∶ 𝑥 < 𝑧} , (−∞, 𝑦) def= {𝑧 ∈ 𝑋 ∶ 𝑧 < 𝑦} ,

(𝑥, 𝑦) def= {𝑧 ∈ 𝑋 ∶ 𝑥 < 𝑧 < 𝑦} (8.h.15)

for all 𝑥, 𝑦 ∈ 𝑋 . (Cf. 3.d.45.) Prove that this is a base for a topology, i.e. that it
satisfies 8.h.8. So ℱ is a base for the topology 𝜏 that it generates. This topology 𝜏 is
called order topology.
If 𝑋 has no maximum and no minimum, then only the intervals (𝑥, 𝑦) are needed to
form a base for 𝜏. This is the case for the standard topologies on ℝ, ℚ, ℤ,

E8.h.16 Prerequisites:8.h.12.Consider topological spaces (𝑋𝑖, 𝜏𝑖), each with the discrete [2FD]

topology (and each 𝑋𝑖 has at least two elements). Let 𝐼 = ℕ or 𝐼 = {0, 1, … 𝑁}; let
𝑋 = ∏𝑖∈𝐼 𝑋𝑖 be the Cartesian product. We define the product topology 𝜏 on 𝑋 , as
explained in 8.h.12. Describe a simple base for this topology. Moreover, if 𝐼 = ℕ,
show that the topology 𝜏 is not the discrete topology.
Hidden solution: [UNACCESSIBLE UUID '2FF']

E8.h.17 Prerequisites:8.h.14,8.h.12,3.d.34,8.h.12. [2F9]

Consider totally ordered sets (𝑋𝑖, ≤𝑖) (each has at least two elements), and the asso-
ciated order topologies 𝜏𝑖.
Let 𝐼 = ℕ or 𝐼 = {0, 1, … 𝑁}; let 𝑋 = ∏𝑖∈𝐼 𝑋𝑖 be the Cartesian product.
Consider these two topologies.

• We define the product topology 𝜏 on 𝑋 , as explained in 8.h.12.
• We order 𝑋 with the lexicographical order⪯, and then we build the order topol-
ogy 𝜎 on 𝑋 . (See 3.d.34,8.h.12)

Is there an inclusion between 𝜎 and 𝜏?
If every 𝑋𝑖 is finite, prove that these two topologies coincide †71.
Hidden solution: [UNACCESSIBLE UUID '2FC']

§8.i First- and second-countable spaces [2BK]

Definition 8.i.1. A topological space satisfies the first axiom of countability if each [0MC]

point admits a fundamental system of neighborhoods that is countable.

Definition 8.i.2. A topological space satisfies the second axiom of countability when [0MD]

it has a countable base.

Exercises

E8.i.3 Difficulty:*.If (𝑋, 𝜏) satisfies the second axiom of countability, if 𝐴 ⊆ 𝑋 is [0MF]

composed only of isolated points, then 𝐴 has countable cardinality. Hidden solution:
[UNACCESSIBLE UUID '0MG']
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§8 TOPOLOGY

E8.i.4 Prerequisites:8.h.4. If (𝑋, 𝜏) satisfies the second axiom of countability, given [0MH]

𝐴 ⊆ 𝑋 there exists a countable subset𝐵 ⊆ 𝐴 such that𝐵 ⊇ 𝐴. In particular, the whole
space 𝑋 admits a dense countable subset: 𝑋 is said to be separable. The vice versa
holds for example in metric spaces, see 10.b.28. See also 10.g.3 for an application
in ℝ𝑛.
Hidden solution: [UNACCESSIBLE UUID '0MJ']

The countability axioms will return in exercises 10.b.27 and 10.b.28.

§8.j Non-first-countable spaces [2BM]

Exercises

E8.j.1 †72 Prerequisites:8.h.12,8.h.1.Difficulty:*.Let 𝛺 be a non-empty set; let’s con- [0MM]

sider 𝑋 = ℝ𝛺.

1. Let
𝑈𝑓

𝐸,𝜌 = {𝑔 ∈ 𝑋, ∀𝑥 ∈ 𝐸, |𝑓(𝑥) − 𝑔(𝑥)| < 𝜌}

where 𝑓 ∈ 𝑋 , 𝜌 > 0 and 𝐸 ⊂ 𝛺 is finite. Show that the family of these 𝑈𝑓
𝐸,𝜌

satisfies the requirements of 8.h.8, and is therefore a base for a topology 𝜏 (Hint:
use 8.h.12). This topology is the product topology of topologies of ℝ.
In particular for each 𝑓 ∈ 𝑋 the sets 𝑈𝑓

𝐸,𝜌 are a fundamental system of neigh-
borhoods.

2. Check that the topology is 𝑇2.
3. Note that 𝑋 is a vector space, and show that the “sum” operation is continuous,

as an operation 𝑋 × 𝑋 → 𝑋; to this end, show that if 𝑓, 𝑔 ∈ 𝑋, ℎ = 𝑓 + 𝑔,
for every neighborhood 𝑉ℎ of ℎ there are neighborhoods 𝑉𝑓, 𝑉𝑔 of 𝑓, 𝑔 such that
𝑉𝑓 + 𝑉𝑔 ⊆ 𝑉ℎ.

4. Given 𝐵𝑖 ⊂ ℝ open and non-empty, one for each 𝑖 ∈ 𝛺, show that ∏𝑖 𝐵𝑖 is
open if and only if 𝐵𝑖 = ℝ except at most finitely many 𝑖.

Hidden solution: [UNACCESSIBLE UUID '0MN']

E8.j.2 Prerequisites:8.h.1,8.j.1,8.f.1.Difficulty:*.Let 𝛺 be an infinite uncountable set [2BP]

; consider 𝑋 = ℝ𝛺 with the topology 𝜏 seen in 8.j.1.

1. Show that every point in (𝑋, 𝜏) does not admit a countable fundamental system
of neighborhoods.

2. Setting

𝐶 def= {𝑓 ∈ 𝑋, 𝑓(𝑥) ≠ 0 for at most countably many 𝑥 ∈ 𝛺} (8.j.3)

show that 𝐶 = 𝑋;
3. and that if (𝑓𝑛) ⊂ 𝐶 and 𝑓𝑛 → 𝑓 pointwise then 𝑓 ∈ 𝐶.

†71Note that the order topology on a finite set is also the discrete topology; use 8.h.16.
†72These two exercises 8.j.1,8.j.2, are taken from a text originally published by Prof. Ricci in http://

dida.sns.it/dida2/cl/08-09/folde0/pdf9 in March 2014.
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§8.j Non-first-countable spaces

4. Let 𝐼 be the set of all finite subsets of 𝛺, this is a filtering set if sorted by
inclusion; consider the net

𝜑 ∶ 𝐼 → 𝑋 , 𝜑(𝐴) = 𝟙𝐴

then ∀𝐴 ∈ 𝐼, 𝜑(𝐴) ∈ 𝐶 but

lim
𝐴∈𝐼

𝜑(𝐴) = 𝟙𝑋 ∉ 𝐶 .

Hidden solution: [UNACCESSIBLE UUID '2BQ']

E8.j.4 Difficulty:*.We restrict the topology described in the previous example to the set [0MP]

𝑌 = [0, 1][0,1] (that is, we restrict ℝ to [0, 1], and set 𝛺 = [0, 1]). Find a sequence
(𝑓𝑛) ⊂ 𝑌 that does not allow a convergent subsequence.
Hidden solution: [UNACCESSIBLE UUID '0MQ']

Let’s recall the definition 8.d.1: a space 𝑋 is ”compact by coverings” if, for every
(𝐴𝑖)𝑖∈𝐼 family of open such that ⋃𝑖∈𝐼 𝐴𝑖 = 𝑋 , there is a finite subfamily 𝐽 ⊂ 𝐼 such
that ⋃𝑖∈𝐽 𝐴𝑖 = 𝑋 . The Tychonoff theorem shows that this space 𝑌 is ”compact by
coverings”. This exercise shows you instead that 𝑌 it is not ”compact by sequences”.
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§9 MISCELLANEA

§9 Miscellanea [2FB]

This Section hosts material that would not otherwise fit properly elsewhere.

§9.a Polygons [2G3]

We present some simple geometrical properties of polygons, that may be rigorously
proven either by analytical methods (embedding geometrical objects as subsets of the
Cartesian plane), or purely geometrical methods (in the spirit of [11]).

In the following we will use the celebrated Jordan Theorem; a simple proof may be
found in [26].

Theorem 9.a.1. Let 𝜑 ∶ [0, 1] → ℝ2 be simple closed curve in the plane and 𝐶 = [2FW]

𝜑([0, 1]) be its trace. (See 21.a.1 for the definition). The complement ℝ2 ⧵ 𝐶 consists of
exactly two connected components, that are open. One of these components is bounded
(and is called “the interior of the curve”, or, “the region bounded by the curve”) and
the other is unbounded (the exterior). The curve 𝐶 is the boundary of each component.

The proof of the Jordan Theorem usually starts with a simple Lemma (again, see
[26]; or Theorem 6 [11]).

Definition 9.a.2. By polygonal curve 𝜑 ∶ [0, 1] → ℝ2 we will mean: a not self- [2G6]

intersecting (that is, injective) polygonal (that is, piecewise linear) curve in the plane.
Analytically, there are points 𝑉0, 𝑉1, … 𝑉𝑛 (called “vertices”) in the plane, and 0 = 𝑡0 <
𝑡1 … < 𝑡𝑛 = 1 such that

𝜑(𝑡) = 𝑡 − 𝑡𝑖
𝑡𝑖+1 − 𝑡𝑖

𝑉𝑖+1 + 𝑡𝑖+1 − 𝑡
𝑡𝑖+1 − 𝑡𝑖

𝑉𝑖 when 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1 .

The polygonal curve is closed if 𝜑(0) = 𝜑(1). (In this case we require that 𝜑 is injective
when restricted to [0, 1)).

Lemma 9.a.3. Let 𝐶 = 𝜑([0, 1]), let 𝑃 be the region bounded by the closed polygonal [2FX]

curve, and 𝐸 the exterior; recall that 𝐶, 𝑃, 𝐸 is a partion of the plane. Choose 𝐴, 𝐵 ∉ 𝐶
and suppose that the segment 𝐴𝐵 meets 𝐶 in 𝑘 points, none a vertex. Then: if 𝑘 is odd,
𝐴, 𝐵 are in different regions, 𝐴 ∈ 𝑃 ⇔ 𝐵 ∉ 𝑃; if 𝑘 is even, 𝐴, 𝐵 are in the same region,
𝐴 ∈ 𝑃 ⇔ 𝐵 ∈ 𝑃.

Definition 9.a.4. A polygon is the plane figure bounded by the polygonal closed [2FN]

curve. †73

Remark 9.a.5. Consider a polygonal curve, with 𝑛 vertexes labeled 𝑉1, … 𝑉𝑛; this [2CD]

bounds a polygon: how many sides does it have?
It depends. If some vertexes (in sequence) are aligned, then the figure in the plane

will visually have less than 𝑛 sides and vertexes. For this reason, we will distinguish
the unlabeled polygon (which is the subset of the plane) from the labeled polygon (in
which we also take into account the position of the vertexes); the latter is less intuitive,
but makes for better mathematics. See figure 3 on page 121.
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§9.a Polygons

Figure 2: Examples of polygons with many sides (odd or even) and only two ears.
Figure for 9.a.8

Exercises

E9.a.6 Difficulty:*.Let 𝑛 ≥ 3 integer; consider a polygon of 𝑛 + 1 vertices. Show that [29Z]

it can be cut in two polygons, one with ℎ and one with 𝑘 sides, and 3 ≤ ℎ ≤ 𝑛,
3 ≤ 𝑘 ≤ 𝑛. By ”cut” we mean, two vertexes of the polygon (not contiguous) can be
connected by a line that is internal and does not touch other vertexes or sides. The
intersection of the two polygons is the segment 𝐵𝐷, they do not have other points in
common.
Hint. there is at least one vertex 𝐵 ”convex” in which the inner angle 𝛽 is “convex”
(i.e. 0 < 𝛽 ≤ 𝜋 radians); call 𝐴, 𝐶 the vertexes contiguous to 𝐵; reason on the
triangle 𝐴𝐵𝐶.
Hidden solution: [UNACCESSIBLE UUID '1QT']

E9.a.7 Prove by induction that the sum of the internal angles of a polygon with 𝑛 ≥ 3 [1XH]

sides, is (𝑛 − 2)𝜋.
(The proof is easy if the polygon is convex; in the general case 9.a.8 can be useful).
Hidden solution: [UNACCESSIBLE UUID '1XM']

E9.a.8 An ear of a polygon is the triangle 𝐴𝐵𝐶 formed by three consecutive vertices [0JN]

𝐴, 𝐵, 𝐶 of the polygon, such that the segment𝐴𝐶 lies inside the polygon. This implies
that the triangle𝐴𝐵𝐶 does not contain any point of the polygonal curve in its interior;
and that the two segments 𝐴𝐵, 𝐵𝐶 can be removed from the polygon and replaced
with 𝐴𝐶 to create a newer polygon. Two ears are non-overlapping if their interiors
do not intersect, or equivalently if the do not have a side in common.
Prove the Two ears theorem: every polygon with more than three vertices has at least
two non-overlapping ears. (See [17, 33] for more details).
(Hint: consider labelled polygons, to avoid the complication presented in figure 3 on
the following page.)
Hidden solution: [UNACCESSIBLE UUID '2FV']

E9.a.9 Difficulty:*. Show that each polygon can be “triangulated”, i.e. decomposed [1XW]

as a union of nonoverlapping triangles. †74

Hidden solution: [UNACCESSIBLE UUID '1XX']

E9.a.10 Again, we say that a vertex 𝐵 is ”convex” if the inner angle 𝛽 is “convex” (i.e. [2FP]

0 < 𝛽 ≤ 𝜋 radians). Prove that the polygon is convex if and only if all its vertices
are convex. Hidden solution: [UNACCESSIBLE UUID '2G5']

†73The polygonal curve is part of the polygon. Other definitions are possible. See [64].
†74It is legitimate if two different triangles have an edge or a vertex in common.
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V2

V3

V1 V4 V5

V6
V7

V2

V1 V4 V5

V6
V7

Figure 3: A polygon where, removing an ear, the number of unlabelled sides drops
from 7 to 4.

§9.b Cantor set
Let in the following 𝐶 ⊂ ℝ be Cantor’s ternary set. This set is described in many texts,
as for example Sect. 2.44 in [22]; and also in Wikipedia [51]).

Exercises

E9.b.1 (Replaces 0W4) Show that 𝐶 is closed, and composed only of accumulation points. [09S]

Hence 𝐶 is a perfect set.

E9.b.2 Let 𝐼 = {0, 2} and 𝑋 = 𝐼ℕ, consider the map 𝐹 ∶ 𝑋 → 𝐶 given by [09T]

𝐹(𝑥) =
∞
∑
𝑛=0

3−𝑛−1𝑥𝑛 .

Show that it is a bijection.
Let’s now equip 𝑋 with the topology defined in 8.h.17. †75. Show that 𝐹 is a home-
omorphism.
Hidden solution: [UNACCESSIBLE UUID '09V']

See also 11.22, 10.m.16, 10.b.42.

†75Note that the order topology on 𝐼 = {0, 2} is also the discrete topology.
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§10 Metric spaces [0MR]

§10.a Definitions [2CC]

Ametric space is a pair (𝑋, 𝑑) where 𝑋 is a set (nonempty) with associated distance 𝑑.

Definition 10.a.1. A distance is a function 𝑑 ∶ 𝑋 × 𝑋 → [0, ∞) that enjoys the [0MS]

following properties:

• 𝑑(𝑥, 𝑥) = 0;

• (separation property) if 𝑑(𝑥, 𝑦) = 0 then 𝑥 = 𝑦;

• (symmetry) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for each 𝑥, 𝑦 ∈ 𝑋;

• (triangle inequality) 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) for each 𝑥, 𝑦, 𝑧 ∈ 𝑋 .

An example is ℝ𝑛 with the Euclidean distance 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|.

Definition 10.a.2. Given a sequence (𝑥𝑛)𝑛 ⊆ 𝑋 and 𝑥 ∈ 𝑋 , [0MT]

• we will say that ”(𝑥𝑛)𝑛 converges to 𝑥” if lim𝑛 𝑑(𝑥𝑛, 𝑥) = 0; we will also write
𝑥𝑛 →𝑛 𝑥 to indicate that the sequence converges to 𝑥.

• We will say that ”(𝑥𝑛)𝑛 is a Cauchy sequence” if

∀𝜀 > 0 ∃𝑁 ∈ ℕ , ∀𝑛, 𝑚 ≥ 𝑁 𝑑(𝑥𝑛, 𝑥𝑚) < 𝜀 .

Example 10.a.3. To any given set 𝑋 we may associate the discrete distance [2C1]

𝑑(𝑥, 𝑦) = {0 𝑥 = 𝑦
1 𝑥 ≠ 𝑦

The induced topology is the discrete topology where every subset of 𝑋 is an open set.

[Note. If you are not familiar with the concept of metric space, you can assume that
𝑋 = ℝ𝑛 and 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| in all exercises.]

Exercises

E10.a.4 Prove that a converging sequence (𝑥𝑛)𝑛 ⊆ 𝑋 is Cauchy. [0MV]

E10.a.5 Given a sequence (𝑥𝑛)𝑛 ⊆ 𝑋 show that, if it converges to 𝑥 and converges to [0MW]

𝑦, then 𝑥 = 𝑦.
This result is known as Theorem of the uniqueness of the limit.

E10.a.6 We generalize the definition of metric space assuming that 𝑑 ∶ 𝑋 → [0, ∞] [0MX]

(the other axioms are the same). Show that the relation 𝑥 ∼ 𝑦 defined by

𝑥 ∼ 𝑦 ⟺ 𝑑(𝑥, 𝑦) < ∞

is an equivalence relation, and that equivalence classes are open, and therefore are
disconnected from each other.
Hidden solution: [UNACCESSIBLE UUID '0MY']
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§10 METRIC SPACES

E10.a.7 Given 𝑓, 𝑔 continuous functions on ℝ, we define [0MZ]

𝑑(𝑓, 𝑔) = sup
𝑥∈ℝ

|𝑓(𝑥) − 𝑔(𝑥)| .

Prove that 𝑑 is a distance on 𝑋 = 𝐶(ℝ), in the extended sense of the exercise 10.a.6.
Let 𝑓 ∼ 𝑔 ⟺ 𝑑(𝑓, 𝑔) < ∞ as before, show that the family of equivalence classes
𝑋/∼ has the cardinality of the continuum.
Hidden solution: [UNACCESSIBLE UUID '0N0']

E10.a.8 Prerequisites:10.b.21.Note:See also eserc. 15.d.2. Suppose 𝜑 ∶ [0, ∞) → [0, ∞) is [0N1]

monotonic weakly increasing and subadditive, i.e. 𝜑(𝑡) + 𝜑(𝑠) ≥ 𝜑(𝑡 + 𝑠) for each
𝑡, 𝑠 ≥ 0; and suppose that 𝜑(𝑥) = 0 if and only if 𝑥 = 0.
Then 𝜑◦𝑑 is again a distance. Examples: 𝜑(𝑡) = √𝑡, 𝜑(𝑡) = 𝑡/(1 + 𝑡), 𝜑(𝑡) =
arctan(𝑡), 𝜑(𝑡) = min{𝑡, 1}.
Moreover show that if 𝜑 is continuous in zero then the associated topology is the
same. †76 Hidden solution: [UNACCESSIBLE UUID '0N2']

E10.a.9 If (𝑥𝑛)𝑛 ⊂ 𝑋 is a sequence and 𝑥 ∈ 𝑋 , show that lim𝑛→∞ 𝑥𝑛 = 𝑥 if and [0N3]

only if, for each sub–sequence 𝑛𝑘 there exists a sub–sub–sequence 𝑛𝑘ℎ such that
limℎ→∞ 𝑥𝑛𝑘ℎ

= 𝑥. Hidden solution: [UNACCESSIBLE UUID '0N4']

E10.a.10 A sequence (𝑥𝑛) ⊂ 𝑋 is a Cauchy sequence if and only if [0N5]

lim
𝑁→∞

sup{𝑑(𝑥𝑛, 𝑥𝑚) ∶ 𝑛 ≥ 𝑁, 𝑚 ≥ 𝑁} = 0 .

E10.a.11 A sequence (𝑥𝑛) ⊂ 𝑋 is a Cauchy sequence if and only if there exists a [0N6]

sequence 𝜀𝑛 with 𝜀𝑛 ≥ 0 and 𝜀𝑛 →𝑛 0 such that, for every 𝑛 and every 𝑚 ≥ 𝑛, we
have 𝑑(𝑥𝑛, 𝑥𝑚) ≤ 𝜀𝑛.
Hidden solution: [UNACCESSIBLE UUID '0N7']

E10.a.12 If (𝑥𝑛) ⊂ 𝑋 is a Cauchy sequence and there exists 𝑥 and a subsequence 𝑛𝑚 [0N8]

such that lim𝑚→∞ 𝑥𝑛𝑚 = 𝑥 then lim𝑛→∞ 𝑥𝑛 = 𝑥.
Hidden solution: [UNACCESSIBLE UUID '0N9']

This ”lemma” is used in some important proofs, e.g. to show that a compact metric
space is also complete.

E10.a.13 Let 𝜀𝑛 > 0 be an infinitesimal decreasing sequence. If (𝑥𝑛) ⊂ 𝑋 is a Cauchy [0NC]

sequence, there exists a subsequence 𝑛𝑘 such that

∀𝑘 ∈ ℕ, ∀ℎ ∈ ℕ, ℎ > 𝑘 ⇒ 𝑑(𝑥𝑛𝑘 , 𝑥𝑛ℎ ) ≤ 𝜀𝑘 .

Hidden solution: [UNACCESSIBLE UUID '0ND'] This property is often used by choosing
𝜀𝑛 = 2−𝑛, or other sequence whose series converges.

E10.a.14 Let (𝑥𝑛)𝑛 be a sequence such that ∑∞
𝑛=1 𝑑(𝑥𝑛, 𝑥𝑛+1) < ∞: prove that it is a [0NF]

Cauchy sequence.
Compare this exercise, the previous 10.a.13 in case∑𝑛 𝜀𝑛 < ∞, and exercise 10.a.12.
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§10.b Topology in metric spaces

E10.a.15 If (𝑥𝑛) ⊂ 𝑋 is a Cauchy sequence, (𝑦𝑛) ⊂ 𝑋 is another sequence, and [0NG]

𝑑(𝑥𝑛, 𝑦𝑛) →𝑛 0, then (𝑦𝑛) ⊂ 𝑋 is a Cauchy sequence.

E10.a.16 Given (𝑋, 𝑑) a metric space, show that 𝑑 is continuous (as a function 𝑑 ∶ [0NH]

𝑋 × 𝑋 → ℝ). You can actually show that it is Lipschitz, by associating to 𝑋 × 𝑋 the
distance

̂𝑑(𝑥, 𝑦) = 𝑑(𝑥1, 𝑦1) + 𝑑(𝑥2, 𝑦2), for 𝑥 = (𝑥1, 𝑥2), 𝑦 = (𝑦1, 𝑦2) ∈ 𝑋 × 𝑋 .

Hidden solution: [UNACCESSIBLE UUID '0NK']

E10.a.17 Prerequisites:6.c.11, 15.d.2,10.a.11.Difficulty:*.Note:Exercise 2, written exam, 9 July 2011. [0NM]

Let 𝛼(𝑥) be a continuous function on ℝ, bounded and strictly positive. Given 𝑓, 𝑔
continuous functions on ℝ, we define

𝑑(𝑓, 𝑔) = sup
𝑥∈ℝ

(min{𝛼(𝑥), |𝑓(𝑥) − 𝑔(𝑥)|}) .

Prove that 𝑑 is a distance on 𝐶(ℝ) and that (𝐶(ℝ), 𝑑) is complete. Hidden solution:
[UNACCESSIBLE UUID '0NP']

E10.a.18 Note:Exercise 2, written exam, 25 March 2017. [0NQ]

Show that the following properties are equivalent for a metric space 𝑋:

• every sequence of elements of 𝑋 admits a Cauchy subsequence;
• The completion 𝑋∗ of 𝑋 is compact.

Hidden solution: [UNACCESSIBLE UUID '0NR']

§10.b Topology in metric spaces [2C2]

Let (𝑋, 𝑑) be a metric space.

Definition 10.b.1 (ball,disc). Let 𝑥 ∈ 𝑋, 𝑟 > 0 be given; we will indicate with 𝐵(𝑥, 𝑟) [0NW]

the ball,
𝐵(𝑥, 𝑟) def= {𝑦 ∈ 𝑋 ∶ 𝑑(𝑥, 𝑦) < 𝑟}

that is also indicated with 𝐵𝑟(𝑥); and with

𝐷(𝑥, 𝑟) def= {𝑦 ∈ 𝑋 ∶ 𝑑(𝑥, 𝑦) ≤ 𝑟}

the disk, that is also indicated with 𝐵𝑟(𝑥).

Definition 10.b.2. For the following exercises we define that [0NX]

1. a set 𝐸 is open if
∀𝑥0 ∈ 𝐸, ∃𝑟 > 0 ∶ 𝐵(𝑥0, 𝑟) ⊆ 𝐸 . (10.b.3)

It is easily seen that ∅, 𝑋 are open sets; that the intersection of a finite number
of open sets is an open set; that the union of an arbitrary number of open set is
an open set. So these open sets form a topology.

†76See Sec. §10.b below for a summary of definitions regarding topology in metric spaces: in particular the
result 10.b.21 will be useful.
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§10 METRIC SPACES

2. The interior 𝐸∘ of a set 𝐸 is

𝐸∘ = {𝑥 ∈ 𝐸 ∶ ∃𝑟 > 0, 𝐵𝑟(𝑥) ⊆ 𝐸} ; (10.b.4)

It is easy to verify that 𝐸∘ ⊆ 𝐸, and that 𝐸 is open if and only if 𝐸∘ = 𝐸 (exercise
10.b.13).

3. A set is closed if the complement is open.

4. A point 𝑥0 ∈ 𝑋 is adherent to 𝐸 if

∀ 𝑟 > 0 , 𝐸 ∩ 𝐵𝑟(𝑥0) ≠ ∅ .

5. The closure 𝐸 of 𝐸 is the set of adherent points; it is easy to verify that 𝐸 ⊆ 𝐸; It
is shown that 𝐸 = 𝐸 if and only if 𝐸 is closed (exercise 10.b.17).

6. 𝐴 is dense in 𝐵 if 𝐴 ⊇ 𝐵, that is, if for every 𝑥 ∈ 𝐵 and for every 𝑟 > 0 the
intersection 𝐵𝑟(𝑥) ∩ 𝐴 is not empty.

Note that, having the operational definition (10.b.3) of ”open set”, then the axioms
(in the definition 8.2) in this case become theorems.

Exercises

E10.b.5 Topics:balls. [0NZ]

Prove that
𝐵𝜌(𝑥) ⊆ 𝐵𝑟(𝑥0) (10.b.6)

for every 𝑥 ∈ 𝐵𝜌(𝑥0) and for every 0 < 𝜌 ≤ 𝑟 − 𝑑(𝑥, 𝑥0). Hidden solution:
[UNACCESSIBLE UUID '0P0']

E10.b.7 Topics:balls, disks. Let 𝑥1, 𝑥2 ∈ 𝑋 , 𝑟1, 𝑟2 > 0, if 𝑑(𝑥1, 𝑥2) ≥ 𝑟1 + 𝑟2 then [0P1]

𝐵𝑟1 (𝑥1) ∩ 𝐷𝑟2 (𝑥2) = ∅ . (10.b.8)

Hidden solution: [UNACCESSIBLE UUID '0P2']

E10.b.9 Topics:interior. Prerequisites:10.b.5.Show that 𝐵𝑟(𝑥) is an open set using the [0P3]

definition (10.b.3). Hidden solution: [UNACCESSIBLE UUID '0P4']

E10.b.10 Prove that a metric space is 𝑇2 i.e. Hausdorff (see definition in 8.4). [0P5]

E10.b.11 If 𝐴 = 𝐵𝑐 then show that (𝐵)𝑐 = 𝐴∘ (using the definitions in this section). [0P6]

Hidden solution: [UNACCESSIBLE UUID '0P7']

E10.b.12 Prerequisites:10.b.11.Show that the notions of interior and closure seen above [0P8]

are equivalent to those presented in the definition 8.2.

E10.b.13 Topics:interior. Show that 𝐸 is open if and only if 𝐸∘ = 𝐸. Hidden solution: [0PB]

[UNACCESSIBLE UUID '0PC']

E10.b.14 Topics:interior. Show that if 𝐴 ⊆ 𝐵 ⊆ 𝑋 and 𝐴 is open then 𝐴 ⊆ 𝐵∘ using [0PD]

the above definitions.
Hidden solution: [UNACCESSIBLE UUID '0PF']
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E10.b.15 Topics:interior. Show that if 𝐴 ⊆ 𝐵 ⊆ 𝑋 then 𝐴∘ ⊆ 𝐵∘. Hidden solution: [0PG]

[UNACCESSIBLE UUID '0PH']

E10.b.16 Topics:interior.Prerequisites:10.b.9,10.b.14. [0PJ]

Given 𝑋 metric space and 𝐴 ⊆ 𝑋 , show that

𝐴∘ = (𝐴∘)∘ ,

using the above definitions.
For what has been said in 10.b.13, this is equivalent to saying that 𝐴∘ is an open set.
(For the case of 𝑋 topological space, see the 8.11)
Hidden solution: [UNACCESSIBLE UUID '0PK']

E10.b.17 Topics:interior. [0PM]

Show that 𝐸 = 𝐸 if and only if 𝐸 is closed.

E10.b.18 Topics:closure. Prerequisites:10.b.15,10.b.11.(Replaces 0PN) [0PP]

Show that if 𝐵 ⊆ 𝐴 ⊆ 𝑋 then 𝐵 ⊆ 𝐴; using the above definitions, or by switching to
complement set and using 10.b.15.

E10.b.19 Topics:closure.Prerequisites:10.b.11, 10.b.18. [0PQ]

Given a metric space 𝑋 and a set 𝐴 ⊆ 𝑋 , show that

𝐴 = (𝐴)

either by transitioning to the complement set and using 10.b.16, or by using the def-
inition of 𝐴 as ”set of adherent points”.

As discussed in 10.b.17, this is equivalent to saying that 𝐴 is a closed set.

E10.b.20 Let 𝐸 ⊆ 𝑋 , then 𝐸 is a metric space with the restricted distance ̃𝑑 = 𝑑|𝐸×𝐸. [0PR]

Show that 𝐴 ⊆ 𝐸 is open in (𝐸, ̃𝑑) (as defined at the beginning of this section) if and
only there exists a set 𝑉 ⊆ 𝑋 open in (𝑋, 𝑑) such that 𝑉 ∩ 𝐸 = 𝐴.
(The second way of defining ”open” is used in topology.)
Hidden solution: [UNACCESSIBLE UUID '2GD']

E10.b.21 Prerequisites:8.h.5.Let 𝑋 be a set with two distances 𝑑1, 𝑑2; let’s call 𝜏1, 𝜏2 [0PS]

respectively the induced topologies. We have that 𝜏1 ⊆ 𝜏2 if and only if

∀𝑥 ∈ 𝑋 ∀𝑟1 > 0 ∃𝑟2 > 0 ∶ 𝐵2(𝑥, 𝑟2) ⊆ 𝐵1(𝑥, 𝑟1)

where

𝐵2(𝑥, 𝑟2) = {𝑦 ∈ 𝑋 ∶ 𝑑2(𝑥, 𝑦) < 𝑟2} , 𝐵1(𝑥, 𝑟1) = {𝑦 ∈ 𝑋 ∶ 𝑑1(𝑥, 𝑦) < 𝑟1} .

Note that this exercise is the analogue in metric spaces of the principle 8.h.5 for the
bases of topologies.
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E10.b.22 Prerequisites:8.h.10, 10.b.21, 12.8, 12.a.4,12.a.5. [0PT]

Having fixed (𝑋1, 𝑑1), … , (𝑋𝑛, 𝑑𝑛) metric spaces, let 𝑋 = 𝑋1 × ⋯ × 𝑋𝑛.
Let 𝜑 be one of the norms defined in eqn. (§12.a) in Sec. §12.a. Two possible exam-
ples are 𝜑(𝑥) = |𝑥1| + ⋯ + |𝑥𝑛| or 𝜑(𝑥) = max𝑖=1…𝑛 |𝑥𝑖|.
Finally, let’s define for 𝑥, 𝑦 ∈ 𝑋

𝑑(𝑥, 𝑦) = 𝜑(𝑑1(𝑥1, 𝑦1), … , 𝑑𝑛(𝑥𝑛, 𝑦𝑛)) . (10.b.23)

Show that 𝑑 is a distance; show that the topology in (𝑋, 𝑑) coincides with the product
topology (see 8.h.10).
Note that this approach generalizes the definition of the Euclidean distance between
points in ℝ𝑛 (taking 𝑋𝑖 = ℝ and 𝜑(𝑧) = √∑𝑖 |𝑧𝑖|2). We deduce that the topology of
ℝ𝑛 is the product of the topologies of ℝ.
Hidden solution: [UNACCESSIBLE UUID '0PX']

See also the exercise 10.b.33, which reformulates the above using the concept of
bases of topologies.

E10.b.24 Prerequisites:10.b.7,10.a.16. [0PY]

Let 𝐷(𝑥, 𝑟) def= {𝑦 ∈ 𝑋 ∶ 𝑑(𝑥, 𝑦) ≤ 𝑟} be the disk, show that it is closed.

Let 𝑆(𝑥, 𝑟) def= {𝑦 ∈ 𝑋 ∶ 𝑑(𝑥, 𝑦) = 𝑟} be the sphere, show that it is closed.
Hidden solution: [UNACCESSIBLE UUID '0PZ']

E10.b.25 Prerequisites:10.b.26,10.b.9,10.b.24, 10.b.18.Let 𝑟 > 0. [0Q0]

Let 𝐷(𝑥, 𝑟) def= {𝑦 ∈ 𝑋 ∶ 𝑑(𝑥, 𝑦) ≤ 𝑟} be the disk; show that 𝐵(𝑥, 𝑟) ⊆ 𝐷(𝑥, 𝑟) and
that 𝐵(𝑥, 𝑟) ⊆ 𝐷(𝑥, 𝑟)∘.

Let 𝑆(𝑥, 𝑟) def= {𝑦 ∈ 𝑋 ∶ 𝑑(𝑥, 𝑦) = 𝑟} be the sphere; show that 𝜕𝐵(𝑥, 𝑟) ⊆ 𝑆(𝑥, 𝑟).
Find examples of metric spaces in which the above equalities (one, or both) do not
hold.
Find an example of a metric space where there is a disk that is open†77.
(See also 10.g.1 for the case of space ℝ𝑛). Hidden solution: [UNACCESSIBLE UUID

'0Q1'][UNACCESSIBLE UUID '0Q2']

E10.b.26 Prerequisites:8.a.9.Let 𝐴 ⊆ 𝑋 where (𝑋, 𝑑) is a metric space, we have that [0Q3]

𝑥 ∈ 𝜕𝐴 if and only if there exists (𝑦𝑛) ⊆ 𝐴 and (𝑧𝑛) ⊆ 𝐴𝑐 sequences such that
𝑦𝑛 → 𝑥 and 𝑧𝑛 → 𝑥. Hidden solution: [UNACCESSIBLE UUID '0Q4']

E10.b.27 Prerequisites:Section §8.i. Find an example of a metric space (𝑀, 𝑑) that [0Q5]

does not satisfy the second axiom of countability, i.e. such that there is no countable
base for the topology associated with (𝑀, 𝑑).
Hidden solution: [UNACCESSIBLE UUID '0Q6']

E10.b.28 Prerequisites:Section §8.i.Let (𝑀, 𝑑) be ametric space and suppose that there [0Q7]

exists 𝐷 ⊆ 𝑀 that is countable and dense. Such (𝑀, 𝑑) is called separable. Show
that (𝑀, 𝑑) satisfies the second axiom of countability.
The converse is true in any topological space, see 8.i.4.
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§10.b Topology in metric spaces

E10.b.29 Prerequisites:10.b.14,10.b.18, 8.13, 10.b.11.Difficulty:*. [0Q8]

Let 𝑋 be a metric space, and 𝐴 ⊆ 𝑋 . We want to study the ”open-close” operation
(𝐴∘) (which is the closure of the interior of 𝐴).

• Show a simple example where (𝐴∘) is not contained 𝐴.
• Then write a characterization of (𝐴∘) using sequences and balls.
• Use it to show that the ”open-close” operation is idempotent, that is, if𝐷 = (𝐴∘)
and then 𝐸 = (𝐷∘) then 𝐸 = 𝐷.

Hidden solution: [UNACCESSIBLE UUID '0Q9'][UNACCESSIBLE UUID '0QB']

E10.b.30 Prerequisites:10.d.3.Show that, for every closed set 𝐶 ⊆ 𝑋 there exist count- [0QC]

ably many open sets 𝐴𝑛 such that ⋂𝑛 𝐴𝑛 = 𝐶.
Hidden solution: [UNACCESSIBLE UUID '0QD']

A set obtained as an intersection of countably many open sets is known as ”a 𝐺𝛿 set”.
The previous exercise shows that in a metric space every closed is a 𝐺𝛿.
Passing to the complement set, one obtains this statement. A set that is union of
countably many closed sets is known as ”an 𝐹𝜎 set”. The previous exercise shows
that in a metric space every open set is an 𝐹𝜎 set.
See also the section §14.d.

E10.b.31 Difficulty:**.Find an example of ametric spacewhere for every 𝑥 ∈ 𝑋, 𝑟 > 0, [0QF]

𝐵𝑟(𝑥) is a closed set, but the associated topology is not discrete. †78

Hidden solution: [UNACCESSIBLE UUID '0QG']

We note that such a space must be totally disconnected as shown in 8.e.20.

§10.b.a Bases composed of balls

To face these exercises it is necessary to know the concepts seen in Sec. §8.h.

Exercises

E10.b.32 Prerequisites:8.h.7, 8.h.8.Show that the intersection of two balls is an open [0QJ]

set (according to the definition 10.b.2). Hence the family of all balls meets the re-
quirements (a) and (b) in exercise 8.h.7; so (as shown in 8.h.8), the family of balls is
a base for the topology that it generates (which is the topology associated with metric
space).
Hidden solution: [UNACCESSIBLE UUID '0QK']

E10.b.33 Let’s review the exercise 10.b.22. [0QM]

Having fixed (𝑋1, 𝑑1), … , (𝑋𝑛, 𝑑𝑛) metric spaces, let 𝑋 = 𝑋1 × 𝑋1 × ⋯ × 𝑋𝑛.
Let 𝑑 be the distance

𝑑(𝑥, 𝑦) = max
𝑖=1,…𝑛

𝑑𝑖(𝑥𝑖, 𝑦𝑖) .

†77There are also spaces where every ball is closed, see 10.b.31.
†78See 8.5 for the definition.
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§10 METRIC SPACES

This is the same 𝑑 defined as in eqn. (10.b.23) inside 10.b.22, setting𝜑(𝑥) = max𝑖=1…𝑛 |𝑥𝑖|.
We indicate with 𝐵𝑑(𝑥, 𝑟) the ball in (𝑋, 𝑑) of center 𝑥 ∈ 𝑋 and radius 𝑟 > 0.
We want to show that 𝑑 induces the product topology on 𝑋 , using the results seen in
Sec. §8.h.
Taken 𝑡 ∈ 𝑋𝑖, 𝑟 > 0 we indicate with 𝐵𝑑𝑖 (𝑡, 𝑟) the ball in metric space (𝑋𝑖, 𝑑𝑖). Let
ℬ𝑖 be the family of all balls in (𝑋𝑖, 𝑑𝑖).
Let ℬ be defined as

ℬ = {
𝑛

∏
𝑖=1

𝐵𝑑𝑖 (𝑥𝑖, 𝑟𝑖) ∶ ∀𝑖, 𝑥𝑖 ∈ 𝑋𝑖, 𝑟𝑖 > 0}

This is the same ℬ defined in 8.h.11.
Show that every ball 𝐵𝑑(𝑥, 𝑟) in (𝑋, 𝑑) is the Cartesian product of balls 𝐵𝑑𝑖 (𝑥𝑖, 𝑟) in
(𝑋𝑖, 𝑑𝑖). So let 𝒫 be the family of balls 𝐵𝑑(𝑥, 𝑟) in (𝑋, 𝑑).
From 10.b.32 we know that 𝒫 is a base for the standard topology in the metric space
(𝑋, 𝑑).
Use 8.h.5 to show that 𝒫 and ℬ generate the same topology 𝜏.
Use 8.h.11 to prove that 𝜏 is the product topology.
We conclude that the distance 𝑑 generates the product topology.

§10.b.b Accumulation points, limit points

Let’s redefine this notion (a special case of what we saw in 8.a.3)

Definition 10.b.34 (accumulation point). Given 𝐴 ⊆ 𝑋 , a point 𝑥 ∈ 𝑋 is an accu- [0QN]

mulation point for 𝐴 if, for every 𝑟 > 0, 𝐵(𝑥, 𝑟) ∩ 𝐴 ⧵ {𝑥} is not empty.

The set of accumulation points of 𝐴 is called derived set, we will indicate it with
𝐷(𝐴).

Exercises

E10.b.35 Topics:adherent point, accumulation point. [0QP]

Check that

• Each accumulation point is also an adherent point, in symbols 𝐷(𝐴) ⊆ 𝐴;
• if a point adhering to 𝐴 is not in 𝐴 then it is an accumulation point;

So we obtain that 𝐴 = 𝐴 ∪ 𝐷(𝐴).

E10.b.36 Given 𝐴 ⊆ 𝑋 , a point 𝑥 ∈ 𝑋 is an accumulation point if and only if there [0QR]

exists a sequence (𝑥𝑛) ⊆ 𝐴 which is injective and such that lim𝑛→∞ 𝑥𝑛 = 𝑥.

E10.b.37 Let (𝑋, 𝑑) metric space, and 𝑥 ∈ 𝑋 . Show that 𝐴 = {𝑥} is closed; and that [0QS]

𝐴 has an empty inner part if and only if 𝑥 is accumulation point. Hidden solution:
[UNACCESSIBLE UUID '0QT']

E10.b.38 Let 𝐴 ⊆ 𝑋 and let 𝐷(𝐴) be the derivative (i.e. the set of its accumulation [0QV]

points). Show that 𝐷(𝐴) is closed. Hidden solution: [UNACCESSIBLE UUID '0QW']
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§10.c Quotients

Let’s add this definition (a special case of 8.f.2).

Definition 10.b.39 (limit point). Given a sequence (𝑥𝑛)𝑛 ⊆ 𝑋 , a point 𝑥 ∈ 𝑋 is said [0QX]

to be a limit point for (𝑥𝑛)𝑛 if there is a subsequence 𝑛𝑘 such that lim𝑘→∞ 𝑥𝑛𝑘 = 𝑥.

In English literature the terms ”cluster point”, ”limit point” and ”accumulation
point” are sometimes considered synonimous, which can be confusing. We will stick
to the proposed definitions 10.b.34 and 10.b.39.

Exercises

E10.b.40 Find an example of a metric space (𝑋, 𝑑) and a bounded sequence (𝑥𝑘)𝑘 ⊆ 𝑋 [0QY]

that has a single limit point 𝑥 but that does not converge.
See also 10.g.2.

E10.b.41 Prerequisites:10.a.5,10.a.12. [0QZ]

• If a sequence (𝑎𝑘)𝑘 ⊆ 𝑋 converges to 𝑥 then it has an unique limit point, which
is 𝑥.

• If a Cauchy sequence (𝑎𝑘)𝑘 ⊆ 𝑋 has a limit point then there is only one limit
point 𝑥 and lim𝑘 𝑎𝑘 = 𝑥.

Hidden solution: [UNACCESSIBLE UUID '0R0']

E10.b.42 Topics:perfect set.Prerequisites:10.b.35,3.j.27,8.h.16.Difficulty:**. [2F3]

Suppose (𝑋, 𝑑) is a complete metric space. A closed set 𝐸 ⊆ 𝑋 without isolated
points, i.e. consisting only of accumulation points, is called a perfect set.
Let 𝐶 be the Cantor set. Assume that 𝐸 is perfect and non-empty. Show that there
exists a continuous function 𝜑 ∶ 𝐶 → 𝐸 that is an homeomorphism with its image.
This implies that |𝐸| ≥ |ℝ|.
So, in a sense, any non-empty perfect set contains a copy of the Cantor set.
This can be proven without relying on continuum hypothesis 3.j.27. Cf. 10.k.6.
Due to 8.d.5, it is enough to show that there exists a 𝜑 ∶ 𝐶 → 𝐸 continuous and
injective.
Hidden solution: [UNACCESSIBLE UUID '2F4']

Other exercises on these topics are 10.f.5, 10.f.6, 10.f.7, 10.g.2 and 10.g.8.

§10.c Quotients [2C3]

Exercises

E10.c.1 Suppose that 𝑑 satisfies all distance requirements except ”separation prop- [0R2]

erty”. Consider the relation ∼ on 𝑋 defined as 𝑥 ∼ 𝑦 ⟺ 𝑑(𝑥, 𝑦) = 0; show that is
an equivalence relation. Let’s define 𝑌 = 𝑋/ ∼; show that the function 𝑑 “passes to
the quotient”, that is, there exists ̃𝑑 ∶ 𝑌 × 𝑌 → [0, ∞) such that, for every choice of
classes 𝑠, 𝑡 ∈ 𝑌 and every choice of 𝑥 ∈ 𝑠, 𝑦 ∈ 𝑡 you have ̃𝑑(𝑠, 𝑡) = 𝑑(𝑥, 𝑦). Finally,
show that ̃𝑑 is a distance on 𝑌 .
This procedure is the metric space equivalent of Kolmogoroff quotient.
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§10 METRIC SPACES

E10.c.2 Let (𝑋, 𝑑) be ametric space and∼ an equivalence relation on𝑋 . Let𝑌 = 𝑋/ ∼ [0R3]

be the quotient space. We define the function 𝛿 ∶ 𝑌 2 → ℝ as

𝛿(𝑥, 𝑦) = inf{𝑑(𝑠, 𝑡) ∶ 𝑠 ∈ 𝑥, 𝑡 ∈ 𝑦} . (10.c.3)

Is it a distance on 𝑌? Which properties does it enjoy among those indicated in 10.a.1?
Hidden solution: [UNACCESSIBLE UUID '0R4']

E10.c.4 Let (𝑋, 𝑑) be a metric space where 𝑋 is also a group. Let 𝛩 be a subgroup. [0R5]

We define that 𝑥 ∼ 𝑦 ⟺ 𝑥𝑦−1 ∈ 𝛩. It is easy to verify that this is an equivalence
relation. Let 𝑌 = 𝑋/ ∼ be the quotient space. †79

Suppose 𝑑 is invariant with respect to left multiplication by elements of 𝛩:

𝑑(𝑥, 𝑦) = 𝑑(𝜃𝑥, 𝜃𝑦) ∀𝑥, 𝑦 ∈ 𝑋, ∀𝜃 ∈ 𝛩 . (10.c.5)

(This is equivalent to saying that, for every fixed 𝜃 ∈ 𝛩 the map 𝑥 ↦ 𝜃𝑥 is an
isometry). We define the function 𝛿 ∶ 𝑌 2 → ℝ as in (10.c.3).

• Show that, taken 𝑠, 𝑡 ∈ 𝑋 ,

𝛿([𝑠], [𝑡]) = inf{𝑑(𝑠, 𝜃𝑡) ∶ 𝜃 ∈ 𝛩} (10.c.6)

where [𝑠] is the class of elements equivalent to 𝑠.
• Show that 𝛿 ≥ 0, that 𝛿 is symmetric and that 𝛿 satisfies the triangle inequality.
• Suppose that, for every fixed 𝑡 ∈ 𝑋 , the map 𝜃 ↦ 𝜃𝑡 is continuous from 𝛩 to

𝑋; suppose also that 𝛩 is closed: then 𝛿 is a distance. †80

Hidden solution: [UNACCESSIBLE UUID '0R6']

§10.d Distance function [2C4]

Definition 10.d.1. Given a metric space (𝑀, 𝑑), given 𝐴 ⊂ 𝑀 non-empty, we define [0R8]

the distance function 𝑑𝐴 ∶ 𝑀 → ℝ as

𝑑𝐴(𝑥) = inf
𝑦∈𝐴

𝑑(𝑥, 𝑦) . (10.d.2)

Exercises

E10.d.3 Topics:distance function. [0R9]

1. Show that 𝑑𝐴 is a Lipschitz function.
2. Show that 𝑑𝐴 ≡ 𝑑𝐴.

3. Show that {𝑥, 𝑑𝐴(𝑥) = 0} = 𝐴.
4. If 𝑀 = ℝ𝑛 and 𝐴 is closed and non-empty, show that the infimum in (10.d.2)

is a minimum.

See also 15.d.6 and 15.d.7. Hidden solution: [UNACCESSIBLE UUID '0RB']

Copyright A. C. G. Mennucci
The sections comprising theory and exercises’ statements are released under License WP:CC BY-SA

131

https://coldoc.sns.it/UUID/EDB/0R3/
https://coldoc.sns.it/UUID/EDB/0R4
https://coldoc.sns.it/UUID/EDB/0R5/
https://coldoc.sns.it/UUID/EDB/0R6
https://coldoc.sns.it/UUID/EDB/2C4/
https://coldoc.sns.it/UUID/EDB/0R8/
https://coldoc.sns.it/UUID/EDB/0R9/
https://coldoc.sns.it/UUID/EDB/0RB
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License


§10.e Connected set
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Figure 4: Fattening of a set; exercise 10.d.4

E10.d.4 Topics:fattened set.Prerequisites:10.d.3. [0RC]

Consider a metric space (𝑀, 𝑑). Let 𝐴 ⊆ 𝑀 be closed and non-empty, let 𝑟 > 0
be fixed, and let 𝑑𝐴 be the distance function defined as in eqn. (10.d.2). Let then
𝐸 = {𝑥, 𝑑𝐴(𝑥) ≤ 𝑟}, notice that it is closed.

1. Show that
𝑑𝐸(𝑥) ≥ max{0, (𝑑𝐴(𝑥) − 𝑟)} . (10.d.5)

2. Show that in (10.d.5) you have equality if 𝑀 = ℝ𝑁 .
3. Give a simple example of a metric space where equality in (10.d.5) does not

hold.
4. If 𝑀 = ℝ𝑛, given 𝐴 ⊂ ℝ𝑛 closed non-empty, show that 𝐸 = 𝐴 ⊕ 𝐷𝑟 where

𝐷𝑟
def= {𝑥, |𝑥| ≤ 𝑟} and

𝐴 ⊕ 𝐵 def= {𝑥 + 𝑦, 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}

is theMinkowski sum of the two sets (see also Section §12.f).

Hidden solution: [UNACCESSIBLE UUID '0RD'] The set {𝑥, 𝑑𝐴(𝑥) ≤ 𝑟} = 𝐴 ⊕ 𝐷𝑟 is
sometimes called the ”fattening” of 𝐴. In figure 4 we see an example of a set 𝐴
fattened to 𝑟 = 1, 2; the set 𝐴 is the black polygon (and is filled in), whereas the
dashed lines in the drawing are the contours of the fattened sets. †81 See also the
properties in sections §12.f and §12.g.

§10.e Connected set [2C5]

See definitions in Sec. §8.e. We also define this notion.

Definition 10.e.1. A topological space (𝑋, 𝜏) is ”path connected” if, for every 𝑥, 𝑦 ∈ [0RG]

𝑋 , there is a continuous arc 𝛾 ∶ [𝑎, 𝑏] → 𝑋 with 𝑥 = 𝛾(𝑎), 𝑦 = 𝛾(𝑏).
†79If 𝛩 is a normal subgroup then 𝑌 = 𝑋/ ∼ is also written as 𝑌 = 𝑋/𝛩, and this is a group.
†80Note that, using 14.b.14, under these hypotheses the map of multiplication (𝜃, 𝑥) ↦ 𝜃𝑥 is continuous

from 𝛩 × 𝑋 to 𝑋 .
†81The fattened sets are not drawn filled — otherwise they would cover 𝐴.
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§10 METRIC SPACES

Exercises

E10.e.2 Find a sequence of connected closed sets 𝐶𝑛 ⊆ ℝ2 such that 𝐶𝑛+1 ⊆ 𝐶𝑛 and [0RH]

the intersection ⋂𝑛 𝐶𝑛 is a non-empty and disconnected set.
Can you find such an example in ℝ?
Hidden solution: [UNACCESSIBLE UUID '0RJ']

E10.e.3 Find a sequence of sets 𝐶𝑛 ⊆ ℝ2 that are closed and path connected, such [0RK]

that 𝐶𝑛+1 ⊆ 𝐶𝑛 and the intersection ⋂𝑛 𝐶𝑛 is non-empty, connected, but not path
connected.
Hidden solution: [UNACCESSIBLE UUID '0RM'][UNACCESSIBLE UUID '0RN']

E10.e.4 Consider the example of the set 𝐸 ⊆ ℝ2 given by [0RP]

𝐸 = {(0, 𝑡) ∶ −1 ≤ 𝑡 ≤ 1} ∪ {(𝑥, sin 1
𝑥 ) ∶ 𝑥 ∈ (0, 1]} . (10.e.5)

Show that this set is closed, connected, but is not path connected.
Hidden solution: [UNACCESSIBLE UUID '0RQ']

This set is sometimes called closed topologist’s sine curve [45].

E10.e.6 Difficulty:*.Let (𝑋, 𝑑) be a metric space. Show that 𝐸 ⊆ 𝑋 is disconnected if [0RR]

and only if ”there are two disjoint open sets, each of which intersect 𝐸 and such that
𝐸 is covered by their union” (see the proposition formalized in eqn. (8.e.12) in the
exercise 8.e.11).
Hidden solution: [UNACCESSIBLE UUID '0RS']

E10.e.7 Let 𝐷 ⊆ ℝ2 be countable; show that ℝ2 ⧵ 𝐷 is path connected. [0RT]

Hidden solution: [UNACCESSIBLE UUID '0RV']

E10.e.8 Find an example of a metric space 𝑋 that is path connected, where there exists [0RY]

an open subset 𝐴 ⊆ 𝑋 that is connected but not path connected. Hidden solution:
[UNACCESSIBLE UUID '0RZ']

§10.f Topology in the real line [2C6]

Exercises

E10.f.1 Show that a set 𝐴 ⊆ ℝ is an interval if and only it is convex, if and only if it [0S0]

is connected.
(A part of the proof is in Theorem 5.11.3 in [2]).
Hidden solution: [UNACCESSIBLE UUID '0S1']

(Note how in this case the exercises 3.d.46 and 8.e.15 coincide).

E10.f.2 Let us fix 𝛼 ∈ ℝ, consider the set 𝐴 of numbers of the form 𝛼𝑛 + 𝑚 with 𝑛, 𝑚 [0S2]

integers. Show that 𝐴 is dense in ℝ if and only if 𝛼 is irrational. Hidden solution:
[UNACCESSIBLE UUID '0S3']

E10.f.3 Given 𝐼 ⊆ ℚ non-empty, show that 𝐼 is connected if and only 𝐼 contains only [0S4]

one point. Hidden solution: [UNACCESSIBLE UUID '0S5']
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E10.f.4 Show that every open non-empty set 𝐴 ⊂ ℝ is the union of a family (at most [0S6]

countable) of disjoint open intervals. Hidden solution: [UNACCESSIBLE UUID '0S7']

E10.f.5 Find a compact 𝐴 ⊂ ℝ that has a countable number of accumulation points. [0S8]

Hidden solution: [UNACCESSIBLE UUID '0S9']

E10.f.6 Prerequisites:10.b.36. Show that the set 𝐴 ⊂ ℝ defined by [0SB]

𝐴 = {0} ∪ {1/𝑛 ∶ 𝑛 ∈ ℕ, 𝑛 ≥ 1} ∪ {1/𝑛 + 1/𝑚 ∶ 𝑛, 𝑚 ∈ ℕ, 𝑛 ≥ 1, 𝑚 ≥ 1}

is compact; identify its accumulation points.
Hidden solution: [UNACCESSIBLE UUID '0SC']

E10.f.7 Difficulty:**. Let 𝐴 ⊂ ℝ. We recall that 𝐷(𝐴) is the derivative of 𝐴 (i.e. the [0SD]

set of accumulation points of 𝐴). Describe a closed set 𝐴 such that the sets

𝐴, 𝐷(𝐴), 𝐷(𝐷(𝐴)), 𝐷(𝐷(𝐷(𝐴))) …

are all different.
Hidden solution: [UNACCESSIBLE UUID '0SF']

E10.f.8 Prerequisites:10.b.16, 10.b.19, 8.13, 10.b.29.Difficulty:**. [0SG]

Find a subset A of ℝ such that the following 7 subsets of ℝ are all distinct:

𝐴, 𝐴, 𝐴∘, (𝐴)
∘
, (𝐴∘), ((𝐴)

∘
), ((𝐴∘))

∘
.

Also prove that no other different sets can be created by continuing in the same way
(also replacing ℝ with a generic metric space).
Hidden solution: [UNACCESSIBLE UUID '0SH']

E10.f.9 Difficulty:**.Prove that it is not possible to write ℝ, or an interval 𝐷 ⊆ ℝ, as a [0W6]

countable and infinite union of closed and bounded intervals, pairwise disjoint.
Hidden solution: [UNACCESSIBLE UUID '0W7']

§10.g Topology in Euclidean spaces [2C7]

In the following we consider the metric space ℝ𝑛 with the usual Euclidean distance.

Exercises

E10.g.1 Prerequisites:10.b.25.Let 𝐵(𝑥, 𝑟) def= {𝑦 ∈ ℝ𝑛 ∶ |𝑥 − 𝑦| < 𝑟} be the ball; let [0SM]

𝐷(𝑥, 𝑟) def= {𝑦 ∈ ℝ𝑛 ∶ |𝑥 − 𝑦| ≤ 𝑟} the disc; let 𝑆(𝑥, 𝑟) def= {𝑦 ∈ ℝ𝑛 ∶ |𝑥 − 𝑦| = 𝑟} be
the sphere. Show that 𝐵(𝑥, 𝑟) = 𝐷(𝑥, 𝑟), that 𝐵(𝑥, 𝑟) = 𝐷(𝑥, 𝑟)∘, and that 𝜕𝐵(𝑥, 𝑟) =
𝑆(𝑥, 𝑟). Also show that 𝐵(𝑥, 𝑟) is not closed and 𝐷(𝑥, 𝑟) is not open.
(This result holds more generally in any normed space: see 12.7).

E10.g.2 Prerequisites:10.b.41, 10.a.9. Given a sequence (𝑥𝑘)𝑘 ⊆ ℝ𝑛, these facts are [0SN]

equivalent

a the sequence is bounded and has a single limit point 𝑥
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b lim𝑘 𝑥𝑘 = 𝑥.
Hidden solution: [UNACCESSIBLE UUID '0SP'] See also 10.b.40.

E10.g.3 Prerequisites:8.a.9, 8.a.10.For each𝐴 ⊆ ℝ𝑛 closed non-empty set, there exists [0SQ]

𝐵 ⊆ 𝐴 such that 𝐴 = 𝜕𝐵.
In which cases does there exist such a 𝐵 that is countable?
In which cases does there exist such a 𝐵 that is closed?
Hidden solution: [UNACCESSIBLE UUID '0SR'][UNACCESSIBLE UUID '0SS']

See also 8.i.4.

E10.g.4 Prerequisites:8.a.13.For every non-empty closed set 𝐸 ⊆ ℝ𝑁 , there exists 𝐹 ⊆ [0SV]

ℝ𝑛 such that 𝐸 = 𝐷(𝐹).
Can you find it 𝐹 ⊆ 𝐸?
Hidden solution: [UNACCESSIBLE UUID '0SX'][UNACCESSIBLE UUID '0SY']

E10.g.5 What are the sets 𝐴 ⊂ ℝ𝑛 that are both open and closed? [0T0]

Hidden solution: [UNACCESSIBLE UUID '0T2']

E10.g.6 Let 𝑓 ∶ ℝ → ℝ𝑛 continue; show that these two conditions are equivalent [0T3]

• lim𝑡→∞ |𝑓(𝑡)| = +∞ and lim𝑡→−∞ |𝑓(𝑡)| = +∞;
• 𝑓 is proper, i.e. for every compact 𝐾 ⊂ ℝ𝑛 we have that the counterimage

𝑓−1(𝐾) is a compact of ℝ.
E10.g.7 Prerequisites:Section §8.i.Show that ℝ𝑁 satisfies the second axiom of count- [0T4]

ability.

E10.g.8 Prerequisites:8.i.3. Note:exercise 4 in the written exam of 13/1/2011. [0T5]

If 𝐴 ⊆ ℝ𝑛 is composed only of isolated points, then 𝐴 has countable cardinality.
Conversely, therefore, if 𝐴 ⊆ ℝ𝑛 is uncountable then the derivative 𝐷(𝐴) is not
empty.
Hidden solution: [UNACCESSIBLE UUID '0T6']

E10.g.9 Let 𝐴 ⊂ ℝ𝑛 be a bounded set. For every 𝜀 > 0 there is a set 𝐼 ⊂ 𝐴 that [0T7]

satisfies:

• 𝐼 is a finite set,
• ∀𝑥, 𝑦 ∈ 𝐼, 𝑥 ≠ 𝑦 you have 𝑥 ∉ 𝐵(𝑦, 𝜀) (i.e. 𝑑(𝑥, 𝑦) ≥ 𝜀),
•

𝐴 ⊆ ⋃
𝑥∈𝐼

𝐵(𝑥, 𝜀) .

Hidden solution: [UNACCESSIBLE UUID '0T8']

E10.g.10 Difficulty:*.What is the cardinality of the family of open sets in ℝ𝑛? [0T9]

Hidden solution: [UNACCESSIBLE UUID '0TB']

E10.g.11 Let 𝐸 ⊆ ℝ𝑛 be not empty and such that every continuous function 𝑓 ∶ 𝐸 → [0TD]

ℝ admits maximum: show that 𝐸 is compact.
(See 10.j.10 for generalization to metric spaces)
Hidden solution: [UNACCESSIBLE UUID '0TF']

Copyright A. C. G. Mennucci
The sections comprising theory and exercises’ statements are released under License WP:CC BY-SA

135

https://coldoc.sns.it/UUID/EDB/0SP
https://coldoc.sns.it/UUID/EDB/0SQ/
https://coldoc.sns.it/UUID/EDB/0SR
https://coldoc.sns.it/UUID/EDB/0SS
https://coldoc.sns.it/UUID/EDB/0SV/
https://coldoc.sns.it/UUID/EDB/0SX
https://coldoc.sns.it/UUID/EDB/0SY
https://coldoc.sns.it/UUID/EDB/0T0/
https://coldoc.sns.it/UUID/EDB/0T2
https://coldoc.sns.it/UUID/EDB/0T3/
https://coldoc.sns.it/UUID/EDB/0T4/
https://coldoc.sns.it/UUID/EDB/0T5/
https://coldoc.sns.it/UUID/EDB/0T6
https://coldoc.sns.it/UUID/EDB/0T7/
https://coldoc.sns.it/UUID/EDB/0T8
https://coldoc.sns.it/UUID/EDB/0T9/
https://coldoc.sns.it/UUID/EDB/0TB
https://coldoc.sns.it/UUID/EDB/0TD/
https://coldoc.sns.it/UUID/EDB/0TF
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License


§10.h Fixed points

§10.h Fixed points [2C8]

Exercises

E10.h.1 Find a function 𝑓 ∶ ℝ → ℝ such that [0TG]

∀𝑥, 𝑦 ∈ ℝ, 𝑥 ≠ 𝑦 ⇒ |𝑓(𝑥) − 𝑓(𝑦)| < |𝑥 − 𝑦|

but that has no fixed points. Hidden solution: [UNACCESSIBLE UUID '27D']

E10.h.2 Prerequisites:10.j.11.Let (𝑋, 𝑑) be a compact metric space, and let 𝑓 ∶ 𝑋 → 𝑋 [0TH]

be such that
∀𝑥, 𝑦 ∈ 𝑋, 𝑥 ≠ 𝑦 ⇒ 𝑑(𝑓(𝑥), 𝑓(𝑦)) < 𝑑(𝑥, 𝑦) .

Show that 𝑓 has a single fixed point.
This result is sometimes called Edelstein’s Theorem.
Hidden solution: [UNACCESSIBLE UUID '27C']

§10.i Isometries [2C9]

Definition 10.i.1. Given (𝑀1, 𝑑1) and (𝑀2, 𝑑2) metric spaces, a map 𝜑 ∶ 𝑀1 → 𝑀2 [0TK]

is called an isometry if

∀𝑥, 𝑦 ∈ 𝑀1, 𝑑1(𝑥, 𝑦) = 𝑑2(𝜑(𝑥), 𝜑(𝑦)) . (10.i.2)

We will see in Sec. §12.b the same definition in the case of normed vector spaces.
Obviously an isometry is Lipschitz, and therefore continuous. Isometries enjoy some
properties.

Exercises

E10.i.3 Topics:isometry. An isometry is always injective. [0TM]

E10.i.4 If the isometry 𝜑 is surjective (and therefore is bijective) then the inverse 𝜑−1 [0TP]

is also an isometry.

E10.i.5 If (𝑀1, 𝑑1) is complete then its image 𝜑(𝑀1) is a complete set in 𝑀2; and there- [0TQ]

fore it is a closed in 𝑀2.
Hidden solution: [UNACCESSIBLE UUID '0TR'] Consequently, if the isometry 𝜑 is bijec-
tive and one of the two spaces is complete then the other is also complete.

E10.i.6 Topics:isometry. Difficulty:*.Let (𝑋, 𝑑) be a compact metric space; let 𝑇 ∶ 𝑋 → [0TT]

𝑋 be an isometry, then 𝑇 is surjective.
Provide a simple example of a non-compact metric space and 𝑇 ∶ 𝑋 → 𝑋 a non-
surjective isometry.
Hidden solution: [UNACCESSIBLE UUID '0TV']

E10.i.7 Topics:isometry.Prerequisites:10.i.6.Difficulty:*. [0TW]

Let (𝑋, 𝑑) and (𝑌, 𝛿) be two metric spaces of which 𝑋 compact, 𝑇 ∶ 𝑋 → 𝑌 and
𝑆 ∶ 𝑌 → 𝑋 two isometries. Prove that 𝑇 and 𝑆 are bijective.
Hidden solution: [UNACCESSIBLE UUID '0TY']
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E10.i.8 Topics:isometry.Difficulty:*. Find an example of two metric spaces (𝑋, 𝑑) and [0TZ]

(𝑌, 𝛿) that are not isometric but for which there are two isometries 𝑇 ∶ 𝑋 → 𝑌 and
𝑆 ∶ 𝑌 → 𝑋 .
Hidden solution: [UNACCESSIBLE UUID '0V1']

§10.j Compactness [2CB]

The Heine-Borel Theorem [56] extends to this context.

Theorem 10.j.1. Given a metric space (𝑋, 𝑑) and its subset 𝐶 ⊆ 𝑋 , The following [0V3]

three conditions are equivalent.

• 𝐶 is sequentially compact: every sequence (𝑥𝑛) ⊂ 𝐶 has a subsequence con-
verging to an element of 𝐶.

• 𝐶 is compact: from each family of open sets whose union covers𝐶, we can choose
a finite subfamily whose union covers 𝐶.

• 𝐶 is complete, and is totally bounded: for every 𝜀 > 0 there are finite points
𝑥1...𝑥𝑛 ∈ 𝐶 such that 𝐶 ⊆ ⋃𝑛

𝑖=1 𝐵(𝑥𝑖, 𝜀).

(This theorem has a generalization in topological spaces, see 8.f.7).

Exercises

E10.j.2 Setting 𝑋 = ℝ𝑛 and 𝑑 the usual Euclidean distance, taken 𝐶 ⊆ ℝ𝑛, use the [0V4]

above theorem 10.j.1 to show (as a corollary) the usual Heine-Borel theorem [56]: 𝐶
is compact if and only if it is closed and bounded.
Hidden solution: [UNACCESSIBLE UUID '0V5']

E10.j.3 Show that if𝐾 ⊂ 𝑋 is compact then it is closed. Hidden solution: [UNACCESSIBLE [0V6]

UUID '0V7'] (See 8.d.3 for the case of topological space)

E10.j.4 Let (𝑋, 𝑑𝑋 ) and (𝑌, 𝑑𝑌 ) be metric spaces, with (𝑋, 𝑑𝑋 ) compact; suppose that [0V8]

𝑓 ∶ 𝑋 → 𝑌 is continuous and injective. Show that 𝑓 is a homeomorphism between
𝑋 and its image 𝑓(𝑋).
Hidden solution: [UNACCESSIBLE UUID '0V9']

(See 8.d.5 for the case of topological space).

E10.j.5 Let 𝑛 ≥ 1 be natural. Let (𝑋𝑖, 𝑑𝑖) be compact metric spaces, for 𝑖 = 1, … 𝑛; [0VB]

choose 𝑦𝑖,𝑘 ∈ 𝑋𝑖 for 𝑖 = 1, … 𝑛 and 𝑘 ∈ ℕ. Show that there exists a subsequence 𝑘ℎ
such that, for every fixed 𝑖, 𝑦𝑖,𝑘ℎ converges, that is, the limit limℎ→∞ 𝑦𝑖,𝑘ℎ exists.

E10.j.6 Difficulty:**.Let (𝑋𝑖, 𝑑𝑖) be compact metric spaces, for 𝑖 ∈ ℕ, and choose [0VC]

𝑦𝑖,𝑘 ∈ 𝑋𝑖 for 𝑖, 𝑘 ∈ ℕ. Show that there exists a subsequence 𝑘ℎ such that, for every
fixed 𝑖, 𝑦𝑖,𝑘ℎ converges, that is, the limit limℎ→∞ 𝑦𝑖,𝑘ℎ exists.

E10.j.7 Let be given a metric space (𝑋, 𝑑). As in 10.b.1 we define the disk 𝐷(𝑥, 𝜀) def= [0VD]

{𝑦 ∈ 𝑋, 𝑑(𝑥, 𝑦) ≤ 𝜀} (which is closed). (𝑋, 𝑑) is locally compact if for every 𝑥 ∈ 𝑋
there exists 𝜀 > 0 such that 𝐷(𝑥, 𝜀) is compact. Consider this proposition.
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«Proposition A locally compact metric space is complete. Proof Let (𝑥𝑛)𝑛 ⊂ 𝑋 be
a Cauchy sequence, then eventually its terms are distant at most 𝜀, so they are

contained in a small compact disk, so there is a subsequence that converges, and
then, by the result 10.a.12, the whole sequence converges. q.e.d. »

If you think the proposition is true, rewrite the proof rigorously. If you think it’s
false, find a counterexample.
Hidden solution: [UNACCESSIBLE UUID '0VF']

E10.j.8 Let (𝑋, 𝑑) be a metric space, and let 𝐶 ⊂ 𝑋 . Show that 𝐶 is totally bounded [0VG]

if and only if 𝐶 is totally bounded. (See 10.j.1 for the definition of totally bounded).
Hidden solution: [UNACCESSIBLE UUID '0VH']

E10.j.9 Prerequisites:10.b.20.Let (𝑋, 𝑑) be a totally bounded metric space. Let 𝐸 ⊆ 𝑋 , [2GB]

then 𝐸 is a metric space with the restricted distance ̃𝑑 = 𝑑|𝐸×𝐸. Show that (𝐸, ̃𝑑) is
totally bounded. (See 10.j.1 for the definition of totally bounded). Hidden solution:
[UNACCESSIBLE UUID '2GC']

E10.j.10 Prerequisites:10.b.41,10.j.13.Difficulty:*. [0VJ]

Let (𝑋, 𝑑) be a metric space such that every continuous function 𝑓 ∶ 𝑋 → ℝ has
maximum: show that the space is compact.
(See 10.g.11 for a rewording with 𝑋 = ℝ𝑛.) Hidden solution: [UNACCESSIBLE UUID

'0VM'][UNACCESSIBLE UUID '0VN']

E10.j.11 Topics:compact.Prerequisites:10.j.3. [0VP]

Let (𝑋, 𝑑) be a metric space, and let 𝐴𝑛 ⊆ 𝑋 be compact non-empty subsets such
that 𝐴𝑛+1 ⊆ 𝐴𝑛: then ⋂𝑛∈ℕ 𝐴𝑛 ≠ ∅.
(This result can be derived from 8.d.4; but try to give a direct demonstration, using
the characterization of ”compact” as ”sequentially compact ”, i.e. the first point in
10.j.1).
Hidden solution: [UNACCESSIBLE UUID '0VQ']

E10.j.12 Let be given a metric space (𝑋, 𝑑) and its subset 𝐶 ⊆ 𝑋 that is totally [0VR]

bounded, as defined in 10.j.1: show that 𝐶 is bounded, i.e. for every 𝑥0 ∈ 𝐶 we
have

sup
𝑥∈𝐶

𝑑(𝑥0, 𝑥) < ∞ ,

or equivalently, for every 𝑥0 ∈ 𝐶 there exists 𝑟 > 0 such that 𝐶 ⊆ 𝐵(𝑥0, 𝑟).
The opposite implication does not hold, as shown in 10.j.14

E10.j.13 Let (𝑋, 𝑑) be a metric space and let 𝐷 ⊆ 𝑋 , show that these clauses are [0VS]

equivalent:

• 𝐷 is not totally bounded;
• there exists 𝜀 > 0 and there is a sequence (𝑥𝑛)𝑛 ⊆ 𝐷 for which

∀𝑛, 𝑚 ∈ ℕ, 𝑑(𝑥𝑛, 𝑥𝑚) ≥ 𝜀 .
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§10 METRIC SPACES

E10.j.14 Prerequisites:10.j.13.Let𝑋 = 𝐶0([0, 1]) be the space of continuous and bounded [0VT]

functions 𝑓 ∶ [0, 1] → ℝ, endowed with the usual distance

𝑑∞(𝑓, 𝑔) = ‖𝑓 − 𝑔‖∞ = sup
𝑥∈[0,1]

|𝑓(𝑥) − 𝑔(𝑥)| .

We know that (𝑋, 𝑑∞) is a complete metric space. Let

𝐷(0, 1) = {𝑓 ∈ 𝑋 ∶ 𝑑∞(0, 𝑓) ≤ 1} = {𝑓 ∈ 𝑋 ∶ ∀𝑥 ∈ [0, 1], |𝑓(𝑥)| ≤ 1}

the disk of center 0 (the function identically zero) and radius 1. We know from
10.b.24 that it is closed, and therefore it is complete. Show that 𝐷 is not totally
bounded by finding a sequence (𝑓𝑛) ⊆ 𝐷 as explained in 10.j.13.

§10.k Baire’s Theorem and categories
The following is Baire’s category theorem; there are several equivalent statements.

Theorem 10.k.1. Suppose (𝑋, 𝑑) is complete. [0VV]

• Given countably many sets 𝐴𝑛 that are open and dense in 𝑋 , we have that ⋂𝑛 𝐴𝑛
is dense.

• Given countably many sets 𝐶𝑛 closed with empty interior in 𝑋 , we have that
⋃𝑛 𝐶𝑛 has empty interior.

Definition 10.k.2. A set that is contained in the union of countably many closed sets [0VW]

with empty interior is called first category set in 𝑋 . †82 A set that is not first category,
is said second category.

Exercises

E10.k.3 A complete metric space 𝑋 is second category in itself. Hidden solution: [0VX]

[UNACCESSIBLE UUID '0VY']

E10.k.4 Given 𝑋 = ℝ, the set of irrational numbers is second category in ℝ. Hidden [0VZ]

solution: [UNACCESSIBLE UUID '0W0']

E10.k.5 Reflect on the statements: [0W1]

• A closed set 𝐶 inside a complete metric space (𝑋, 𝑑) is complete (when viewed
as a metric space (𝐶, 𝑑)).

• The set 𝐶 = {0} ∪ {1/𝑛 ∶ 𝑛 ∈ ℕ} is closed in ℝ, so 𝐶 is complete with distance
𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|.

• 𝐶 is composed of countably many points.
• A singleton {𝑥} is a closed set with an empty internal part.

Why is there no contradiction?
Hidden solution: [UNACCESSIBLE UUID '0W2']
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§10.l Infinite product of metric spaces

E10.k.6 Topics:perfect set.Prerequisites:10.b.35,3.j.27. [0W3]

Suppose (𝑋, 𝑑) is a complete metric space. A closed set without isolated points, i.e.
consisting only of accumulation points, is called a perfect set. Show that a non-
empty perfect set 𝐸 contained in 𝑋 must be uncountably infinite. (Find a simple
direct proof, using Baire’s Theorem 10.k.1.)
Hidden solution: [UNACCESSIBLE UUID '2DZ']

The Cantor set is a perfect set, see 9.b.1.

§10.l Infinite product of metric spaces
Exercises

E10.l.1 Prerequisites:10.a.8.Sia 𝜑(𝑡) = 𝑡/(1 + 𝑡). Let (𝑋𝑖, 𝑑𝑖) be metric spaces with [0W9]

𝑖 ∈ ℕ, let 𝑋 = ∏𝑖∈ℕ 𝑋𝑖, for any 𝑓, 𝑔 ∈ 𝑋 we define the distance on 𝑋 as

𝑑(𝑓, 𝑔) =
∞
∑
𝑘=0

2−𝑘𝜑(𝑑𝑖(𝑓(𝑘), 𝑔(𝑘))) .

Prove that 𝑑 is a distance.

E10.l.2 Let 𝑓, 𝑓𝑛 ∈ 𝑋 be as before in 10.l.1, show that 𝑓𝑛 →𝑛 𝑓 according to this [0WB]

metric if and only if for every 𝑘 we have 𝑓𝑛(𝑘) →𝑛 𝑓(𝑘).

E10.l.3 Let (𝑋𝑖, 𝑑𝑖) and (𝑋, 𝑑) be as before in 10.l.1. If all the spaces (𝑋𝑖, 𝑑𝑖) are com- [0WC]

plete, prove that (𝑋, 𝑑) is complete.

E10.l.4 Prerequisites:10.j.6,10.l.2.Difficulty:*.Let (𝑋𝑖, 𝑑𝑖) and (𝑋, 𝑑) be as before in [0WD]

10.l.1. If all the spaces (𝑋𝑖, 𝑑𝑖) are compact, prove that (𝑋, 𝑑) is compact. Hidden
solution: [UNACCESSIBLE UUID '0WF']

E10.l.5 Prerequisites:10.l.4.We want to define a distance for the space of sequences. [0WG]

We proceed as in 10.l.1. We choose 𝑋𝑖 = ℝ for each 𝑖 and set that 𝑑𝑖 is the Euclidean
distance; then for 𝑓, 𝑔 ∶ ℕ → ℝ we define

𝑑(𝑓, 𝑔) = ∑
𝑘

2−𝑘𝜑(|𝑓(𝑘) − 𝑔(𝑘)|) .

We have constructed a metric space of sequences (ℝℕ, 𝑑).
In the space of sequences (ℝℕ, 𝑑) we define

𝐾 = {𝑓 ∈ ℝℕ, ∀𝑘, |𝑓(𝑘)| ≤ 1} .

Show that 𝐾 is compact. Hidden solution: [UNACCESSIBLE UUID '0WH']

E10.l.6 Let 𝑁(𝜌) be the minimum number of radius balls 𝜌 that are needed to cover 𝐾 [0WJ]

(from the previous exercise 10.l.5). Estimate 𝑁(𝜌) for 𝜌 → 0.
See also Sec. §11
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§10 METRIC SPACES

§10.m Ultrametric
Definition 10.m.1. An ultrametric space is a metric space in which the triangle in- [0WM]

equality is reinforced by the condition

𝑑(𝑥, 𝑦) ≤ max{𝑑(𝑥, 𝑧), 𝑑(𝑧, 𝑦)} . (10.m.2)

Exercises

E10.m.3 Show that (10.m.2) implies that 𝑑 satisfies the triangle inequality. [0WN]

E10.m.4 Note that if 𝑑(𝑥, 𝑦) ≠ 𝑑(𝑦, 𝑧) then 𝑑(𝑥, 𝑧) = max{𝑑(𝑥, 𝑦), 𝑑(𝑦, 𝑧)}. Hidden [0WP]

solution: [UNACCESSIBLE UUID '0WQ'] Intuitively, all triangles are isosceles, and the base
is shorter than equal sides.

E10.m.5 Consider two balls 𝐵(𝑥, 𝑟) and 𝐵(𝑦, 𝜌) radius 0 < 𝑟 ≤ 𝜌 that have non-empty [0WR]

intersection: then 𝐵(𝑥, 𝑟) ⊆ 𝐵(𝑦, 𝜌).

Similarly for the disks 𝐷(𝑥, 𝑟) def= {𝑦 ∈ 𝑋 ∶ 𝑑(𝑥, 𝑦) ≤ 𝑟} and 𝐷(𝑦, 𝑟).
Hidden solution: [UNACCESSIBLE UUID '0WS']

E10.m.6 Show that two balls 𝐵(𝑥, 𝑟) and 𝐵(𝑦, 𝑟) of equal radius are disjoint or are [0WT]

coincident; in particular they are coincident if and only if 𝑦 ∈ 𝐵(𝑥, 𝑟). Similarly for
the discs 𝐷(𝑥, 𝑟) def= {𝑦 ∈ 𝑋 ∶ 𝑑(𝑥, 𝑦) ≤ 𝑟} and 𝐷(𝑦, 𝑟).
Hidden solution: [UNACCESSIBLE UUID '0WV']

E10.m.7 Show that every open ball 𝐵(𝑥, 𝑟) is also closed. Show that every disk𝐷(𝑥, 𝑟) [0WW]

with 𝑟 > 0 is also open. Hidden solution: [UNACCESSIBLE UUID '0WX'] By the exercise
8.e.20, there follows that the space is totally disconnected.

E10.m.8 Let 𝜑 ∶ [0, ∞) → [0, ∞) be a function that is continuous in zero, monotoni- [0WY]

cally weakly increasing and with 𝜑(𝑥) = 0 ⟺ 𝑥 = 0. Show that ̃𝑑 = 𝜑◦𝑑 is still
an ultrametric. Show that spaces (𝑋, 𝑑) (𝑋, ̃𝑑) have the same topology.
Compare with the exercise 10.a.8, notice that we do not require 𝜑 to be subadditive.

§10.m.a Ultrametric space of sequences

Let’s build this example of ultrametric on the space of sequences.

Definition 10.m.9. Let 𝐼 be a non-empty set, with at least two elements. Let 𝑋 = [0X0]

{𝑓 ∶ ℕ → 𝐼} = 𝐼ℕ be the space of sequences. Let 𝑥, 𝑦 ∈ 𝑋 . If 𝑥 = 𝑦 then we set
𝑑(𝑥, 𝑦) = 0. †83 If 𝑥 ≠ 𝑦, we set

𝑐(𝑥, 𝑦) = min{𝑛 ≥ 0, 𝑥(𝑛) ≠ 𝑦(𝑛)} (10.m.10)

to be the first index where the sequences are different; then we define 𝑑(𝑥, 𝑦) = 2−𝑐(𝑥,𝑦).

Remark 10.m.11. Because of the exercise 10.m.8, we could equivalently define [0X1]

𝑑(𝑥, 𝑦) = 𝜀𝑐(𝑥,𝑦) with 𝜀𝑛 > 0 infinitesimal decreasing sequence.
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§10.n P-adic ultrametric

Exercises

E10.m.12 Prerequisites:10.m.9.Show that 𝑑(𝑥, 𝑦) ≤ max{𝑑(𝑥, 𝑧), 𝑑(𝑦, 𝑧)}. [0X2]

Hidden solution: [UNACCESSIBLE UUID '0X3']

E10.m.13 Topics:complete. Prerequisites:10.m.9.Show that (𝑋, 𝑑) is complete. Hidden [0X4]

solution: [UNACCESSIBLE UUID '0X5']

E10.m.14 Topics:compact. [0X6]

Prerequisites:10.m.9.

Show that (𝑋, 𝑑) is compact if and only if 𝐼 is a finite set.
Hidden solution: [UNACCESSIBLE UUID '0X7']

E10.m.15 Prerequisites:10.m.9,9.b.2. Suppose that 𝐼 is a group; then 𝑋 is a group (it is [0X8]

the Cartesian product of groups); and multiplication is carried out ”component by
component”. Show that the product in 𝑋 is a continuous operation, and so for the
inversion map. So (𝑋, 𝑑) is a topological group.
Hidden solution: [UNACCESSIBLE UUID '0X9']

E10.m.16 Prerequisites:10.m.9,9.b.2. Let 𝐼 be a set of cardinality 2, then the space (𝑋, 𝑑) [0XC]

is homeomorphic to the Cantor set (with the usual Euclidean metric |𝑥 − 𝑦|).
Hidden solution: [UNACCESSIBLE UUID '0XD']

Combining this result with 10.m.15 we get that the Cantor set (with its usual topol-
ogy) can be endowed with an abelian group structure, where the sum and inverse are
continuous functions; This makes it a topological group.

See also 11.24.

§10.n P-adic ultrametric [2CG]

We report from the notes [2] the definition of the 𝑝–adic distance on the ℚ set. Let 𝑝
be a fixed prime number.

Definition 10.n.1. Each rational number 𝑥 ≠ 0 breaks down uniquely as a product [0XF]

𝑥 = ±𝑝𝑚1
1 𝑝𝑚2

2 ⋯ 𝑝𝑚𝑘
𝑘 , (10.n.2)

where 𝑝1 < 𝑝2 < ⋯ < 𝑝𝑘 are prime numbers and the 𝑚𝑗 integers. Fixed as above a
prime number 𝑝, we define the 𝑝–adic absolute value of 𝑥 ∈ ℚ as

|𝑥|𝑝 = {0 if 𝑥 = 0
𝑝−𝑚 if 𝑝𝑚 is the factor with base 𝑝 in the decomposition (10.n.2) .

Finally, we define 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|𝑝, which will turn out to be a distance on ℚ, called
𝑝–adic distance.

We add this definition, which will be very useful in the following.

Definition 10.n.3. For 𝑛 ∈ ℤ, 𝑛 ≠ 0 we define [0XG]

𝜑𝑝(𝑛) = max{ℎ ∈ ℕ, 𝑝ℎ divides 𝑛} .
Let’s also define 𝜑𝑝(0) = ∞. This 𝜑𝑝 is known as p-adic valuation [63]. .
†82It is sometimes also called meagre set (for example in Wikipedia [47]).
†83This can also be achieved by defining 𝑐(𝑥, 𝑥) = ∞
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§10 METRIC SPACES

Exercises

E10.n.4 Prove these fundamental relation. [0XH]

1. |1|𝑝 = 1 and more generally |𝑛|𝑝 ≤ 1 for every nonnull integer 𝑛, with equality
if 𝑛 is not divisible by 𝑝.

2. Given 𝑛 nonnull integer, we have that |𝑛|𝑝 = 𝑝−𝜑𝑝(𝑛).
3. Given𝑛, 𝑚 integers, we have that𝜑𝑝(𝑛+𝑚) ≥ min{𝜑𝑝(𝑛), 𝜑𝑝(𝑚)}with equality

if 𝜑𝑝(𝑛) ≠ 𝜑𝑝(𝑚).
4. Given 𝑛, 𝑚 nonzero integers, we have that 𝜑𝑝(𝑛𝑚) = 𝜑𝑝(𝑛)+𝜑𝑝(𝑚) and there-

fore |𝑛𝑚|𝑝 = |𝑛|𝑝|𝑚|𝑝.

5. Given 𝑥 = 𝑎/𝑏 with 𝑎, 𝑏 nonnull integers we have that |𝑥|𝑝 = 𝑝−𝜑𝑝(𝑎)+𝜑𝑝(𝑏).
Note that if 𝑎, 𝑏 are coprime, then one of the two terms 𝜑𝑝(𝑎), 𝜑𝑝(𝑏) is zero.

6. Prove that |𝑥𝑦|𝑝 = |𝑥|𝑝|𝑦|𝑝 for 𝑥, 𝑦 ∈ ℚ.
7. Prove that |𝑥/𝑦|𝑝 = |𝑥|𝑝/|𝑦|𝑝 for 𝑥, 𝑦 ∈ ℚ nonzero.

E10.n.5 Check that [0XM]

|𝑥 + 𝑦|𝑝 ≤ max {|𝑥|𝑝, |𝑦|𝑝} (10.n.6)

for each 𝑥, 𝑦 ∈ ℚ. and therefore

𝑑𝑝(𝑥, 𝑧) ≤ max {𝑑𝑝(𝑥, 𝑦), 𝑑𝑝(𝑦, 𝑧)} , ∀ 𝑥, 𝑦, 𝑧 ∈ ℚ .

that is, this is an ultrametric (and therefore a distance). Hidden solution: [UNACCESSIBLE

UUID '0XN'] The properties 6 and (10.n.6) say that the p-adic valuation is an absolute
value, and indeed it is a Krull valuation.

E10.n.7 Show that themultiplicationmap is continuous. Hidden solution: [UNACCESSIBLE [0XQ]

UUID '0XR']

E10.n.8 Find an example of a sequence that tends to zero (but never takes the value 0). [0XT]

This example shows that the associated topology is not the discrete topology. Hidden
solution: [UNACCESSIBLE UUID '0XV']

E10.n.9 Difficulty:*.Show, for every 𝑎/𝑏 ∈ ℚ with 𝑎, 𝑏 coprime and 𝑏 not divisible by [0XW]

𝑝, there exists (𝑥𝑛)𝑛 ⊆ ℤ such that |𝑥𝑛 − 𝑎/𝑏|𝑝 →𝑛 0. Note that the assumption is
necessary.
Hidden solution: [UNACCESSIBLE UUID '0XX'] We proved that ℤ is dense in the disk
{𝑥 ∈ ℚ, |𝑥|𝑝 ≤ 1}.

E10.n.10 Difficulty:**.Show that (ℚ, 𝑑) is not a complete metric space. [0XY]

Hidden solution: [UNACCESSIBLE UUID '0XZ']

E10.n.11 Show that no𝑝–adic distance onℚ is bi–Lipschitz equivalent to the Euclidean [0Y0]

distance (induced by ℝ).
Hidden solution: [UNACCESSIBLE UUID '0Y1']
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§10.o Circle

§10.o Circle [2CF]

Definition 10.o.1. 𝑆1 = {𝑥 ∈ ℝ2, |𝑥| = 1} is the circle in the plane. [0Y3]

It is a closed set in ℝ2, so we can think of it as a complete metric space with the
Euclidean distance 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|ℝ2 .

Definition 10.o.2. We denote by ℝ/2𝜋 the quotient space ℝ/ ∼ where 𝑥 ∼ 𝑦 ⟺ [0Y4]

(𝑥 − 𝑦)/(2𝜋) ∈ ℤ is an equivalence relation that makes points equivalent that are an
integer multiple of 2𝜋. This space ℝ/2𝜋 is called the space of real numbers modulo
2𝜋.

As usual, given 𝑡 ∈ ℝ, we indicate with [𝑡] the class of elements inℝ/2𝜋 equivalent
to 𝑡.

Exercises

E10.o.3 Consider the map [0Y5]

𝛷 ∶ ℝ/2𝜋 → 𝑆1

[𝑡] ↦ (cos(𝑡), sin(𝑡))
Show that it is well-defined and bijective.
Hidden solution: [UNACCESSIBLE UUID '0Y6']

E10.o.4 Through this bijection we transport the Euclidean distance from 𝑆1 to ℝ/2𝜋 [0Y7]

defining
𝑑𝑒([𝑠], [𝑡]) = |𝛷([𝑠]) − 𝛷([𝑡])|ℝ2 .

With this choice themap𝛷 turns out to be an isometry between (𝑆1, 𝑑) and (ℝ/2𝜋, 𝑑𝑒)
(see the Definition 10.i.1). So the latter is a complete metric space.
With some simple calculations it can be deduced that

𝑑𝑒([𝑠], [𝑡]) = √| cos(𝑡) − cos(𝑠)|2 + | sin(𝑡) − sin(𝑠)|2 = √2 − 2 cos(𝑡 − 𝑠) .

Then we define the function

𝑑𝑎([𝑠], [𝑡]) = inf{|𝑠 − 𝑡 − 2𝜋𝑘| ∶ 𝑘 ∈ ℤ} ,
show that it is a distance on ℝ/2𝜋.
Hidden solution: [UNACCESSIBLE UUID '0Y8']

E10.o.5 Show that 𝑑𝑎([𝑠], [𝑡]) is the length of the shortest arc in 𝑆1 that connects𝛷([𝑠]) [0Y9]

to 𝛷([𝑡]).

E10.o.6 Show that distances 𝑑𝑎 and 𝑑𝑒 are equivalent, proving that
2
𝜋

𝑑𝑎 ≤ 𝑑𝑒 ≤ 𝑑𝑎. [0YB]

Hidden solution: [UNACCESSIBLE UUID '0YC']

E10.o.7 Prerequisites:10.c.1.One can easily show that a function 𝑓 ∶ ℝ/2𝜋 → 𝑋 can [0YD]

be seen as a periodic function ̃𝑓 ∶ ℝ → 𝑋 of period 2𝜋, and vice versa.
This can be easily obtained from the relation 𝑓([𝑡]) = ̃𝑓(𝑡) where 𝑡 is a generic
element of its equivalence class [𝑡]. Assuming that ̃𝑓 is periodic (with period 2𝜋),
the above relation allows to derive 𝑓 from ̃𝑓 and vice versa.
Show that 𝑓 is continuous if and only if ̃𝑓 is continuous.
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§10 METRIC SPACES

E10.o.8 Prerequisites:8.b.3.Let (𝑋, 𝜏) be the compactified line, the topological space [0YF]

defined in 8.b.3. Show that it is homeomorphic to 𝑆1.
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§11 Dimension [0YH]

Let (𝑋, 𝑑) be a metric space. Let in the following 𝐾 a compact non-empty subset of 𝑋 ,
and 𝑁(𝜌) the minimum number of balls of radius 𝜌 that are needed to cover 𝐾. †84

Definition 11.1. If the limit exists [0YJ]

lim
𝜌→0+

log𝑁(𝜌)
log(1/𝜌) (11.2)

we will say that this limit is theMinkowski dimension dim(𝐾) of 𝐾.

If the limit does not exist, we can still use the limsup and the liminf to define the
upper and lower dimension.

Note that this definition depends a priori on the choice of the distance, i.e. 𝑁 =
𝑁(𝜌, 𝐾, 𝑑) and dim = dim(𝐾, 𝑑). See in particular 11.10.

Exercises

E11.3 Show that 𝑁(𝜌) is decreasing as a function of 𝜌. [0YK]

E11.4 Prerequisites: 10.j.5.Difficulty:*.Show that 𝑁(𝜌) is bounded if and only if 𝐾 [0YN]

contains only a finite number of points. Hidden solution: [UNACCESSIBLE UUID '0YP']

So if 𝐾 is infinite, then lim𝜌→0+ 𝑁(𝜌) = ∞.

E11.5 Let 𝑁′(𝜌) be the minimum number of balls, with radius 𝜌 and centered in 𝐾, [0YQ]

that are necessary to cover 𝐾: then

𝑁′(2𝜌) ≤ 𝑁(𝜌) ≤ 𝑁′(𝜌) .

So the dimension does not change if you require the balls to be centered at points of
𝐾. Hidden solution: [UNACCESSIBLE UUID '0YR']

E11.6 Let 𝑃(𝜌) be the maximum number of balls, with radius 𝜌 and centered in 𝐾, that [0YS]

are disjoint. Show that
𝑁(2𝜌) ≤ 𝑃(𝜌) ≤ 𝑁(𝜌/2) .

So the dimension can also be calculated as

lim
𝜌→0+

log𝑃(𝜌)
log(1/𝜌) . (11.7)

Such a construction is known as ball packing. Hidden solution: [UNACCESSIBLE UUID

'0YT']

E11.8 In the exercise 11.6 it is important to require that the balls are centered in points [0YV]

of𝐾. Find an example of metric space (𝑋, 𝑑) and compact𝐾 ⊆ 𝑋 of finite dimension,
but such that, for every 𝑛 ∈ ℕ and every 𝜌 > 0, there are infinite disjoint balls each
containing only one point of 𝐾.
Hidden solution: [UNACCESSIBLE UUID '0YW']

E11.9 Show that the dimension does not change if you use disks [0YX]

𝐷(𝑥, 𝑟) def= {𝑦 , 𝑑(𝑥, 𝑦) ≤ 𝑟}

instead of balls 𝐵(𝑥, 𝑟). Hidden solution: [UNACCESSIBLE UUID '0YY']
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§11 DIMENSION

E11.10 Prerequisites:10.a.8.Let𝐾 ⊆ 𝑋 compact; fix 𝛼 > 1; define ̃𝑑(𝑥, 𝑦) = 𝛼√𝑑(𝑥, 𝑦). [0YZ]

We know from 10.a.8 that it is a distance. Show that

𝛼 dim(𝐾, 𝑑) = dim(𝐾, ̃𝑑) .

In particular 𝐾 = [0, 1] (the interval 𝐾 ⊆ 𝑋 = ℝ) with the distance ̃𝑑(𝑥, 𝑦) =
𝛼√|𝑥 − 𝑦| has dimension 𝛼.
Hidden solution: [UNACCESSIBLE UUID '0Z0']

E11.11 Topics:norm.Prerequisites:12.10. [0Z1]

Let 𝐾 be a compact in ℝ𝑛; we write dim(𝐾, | ⋅ |) to denote the limit that defines the
dimension, using the balls of the Euclidean norm. Given a norm 𝜙 we can define the
distance 𝑑(𝑥, 𝑦) = 𝜙(𝑥 − 𝑦), and with this calculate the dimension dim(𝐾, 𝜙). Show
that dim(𝐾, | ⋅ |) = dim(𝐾, 𝜙), in the sense that, if one limit exists, then the other limit
exists, and they are equal. Hidden solution: [UNACCESSIBLE UUID '0Z2']

E11.12 We indicate an operating policy that can be used in the following exercises. [0Z3]

• If there is a descending sequence 𝜌𝑗 → 0 and ℎ𝑗 positive such that ℎ𝑗 balls of
radious 𝜌𝑗 are enough to cover 𝐾, then

lim sup
𝜌→0+

log𝑁(𝜌)
log(1/𝜌) ≤ lim sup

𝑗→∞

logℎ𝑗+1
log(1/𝜌𝑗) . (11.13)

• If, on the other hand, there is a descending sequence 𝑟𝑗 → 0, and 𝐶𝑛 ⊆ 𝐾 finite
families of points that are at least distant 𝑟𝑗 from each other, i.e. for which

∀𝑥, 𝑦 ∈ 𝐶𝑛, 𝑥 ≠ 𝑦 ⇒ 𝑑(𝑥, 𝑦) ≥ 𝑟𝑗 , (11.14)

then

lim inf
𝜌→0+

log𝑁(𝜌)
log(1/𝜌) ≥ lim inf

𝑗→∞

log 𝑙𝑗
log(1/𝑟𝑗+1) . (11.15)

where 𝑙𝑗 = |𝐶𝑗 | is the cardinality of𝐶𝑗 . Note that the points of 𝑥 ∈ 𝐶𝑗 are centers
of disjoint balls 𝐵(𝑥, 𝑟𝑗/2), therefore 𝑙𝑗 ≤ 𝑃(𝑟𝑗/2), as defined in 11.6.

In particular, if

lim sup
𝑗→∞

logℎ𝑗+1
log(1/𝜌𝑗) = lim inf

𝑗→∞

log 𝑙𝑗
log(1/𝑟𝑗+1) = 𝛽 (11.16)

then the set 𝐾 has dimension 𝛽.
Hidden solution: [UNACCESSIBLE UUID '0Z5'][UNACCESSIBLE UUID '0Z6']

E11.17 Prerequisites: 12.a.14 11.11 11.12.Difficulty:*.Let 𝐾 ⊆ ℝ𝑚 compact. Consider [0Z7]

the family of closed cubes with edge length 2−𝑛 and centers at the grid points 2−𝑛ℤ𝑚.
We call it ”n-tessellation”. Let 𝑁𝑛 be the number of cubes of the n-tessellation
intersecting 𝐾. Show that 𝑁𝑛 is weakly increasing. Show that the following limit
exists

lim
𝑛→∞

log2 𝑁𝑛
𝑛 (11.18)

†84By the Heine–Borel theorem 10.j.1 we know that 𝑁(𝜌) < ∞
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if and only if the limit (11.2) (that defines the dimension) exists. Show that, when
they both exist, they coincide. This approach to computing the dimension is called
Box Dimension.
Hidden solution: [UNACCESSIBLE UUID '0Z8'][UNACCESSIBLE UUID '0Z9']

These quantities have an interpretation in rate-distortion theory. ”𝑛” is the posi-
tion of the last significant digit (in base 2) in determining the position of a point 𝑥.
”log2 𝑁𝑛” is the number of ”bits” needed to identify any 𝑥 ∈ 𝐾 with such precision.

E11.19 Let 𝑎𝑛 be an infinitesimal decreasing positive sequence. Let 𝐾 ⊆ ℝ given by [0ZB]

𝐾 = {0} ∪ {𝑎𝑛 ∶ 𝑛 ∈ ℕ, 𝑛 ≥ 1} ;
note that it is compact. Study the dimension of 𝐾 in these cases:

• 𝑎𝑛 = 𝑛−𝜃 with 𝜃 > 0;
• 𝑎𝑛 = 𝜃−𝑛 with 𝜃 > 1.

Hidden solution: [UNACCESSIBLE UUID '0ZC']

E11.20 Let 1 ≤ 𝑑 ≤ 𝑛 be integers. Let [0, 1]𝑑 be a cube of dimension 𝑑, we see it as a [0ZD]

subset of ℝ𝑛 by defining

𝐾 = [0, 1]𝑑 × {(0, 0 … 0)}
namely

𝐾 = {𝑥 ∈ ℝ𝑛, 0 ≤ 𝑥1 ≤ 1, … 0 ≤ 𝑥𝑑 ≤ 1, 𝑥𝑑+1 = … = 𝑥𝑛 = 0}

Show that the dimension of 𝐾 is 𝑑.
Hidden solution: [UNACCESSIBLE UUID '0ZF']

E11.21 Show that the dimension of the (image of) Koch curve is log 4/ log 3. (See for [0ZG]

example [58] for the definition).
Hidden solution: [UNACCESSIBLE UUID '0ZH']

E11.22 Show that the dimension of the Cantor set is log(2)/ log(3). [0ZJ]

Hidden solution: [UNACCESSIBLE UUID '0ZK']

E11.23 Prerequisites:13.c.1,12.c.3.Inside the Banach space 𝑋 = 𝐶0([0, 𝑎]) endowed [0ZM]

with the norm ‖ ⋅ ‖∞ we consider

𝐾 = {𝑓, 𝑓(0) = 0, ∀𝑥, 𝑦, |𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝐿|𝑥 − 𝑦|}
where 𝐿 > 0, 𝑎 > 0 are fixed.
Estimate 𝑁(𝜌) for 𝜌 → 0

E11.24 Topics:ultrametric.Prerequisites:10.m.9. [0ZP]

Fix 𝜆 > 0. We define the ultrametric space of sequences as in Sec. §10.m.a: let 𝐼
be a finite set, of cardinality 𝑝; let 𝑋 = 𝐼ℕ be the space of sequences; define 𝑐 as
in eqn. (10.m.10); define 𝑑(𝑥, 𝑦) = 𝜆−𝑐(𝑥,𝑦). We know from exercises 10.m.14 and
10.m.11 that (𝑋, 𝑑) is compact.
Show that the dimension of (𝑋, 𝑑) is log𝑝/ log 𝜆.
Hidden solution: [UNACCESSIBLE UUID '0ZQ']

E11.25 Difficulty:*.Describe a compact set 𝐾 ⊂ ℝ for which the limit (11.2) does not [0ZR]

exist.
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§12 NORMED SPACES

§12 Normed spaces [0ZT]

Let in the following 𝑋 be a vector space based on the real field ℝ.

Definition 12.1 (Norm). A norm is an operation that maps a vector 𝑣 ∈ 𝑋 in a real [0ZV]

number ‖𝑣‖, which satisfies

1. ‖𝑣‖ ≥ 0 and ‖𝑣‖ = 0 if and only if 𝑣 = 0;

2. for every 𝑣 ∈ 𝑋 and 𝑡 ∈ ℝ we have |𝑡| ‖𝑣‖ = ‖𝑡𝑣‖ (we will say that the norm is
absolutely homogeneous);

3. (Triangle inequality) for every 𝑣, 𝑤 ∈ 𝑋 we have

‖𝑣 + 𝑤‖ ≤ ‖𝑣‖ + ‖𝑤‖ ;

this says that one side of a triangle is less than the sum of the other two.

Remark 12.2. Many of the results in subsequent exercises generalize to the case of [0ZW]

”asymmetic norms”, where the second request will be replaced by this: for every real
𝑡 ≥ 0 you have 𝑡‖𝑣‖ = ‖𝑡𝑣‖. (In this case we will say that the norm is positively
homogeneous).

Exercises

E12.3 Let 𝑋 be a vector space and 𝑓 ∶ 𝑉 → ℝ a function that is positively homoge- [0ZX]

neous, that is: for every 𝑣 ∈ 𝑋 and 𝑡 ≥ 0 you have 𝑡𝑓(𝑣) = 𝑓(𝑡𝑣).
Show that 𝑓 is convex if and only if the triangle inequality holds: for every 𝑣, 𝑤 ∈ 𝑋
you have

𝑓(𝑣 + 𝑤) ≤ 𝑓(𝑣) + 𝑓(𝑤) .

In particular, a norm is always a convex function.

E12.4 Note that if 𝑣, 𝑤 ∈ 𝑋 are linearly dependent and have the same direction (i.e. [0ZY]

you can write 𝑣 = 𝜆𝑤 or 𝑤 = 𝜆𝑣, for 𝜆 ≥ 0), then you have

‖𝑣 + 𝑤‖ = ‖𝑣‖ + ‖𝑤‖ .

In particular, a norm is not a strictly convex function, because

‖𝑣/2 + 𝑣/2‖ = 1
2 ‖𝑣‖ + 1

2 ‖𝑣‖ .

E12.5 Prerequisites:12.7, 15.d.10, 12.3.Difficulty:*.We will say that the normed space [0ZZ]

(𝑋, ‖ ⋅ ‖) is strictly convex†85 if the following equivalent properties apply.

• The disc 𝐷 = {𝑥 ∈ 𝑋 ∶ ‖𝑥‖ ≤ 1} is strictly convex. †86

• The sphere {𝑥 ∈ 𝑋, ‖𝑥‖ = 1} does not contain non-trivial segments (that is,
segments of positive length).

†85See [31] for more properties.
†86The definition is in 15.d.10.
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• For 𝑣, 𝑤 ∈ 𝐷 with ‖𝑣‖ = ‖𝑤‖ = 1 and 𝑣 ≠ 𝑤, for every 𝑡 such that 0 < 𝑡 < 1,
we have that ‖𝑡𝑣 + (1 − 𝑡)𝑤‖ < 1.

• For every 𝑣, 𝑤 ∈ 𝑋 that are linearly independent we have ‖𝑣 + 𝑤‖ < ‖𝑣‖ +
‖𝑤‖ .

Show that the previous four clauses are equivalent.

Hidden solution: [UNACCESSIBLE UUID '102']

̃𝑣

�̃�

𝑤

𝑧

𝑣 + 𝑤

𝑣

E12.6 Let 𝑋 be a normed vector space with norm ‖ ⋅ ‖. Show that the sum operation [105]
′+′ ∶ 𝑋 × 𝑋 → 𝑋 is continuous.

E12.7 Prerequisites:10.b.25. [106]

Let again 𝑋 be a normed vector space with norm ‖ ⋅ ‖. Let 𝐵(𝑥, 𝑟) def= {𝑦 ∈ 𝑋 ∶
‖𝑥 − 𝑦‖ < 𝑟} be the ball. Let 𝐷(𝑥, 𝑟) def= {𝑦 ∈ 𝑋 ∶ ‖𝑥 − 𝑦‖ ≤ 𝑟} be the disk. Let
𝑆(𝑥, 𝑟) def= {𝑦 ∈ 𝑋 ∶ ‖𝑥 − 𝑦‖ = 𝑟} be the sphere. Show that 𝐵(𝑥, 𝑟) = 𝐷(𝑥, 𝑟), that
𝐵(𝑥, 𝑟) = 𝐷(𝑥, 𝑟)∘, and that 𝜕𝐵(𝑥, 𝑟) = 𝜕𝐷(𝑥, 𝑟) = 𝑆(𝑥, 𝑟). Also show that 𝐵(𝑥, 𝑟) is
not closed and 𝐷(𝑥, 𝑟) is not open.

E12.8 Prerequisites:10.b.21.Let 𝑋 be a vector space, let 𝜙, 𝜓 be two norms on it. Show [107]

that the topologies generated by 𝜙 and 𝜓 coincide, if and only if there exist 0 < 𝑎 < 𝑏
such that

∀𝑥, 𝑎𝜓(𝑥) ≤ 𝜙(𝑥) ≤ 𝑏𝜓(𝑥) . (12.9)

(When the relation (12.9) holds, we will say that the norms are ”equivalent”).
Hidden solution: [UNACCESSIBLE UUID '108']

E12.10 We want to show that ”the norms in ℝ𝑛 are all equivalent.” [109]

Let ‖𝑥‖ = √∑𝑛
𝑖=1 𝑥2

𝑖 be the Euclidean norm. Let 𝜙 ∶ ℝ𝑛 → [0, ∞) be a norm: it
can be shown that 𝜙 is a convex function, see 12.3; and therefore 𝜙 is a continuous
function, see 15.b.9. Use this fact to prove that there exist 0 < 𝑎 < 𝑏 such that

∀𝑥, 𝑎‖𝑥‖ ≤ 𝜙(𝑥) ≤ 𝑏‖𝑥‖ . (12.11)
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§12 NORMED SPACES

Hidden solution: [UNACCESSIBLE UUID '10B']

§12.a Norms in Euclidean space [2CK]

Definition 12.a.1. Given 𝑝 ∈ [1, ∞], the norms ‖𝑥‖𝑝 are defined on ℝ𝑛 with [10C]

‖𝑥‖𝑝 = {
𝑝√∑𝑛

𝑖=1 |𝑥𝑖|𝑝 𝑝 ≠ ∞
max𝑛

𝑖=1 |𝑥𝑖| 𝑝 = ∞
(12.a.2)

(The fact that these are norms is demonstrated by the 12.a.10).

Exercises

E12.a.3 Show that lim𝑝→∞ ‖𝑥‖𝑝 = ‖𝑥‖∞. [10D]

E12.a.4 Prerequisites:17.e.2.Having fixed 𝑡, 𝑠 ∈ [1, ∞] with 𝑠 > 𝑡 and 𝑥 ∈ ℝ𝑛, show [10F]

that ‖𝑥‖𝑠 ≤ ‖𝑥‖𝑡. Also show that ‖𝑥‖𝑠 < ‖𝑥‖𝑡 if 𝑛 ≥ 2 and 𝑥 ≠ 0 and 𝑥 is not a
multiple of one of the vectors of the canonical basis 𝑒1, … 𝑒𝑛.
Hints:

1. use that 1 + 𝑡𝑝 ≤ (1 + 𝑡)𝑝 for 𝑝 ≥ 1 and 𝑡 ≥ 0; or
2. use Lagrange multipliers; or

3. remember that 𝑓(𝑎+𝑏) > 𝑓(𝑎)+𝑓(𝑏) when 𝑎 ≥ 0, 𝑏 > 0 𝑓(0) = 0 and 𝑓 ∶ [0, ∞) → ℝ
is strictly convex and continuous in 0 (see exercise 15.d.2), therefore derive 𝑑

𝑑𝑡
(log ‖𝑥‖𝑡)

and set 𝑓(𝑧) = 𝑧 log(𝑧)).

Hidden solution: [UNACCESSIBLE UUID '10G']

E12.a.5 Having fixed 𝑠, 𝑡 ∈ [1, ∞] with 𝑠 < 𝑡, show that 𝑛−1/𝑠‖𝑥‖𝑠 ≤ 𝑛−1/𝑡‖𝑥‖𝑡 [10J]

(where we agree that 𝑛−1/∞ = 1). (Note that this is an inequality between averages).
(Hint. Set 𝛼 = 𝑡/𝑠 and 𝑦𝑖 = |𝑥𝑖|𝑠, then use the convexity of 𝑓(𝑦) = 𝑦𝛼. Another tip:
use 12.a.6.) Hidden solution: [UNACCESSIBLE UUID '10K']

E12.a.6 Let be given 𝑝, 𝑞 ∈ [1, ∞] such that 1/𝑝 + 1/𝑞 = 1 †87 and 𝑥, 𝑦 ∈ ℝ𝑛; show [10M]

the Hölder inequality in this form

𝑛
∑
𝑖=1

|𝑥𝑖𝑦𝑖| ≤ ‖𝑥‖𝑝‖𝑦‖𝑞 . (12.a.7)

In what cases is there equality?
Tips: Fix 𝑥𝑖 , 𝑦𝑖 ≥ 0. For the cases with 𝑝, 𝑞 < ∞ you can:

• use Young inequality (15.d.3 or 24.16);

• use Lagrange multipliers;

• start from the case 𝑛 = 2 and set 𝑥2 = 𝑡𝑥1 and 𝑦2 = 𝑎𝑦1; then, for cases 𝑛 ≥ 3 use
induction.

Hidden solution: [UNACCESSIBLE UUID '10N']
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§12.b Isometries

E12.a.8 Prerequisites:12.a.6.Infer the version [10P]

𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖 ≤ ‖𝑥‖𝑝‖𝑦‖𝑞 ; (12.a.9)

from (12.a.7). In which case does equality apply?

E12.a.10 Prerequisites:12.a.6.Given 𝑝 ∈ [1, ∞] show theMinkowski inequality [10Q]

‖𝑥 + 𝑦‖𝑝 ≤ ‖𝑥‖𝑝 + ‖𝑦‖𝑝 . (12.a.11)

There follows that ‖𝑥‖𝑝 are norms.
For 𝑝 ∈ (1, ∞) find a simple condition (necessary and sufficient) that involves equal-
ity; compare it with 12.4; deduce that ℝ𝑛, with the norm ‖ ⋅ ‖𝑝 for 𝑝 ∈ (1, ∞), is a
strictly convex normed space (see 12.5). Hidden solution: [UNACCESSIBLE UUID '10R']

E12.a.12 Prerequisites:12.3,15.d.8,12.a.4.Let 𝑟 > 0; if 𝑝 ∈ [1, ∞] then the ball 𝐵𝑝
𝑟 = [10S]

{‖𝑥‖𝑝 < 𝑟} is convex; also 𝐵𝑝
𝑟 ⊆ 𝐵 ̃𝑝

𝑟 if ̃𝑝 > 𝑝. In the case 𝑛 = 2 of planar balls, study
graphically the shape of the balls as 𝑝 varies. Are there points that are on the border
of all balls? Hidden solution: [UNACCESSIBLE UUID '10T']

E12.a.13 If 𝑟 > 0 and 𝑝 ∈ (1, ∞) then the sphere {‖𝑥‖𝑝 = 𝑟} is a regular surface. [10V]

Hidden solution: [UNACCESSIBLE UUID '10W']

E12.a.14 Prerequisites:(12.a.2).We equip ℝ𝑛 with the norm ‖𝑥‖∞: show that in dimen- [10X]

sion 2 the disk {𝑥 ∈ ℝ𝑛, ‖𝑥‖∞ ≤ 1} is a square, and in dimension 3 it is a cube, etc
etc.
Now we equip ℝ𝑛 with the norm ‖𝑥‖1: show that in dimension 2 the disk {𝑥 ∈
ℝ𝑛, ‖𝑥‖1 ≤ 1} is a rhombus i.e. precisely a square rotated 45 degrees; and in dimen-
sion 3 the disk is an octahedron.

E12.a.15 Find a norm in ℝ2 such that the ball is a regular polygon of 𝑛 sides. [10Y]

Hidden solution: [UNACCESSIBLE UUID '10Z']

§12.b Isometries [2CH]

We rewrite the definition 10.i.1 in the case of normed spaces.

Definition 12.b.1. If 𝑀1, 𝑀2 are vector spaces with norms ‖‖𝑀1 and respectively [110]

‖‖𝑀2 , then 𝜑 is an isometry when

∀𝑥, 𝑦 ∈ 𝑀1, ‖𝑥 − 𝑦‖𝑀1 = ‖𝜑(𝑥) − 𝜑(𝑦)‖𝑀2 (12.b.2)

(rewriting the definition of distance using norms).

We will compare it with this definition.

Definition 12.b.3. Let 𝐵1, 𝐵2 be two normed vector spaces. A function 𝑓 ∶ 𝐵1 → 𝐵2 [111]

is a linear isometry if it is linear and if

‖𝑧‖𝐵1
= ‖𝑓(𝑧)‖𝐵2

∀ 𝑧 ∈ 𝐵1 . (12.b.4)
†87This means that if 𝑝 = 1 then 𝑞 = ∞ ; and vice versa.
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§12 NORMED SPACES

If 𝜑 is linear then the definition of equation (12.b.2) is equivalent to the definition
of linear isometry seen in equation (12.b.4) (just set 𝑧 = 𝑥 − 𝑦). This explains why
both are called ”isometries”.

By theMazur–Ulam theorem [60] if𝑀1, 𝑀2 are vector spaces (on real field) equipped
with norm and 𝜑 is a surjective isometry, then 𝜑 is affine (which means that 𝑥 ↦
𝜑(𝑥) − 𝜑(0) is linear).

We now wonder if there are isometries that are not linear maps, or more generally
affine maps.

Exercises

E12.b.5 Suppose the sphere {𝑥 ∈ 𝑀2, ‖𝑥‖𝑀2 = 1} contains no non-trivial segments: [112]

Then every function that satisfies (12.b.2) is necessarily affine.
(See also Exercise 12.5.)

E12.b.6 The condition that 𝜑 is surjective cannot be removed from the Mazur–Ulam [114]

theorem. Find an example.
Hint. By the previous exercise 12.b.5, the sphere {𝑥 ∈ 𝑀2, ‖𝑥‖𝑀2 = 1} must contain
segments.
Hidden solution: [UNACCESSIBLE UUID '115']

§12.c Total convergence [2CJ]

Definition 12.c.1. Let in the following 𝑋 be a normed vector space based on the real [116]

field ℝ, with norm ‖⋅‖. Let (𝑓𝑛)𝑛∈ℕ be a sequence of elements of 𝑋 . The series ∑∞
𝑛=0 𝑓𝑛

converges totally when ∑∞
𝑛=0 ‖𝑓𝑛‖ < ∞.

Exercises

E12.c.2 Show that if the series of (𝑓𝑛)𝑛, (𝑔𝑛)𝑛 converge totally, then the series of (𝑓𝑛 + [117]

𝑔𝑛)𝑛 converges totally.

E12.c.3 Topics:total convergence.Prerequisites:10.a.12,10.a.13,10.a.14. [118]

Let 𝑉 be a vector space with a norm ‖𝑥‖; So 𝑉 is also a metric space with the metric
𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖. Show that the following two clauses are equivalent.

• (𝑉, 𝑑) is complete.
• For each sequence (𝑣𝑛)𝑛 ⊂ 𝑉 such that ∑𝑛 ‖𝑣𝑛‖ < ∞, the series ∑𝑛 𝑣𝑛 con-
verges.

(The second is sometimes called the ”total convergence criterion”)
A normed vector space (𝑉, | ⋅ ‖) such that the associated metric space (𝑉, 𝑑) is com-
plete, is called a Banach space.
Hidden solution: [UNACCESSIBLE UUID '119']
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§12.d Norms of Linear application

§12.d Norms of Linear application [2CM]

In the following (𝑋, ‖‖𝑋 )and (𝑌 , ‖‖𝑌 ) will be normed spaces; 𝐴 ∶ 𝑋 → 𝑌 is a linear
application; we define the induced norm as

‖𝐴‖𝑋,𝑌
def= sup

𝑥∈𝑋 , ‖𝑥‖𝑋 ≤1
‖𝐴𝑥‖𝑌 .

Exercises

E12.d.1 Show that ‖𝐴‖𝑋,𝑌 < ∞ if and only if 𝐴 is continuous. [11B]

E12.d.2 Note that if 𝑋 has finite dimension then every linear application is continuous, [11C]

and
‖𝐴‖𝑋,𝑌 = max

𝑥∈𝑋 , ‖𝑥‖𝑋 ≤1
‖𝐴𝑥‖𝑌 .

E12.d.3 Let ℒ(𝑋, 𝑌) be the space of all continuous linear applications. Show that ‖ ⋅ [11D]

‖𝑋,𝑌 is a norm in ℒ(𝑋, 𝑌).

E12.d.4 Let (𝑍, ‖‖𝑍) be an additional normed space, and 𝐵 ∶ 𝑌 → 𝑍 a linear applica- [11F]

tion. We similarly define

‖𝐵‖𝑌,𝑍
def= sup

𝑦∈𝑌 , ‖𝑦‖𝑌 ≤1
‖𝐵𝑦‖𝑍 ;

show that
‖𝐴𝐵‖𝑋,𝑍 ≤ ‖𝐴‖𝑋,𝑌 ‖𝐵‖𝑌,𝑍 .

§12.e Norms of Matrixes [2CN]

Let then 𝑝, 𝑞 ∈ [1, ∞]; we use the following norms |𝑥|𝑝 defined in eqn. (12.a.2).

Definition 12.e.1. Let 𝐴 ∈ ℝ𝑚×𝑛 be a matrix; considering it as a linear application [11G]

between normed spaces (ℝ𝑛, ||𝑝) and (ℝ𝑚, ||𝑞), let’s define again the induced norm as

‖𝐴‖𝑝,𝑞
def= max

𝑥∈ℝ𝑛 , |𝑥|𝑝≤1
|𝐴𝑥|𝑞 (12.e.2)

(Note that the maximum is always reached at a point with |𝑥|𝑝 = 1).
The norm ‖𝐴‖2,2 is called the spectral norm. .

Definition 12.e.3. We also define the rules [11H]

‖𝐴‖𝐹− ̃𝑝 = {
�̃�√∑𝑖,𝑗 |𝐴𝑖,𝑗 | ̃𝑝 ̃𝑝 < ∞ ,
max𝑖,𝑗 |𝐴𝑖,𝑗 | ̃𝑝 = ∞

for ̃𝑝 ∈ [1, ∞]. The case ̃𝑝 = 2 is called Frobenious’ norm.
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§12 NORMED SPACES

Exercises

E12.e.4 Prerequisites:12.10.Note that the norms ‖𝐴‖𝑝,𝑞 and ‖𝐴‖𝐹− ̃𝑝 are all equivalent. [11J]

E12.e.5 Prerequisites:12.d.4.Let’s consider squarematrices, i.e. 𝑛 = 𝑚. We know from [11K]

12.d.4 that norms ‖𝐴‖𝑝,𝑞 are submultiplicative, that is ‖𝐴𝐵‖𝑝,𝑞 ≤ ‖𝐴‖𝑝,𝑞‖𝐴‖𝑝,𝑞.
Show that the Frobenious norm is also submultiplicative.
Note that for a submultiplicative norm we have that ‖𝐴𝑘‖ ≤ ‖𝐴‖𝑘 for every natural
𝑘.

E12.e.6 Show that [11M]

‖𝐴‖1,1 = max
1≤𝑗≤𝑛

𝑚
∑
𝑖=1

|𝐴𝑖,𝑗 |,

‖𝐴‖∞,∞ = max
1≤𝑖≤𝑚

𝑛
∑
𝑗=1

|𝐴𝑖,𝑗 | .

E12.e.7 If 𝐴 ∈ ℂ𝑚×𝑛 we can define the induced norms [11N]

‖𝐴‖𝑝,𝑞
def= max

𝑥∈ℂ𝑛 , |𝑥|𝑝≤1
|𝐴𝑥|𝑞 . (12.e.8)

Show that ‖𝐴‖𝑝,𝑞 = ‖𝐴‖𝑝,𝑞.

E12.e.9 Show that if 𝐴 ∈ ℝ𝑚×𝑛 you have [11P]

max
𝑥∈ℝ𝑛,|𝑥|2≤1

|𝐴𝑥|2 = max
𝑥∈ℂ𝑛,|𝑥|2≤1

|𝐴𝑥|2 .

Hidden solution: [UNACCESSIBLE UUID '11Q']

§12.f Minkowski sum [2CP]

Let be in the following 𝑋 be a vector space normed with norm ‖ ⋅ ‖.

Definition 12.f.1. Let 𝑋 be a vector space and 𝐴, 𝐵 ⊆ 𝑋 . We define the Minkowski [11R]

sum 𝐴 ⊕ 𝐵 ⊆ 𝑋 as
𝐴 ⊕ 𝐵 = {𝑥 + 𝑦 ∶ 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵} .

In the following, given 𝐴 ⊆ 𝑋, 𝑧 ∈ 𝑋 we will indicate with 𝐴+𝑧 = {𝑏+𝑧 ∶ 𝑏 ∈ 𝐵}
the translation of 𝐴 in the direction 𝑧.

Exercises

E12.f.2 Prerequisites:12.f.1.Show that the sum is associative and commutative; and that [11S]

the sum has a single neutral element, which is the set {0} consisting of the origin alone.

E12.f.3 Prerequisites:12.f.1.If 𝐴 is open, show that 𝐴 ⊕ 𝐵 is open. Hidden solution: [11T]

[UNACCESSIBLE UUID '11V']

E12.f.4 Prerequisites:12.f.1.If 𝐴, 𝐵 are compact, show that 𝐴 ⊕ 𝐵 is compact. Hidden [11W]

solution: [UNACCESSIBLE UUID '11X']

Copyright A. C. G. Mennucci
The sections comprising theory and exercises’ statements are released under License WP:CC BY-SA

155

https://coldoc.sns.it/UUID/EDB/11J/
https://coldoc.sns.it/UUID/EDB/11K/
https://coldoc.sns.it/UUID/EDB/11M/
https://coldoc.sns.it/UUID/EDB/11N/
https://coldoc.sns.it/UUID/EDB/11P/
https://coldoc.sns.it/UUID/EDB/11Q
https://coldoc.sns.it/UUID/EDB/2CP/
https://coldoc.sns.it/UUID/EDB/11R/
https://coldoc.sns.it/UUID/EDB/11S/
https://coldoc.sns.it/UUID/EDB/11T/
https://coldoc.sns.it/UUID/EDB/11V
https://coldoc.sns.it/UUID/EDB/11W/
https://coldoc.sns.it/UUID/EDB/11X
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License


§12.g Mathematical morphology

E12.f.5 Prerequisites:12.f.1.If 𝐴 is a closed set and 𝐵 is a compact set, show that 𝐴 ⊕ 𝐵 [11Y]

is closed. Hidden solution: [UNACCESSIBLE UUID '11Z']

E12.f.6 Prerequisites:12.f.1.Show an example where 𝐴, 𝐵 are closed but 𝐴 ⊕ 𝐵 is not [120]

closed. Hidden solution: [UNACCESSIBLE UUID '121']

E12.f.7 Prerequisites:12.f.1.If 𝐴, 𝐵 are convex show that 𝐴 ⊕ 𝐵 is convex. Hidden [122]

solution: [UNACCESSIBLE UUID '123']

See also the exercises 6.c.12 and 10.d.4.

§12.g Mathematical morphology [2CQ]

Let be in the following 𝑋 be a vector space normed with norm ‖ ⋅ ‖.

Definition 12.g.1. For𝐴, 𝐵 ⊆ 𝑋 arbitrary subsets, we recall the definition of Minkowski [124]
sum 𝐴 ⊕ 𝐵 = {𝑥 + 𝑦 ∶ 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵} defined in 12.f.1.

Having now fixed a set 𝐵, we define

• the dilation of a set 𝐴 ⊆ 𝑋 to be 𝐴 ⊕ 𝐵;

• the erosion of a set 𝐴 ⊆ 𝑋 as

𝐴 ⊖ 𝐵 = {𝑧 ∈ 𝑋 ∶ (𝐵 + 𝑧) ⊆ 𝐴} ;

• the closing 𝐴 ∙ 𝐵 = (𝐴 ⊕ 𝐵) ⊖ 𝐵;

• the opening 𝐴 ∘ 𝐵 = (𝐴 ⊖ 𝐵) ⊕ 𝐵.

Where, given 𝐵 ⊆ 𝑋, 𝑧 ∈ 𝑋 , we have indicated with 𝐵 + 𝑧 = {𝑏 + 𝑧 ∶ 𝑏 ∈ 𝐵} the
translation of 𝐵 in the direction 𝑧. In previous operations 𝐵 it is known as ”structural
element”, And in applications often 𝐵 it’s a puck or a ball.

Let in the following 𝐴, 𝐵, 𝐶 ⊆ 𝑋, 𝑤, 𝑧 ∈ 𝑋 . Some of the following exercises are
taken from [27].

Exercises

E12.g.2 Prerequisites:12.g.1. [125]

Show the following identities:

𝐴 ⊕ 𝐵 = ⋃
𝑦∈𝐵

(𝐴 + 𝑦)

𝐴 ⊖ 𝐵 = ⋂
𝑦∈𝐵

(𝐴 − 𝑦)

Hidden solution: [UNACCESSIBLE UUID '126']

E12.g.3 Prerequisites:12.g.2,12.g.1. [127]

Let ̃𝐵 = {−𝑏 ∶ 𝑏 ∈ 𝐵}: show that (𝐴 ⊕ 𝐵)𝑐 = 𝐴𝑐 ⊖ ̃𝐵, where 𝐴𝑐 = 𝑋 ⧵ 𝐴 is the
complementary. Hidden solution: [UNACCESSIBLE UUID '128']

156 Copyright A. C. G. Mennucci
The sections comprising theory and exercises’ statements are released under License WP:CC BY-SA

https://coldoc.sns.it/UUID/EDB/11Y/
https://coldoc.sns.it/UUID/EDB/11Z
https://coldoc.sns.it/UUID/EDB/120/
https://coldoc.sns.it/UUID/EDB/121
https://coldoc.sns.it/UUID/EDB/122/
https://coldoc.sns.it/UUID/EDB/123
https://coldoc.sns.it/UUID/EDB/2CQ/
https://coldoc.sns.it/UUID/EDB/124/
https://coldoc.sns.it/UUID/EDB/125/
https://coldoc.sns.it/UUID/EDB/126
https://coldoc.sns.it/UUID/EDB/127/
https://coldoc.sns.it/UUID/EDB/128
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License


§12 NORMED SPACES

E12.g.4 Prerequisites:12.g.1,12.g.2. [129]

Show that the four operations are monotonic: if 𝐴 ⊆ 𝐶 then 𝐴 ⊕ 𝐵 ⊆ 𝐶 ⊕ 𝐵,
𝐴 ⊖ 𝐵 ⊆ 𝐶 ⊖ 𝐵, 𝐴 ∙ 𝐵 ⊆ 𝐶 ∙ 𝐵 and 𝐴 ∘ 𝐵 ⊆ 𝐶 ∘ 𝐵. Hidden solution: [UNACCESSIBLE

UUID '12B']

E12.g.5 Prerequisites:12.g.1,12.f.3,12.g.3.If𝐴 is closed, show that𝐴⊖𝐵 is closed. Hid- [12C]

den solution: [UNACCESSIBLE UUID '12D']

E12.g.6 Prerequisites:12.g.1. [12F]

Show that erosion has the invariant property in this sense:

(𝐴 + 𝑧) ⊖ (𝐵 + 𝑧) = 𝐴 ⊖ 𝐵 .

E12.g.7 Prerequisites:12.g.1. [12G]

Moreover, the erosion satisfies (𝐴 ⊖ 𝐵) ⊖ 𝐶 = 𝐴 ⊖ (𝐵 ⊕ 𝐶). Hidden solution:
[UNACCESSIBLE UUID '12H']

E12.g.8 Prerequisites:12.g.1. [12J]

Show that the expansion enjoys the distributive property with respect to union:

(𝐴 ∪ 𝐶) ⊕ 𝐵 = (𝐴 ⊕ 𝐵) ∪ (𝐶 ⊕ 𝐵).

Hidden solution: [UNACCESSIBLE UUID '12K']

E12.g.9 Prerequisites:12.g.1,12.g.8,12.g.3.Show that erosion has the distributive prop- [12M]

erty with respect to the intersection:

(𝐴 ∩ 𝐶) ⊖ 𝐵 = (𝐴 ⊖ 𝐵) ∩ (𝐶 ⊖ 𝐵).

Hidden solution: [UNACCESSIBLE UUID '12N']

E12.g.10 Prerequisites:12.g.1,12.g.3.Sia ̃𝐵 = {−𝑏 ∶ 𝑏 ∈ 𝐵}. Show that [12P]

(𝐴 ∙ 𝐵)𝑐 = (𝐴𝑐 ∘ ̃𝐵) .

Hidden solution: [UNACCESSIBLE UUID '12Q']

E12.g.11 Prerequisites:12.g.1. [12R]

Show that
𝐴 ⊆ (𝐶 ⊖ 𝐵)

if and only if
(𝐴 ⊕ 𝐵) ⊆ 𝐶 .

Hidden solution: [UNACCESSIBLE UUID '12S']

E12.g.12 Prerequisites:12.g.1. [12T]

Recall that the operation 𝐴 ∙ 𝐵 = (𝐴 ⊕ 𝐵) ⊖ 𝐵 is called ”closing”.

• Show that 𝐴 ⊆ 𝐴 ∙ 𝐵.
• Let 𝑋 = ℝ𝑛, 𝐵 = 𝐵𝑟 = {‖𝑥‖ < 𝑟} a ball, find an example of a set 𝐴 that is open
non-empty bounded, and 𝐴 ∙ 𝐵 = 𝐴.
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§12.g Mathematical morphology

• Setting 𝑋 = ℝ𝑛, 𝐵 = 𝐵𝑟 a ball, find an example where 𝐴 ∙ 𝐵 ≠ 𝐴.

Hidden solution: [UNACCESSIBLE UUID '12V']

E12.g.13 Prerequisites:12.g.1,12.g.2. [12W]

The opening is also given by 𝐴 ∘ 𝐵 = ⋃𝑥∈𝑋,𝐵+𝑥⊆𝐴(𝐵 + 𝑥), which means that it is the
locus of translations of the structuring element 𝐵 inside the set 𝐴. Hidden solution:
[UNACCESSIBLE UUID '12X']

E12.g.14 Prerequisites:12.g.1.In the following 𝐴, 𝐵, ̂𝐵 ⊆ ℝ𝑛. [12Y]

• Find an example where 𝐵
≠
⊂ ̂𝐵 and 𝐴 ∘ 𝐵

≠
⊂ 𝐴 ∘ ̂𝐵.

• Find an example where 𝐵
≠
⊂ ̂𝐵 and 𝐴 ∘ ̂𝐵

≠
⊂ 𝐴 ∘ 𝐵.

Hidden solution: [UNACCESSIBLE UUID '12Z']

E12.g.15 Prerequisites:12.g.1,12.g.13.If 𝐴 is convex and ̂𝐵 is the convex envelope (see [130]

15.a.15 of 𝐵, show that 𝐴 ∘ 𝐵 ⊆ 𝐴 ∘ ̂𝐵. Show with an example that equality may not
apply. Hidden solution: [UNACCESSIBLE UUID '131']

E12.g.16 Prerequisites:12.g.1,12.g.13.If 𝐴, 𝐵 are convex, show that 𝐴 ∘ 𝐵 is convex. [132]

Hidden solution: [UNACCESSIBLE UUID '133']
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§13 SEMICONTINUITY, RIGHT AND LEFT LIMITS

§13 Semicontinuity, right and left limits [137]

§13.a Semi continuity [2CV]

Let (𝑋, 𝜏) be a topological space.

Definition 13.a.1. A function 𝑓 ∶ 𝑋 → ℝ is said lower semicontinuous (abbreviated [138]

l.s.c.) if
∀𝑥0 ∈ 𝐷(𝑋) , lim inf

𝑥→𝑥0
𝑓(𝑥) ≥ 𝑓(𝑥0)

and vice versa it says upper semicontinuous (abbreviated u.s.c.) if

∀𝑥0 ∈ 𝐷(𝑋) , lim sup
𝑥→𝑥0

𝑓(𝑥) ≤ 𝑓(𝑥0) .

(𝐷(𝑋) are the accumulation points in 𝑋).

Note that 𝑓 is lower semi continue if and only if (−𝑓) is upper semi continue: so in
many subsequent exercises we will only see cases l.s.c. cases.

Exercises

E13.a.2 Let 𝑓 ∶ ℝ → ℝ be defined as 𝑓(𝑥) = 1 if 𝑥 ∈ ℝ ⧵ ℚ, 𝑓(0) = 0, and [139]

𝑓(𝑥) = 1/𝑞 if |𝑥| = 𝑝/𝑞 with 𝑝, 𝑞 coprime integers, 𝑞 ≥ 1. Show that f is continuous
on ℝ ⧵ ℚ and discontinuous in every 𝑡 ∈ ℚ.
Show that the described function is u.s.c. Hidden solution: [UNACCESSIBLE UUID '13B']

E13.a.3 Prerequisites:13.a.2. [13C]

Construct a monotonic function with the same property as the one seen in the exercise
13.a.2.

E13.a.4 Let 𝑓 ∶ 𝑋 → ℝ; the following assertions are equivalent. [13D]

1. 𝑓 is lower semicontinuous.
2. For every 𝑡, we have that the sublevel

𝑆𝑡 = {𝑥 ∈ 𝑋, 𝑓(𝑥) ≤ 𝑡}

is closed.
3. The epigraph

𝐸 = {(𝑥, 𝑡) ∈ 𝑋 × ℝ, 𝑓(𝑥) ≤ 𝑡}
is closed in 𝑋 × ℝ.

Note that the second condition means that 𝑓 is continuous from (𝑋, 𝜏) to ℝ, 𝜏+ where
𝜏+ = {(𝑎, ∞) ∶ 𝑎 ∈ ℝ} ∪ {∅, ℝ} is the set of half-lines, which is a topology (easy
verification).
Then formulate the equivalent theorem for functions upper semicontinuous.
Hidden solution: [UNACCESSIBLE UUID '13F']

E13.a.5 If 𝑓, 𝑔 ∶ 𝑋 → ℝ are lower semicontinuous, then 𝑓+𝑔 is l.s.c. Hidden solution: [13G]

[UNACCESSIBLE UUID '13H']
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§13.a Semi continuity

E13.a.6 Let 𝐼 be a family of indices. Supposte that, for 𝑛 ∈ 𝐼, 𝑓𝑛 ∶ 𝑋 → ℝ are l.s.c. [13J]

functions. We define 𝑓 def= sup𝑛∈𝐼 𝑓𝑛, then 𝑓 is l.s.c. (defined as 𝑓 ∶ 𝑋 → ℝ ∪ {+∞}).
†88. Hidden solution: [UNACCESSIBLE UUID '13K']

E13.a.7 Vice versa, given 𝑓 ∶ ℝ → ℝ∪{+∞} l.s.c., there exists an increasing sequence [13M]

of continuous functions 𝑓𝑛 ∶ ℝ → ℝ such that 𝑓𝑛(𝑥) →𝑛 𝑓(𝑥). Hidden solution:
[UNACCESSIBLE UUID '13N']

E13.a.8 Topics:inf-convolution.Difficulty:*. When (𝑋, 𝑑) is a metric space, and 𝑓 ∶ 𝑋 → [13P]

ℝ ∪ {+∞} is l.s.c. and bounded from below, let

𝑓𝑛(𝑥) def= inf
𝑦∈𝑋

{𝑓(𝑦) + 𝑛𝑑(𝑥, 𝑦)}

be the inf-convolution. Show that the sequence 𝑓𝑛 is an increasing sequence of Lip-
schitz functions with 𝑓𝑛(𝑥) →𝑛 𝑓(𝑥). Hidden solution: [UNACCESSIBLE UUID '13Q']

E13.a.9 Given 𝑓 ∶ 𝑋 → ℝ, define [13R]

𝑓∗(𝑥) = 𝑓(𝑥) ∨ lim sup
𝑦→𝑥

𝑓(𝑦) ;

show that 𝑓∗(𝑥) is the smallest upper semicontinuous function that is greater than or
equal to 𝑓 at each point.
Similarly, define

𝑓∗(𝑥) = 𝑓(𝑥) ∧ lim inf
𝑦→𝑥

𝑓(𝑦)

then −(𝑓∗) = (−𝑓)∗, and therefore 𝑓∗(𝑥) is the greatest lower semicontinuous func-
tion that is less than or equal to 𝑓 at each point.
Finally, note that 𝑓∗ ≥ 𝑓∗.
Hidden solution: [UNACCESSIBLE UUID '13S']

E13.a.10 Topics:oscillation. [13T]

Given any 𝑓 ∶ 𝑋 → ℝ, we define oscillation function osc(𝑓)

osc(𝑓)(𝑥) def= 𝑓∗(𝑥) − 𝑓∗(𝑥)

1. Note that osc(𝑓) ≥ 0, and that 𝑓 is continuous in 𝑥 if and only if osc(𝑓)(𝑥) = 0.
2. Show that osc(𝑓) is upper semicontinuous.
3. If (𝑋, 𝑑) is a metric space, note that

osc(𝑓)(𝑥) def= lim
𝜀→0+

sup{|𝑓(𝑦) − 𝑓(𝑧)| , 𝑑(𝑥, 𝑦) < 𝜀, 𝑑(𝑥, 𝑧) < 𝜀} .

Hidden solution: [UNACCESSIBLE UUID '13V']

E13.a.11 Let (𝑋, 𝜏) be a topological space and 𝑓 ∶ 𝑋 → ℝ a function. Let 𝑥 ∈ 𝑋 be [13W]

an accumulation point. Let eventually 𝑈𝑛 be a family of open neighbourhoods of 𝑥
†88Note that this is also true when 𝑛 ∈ 𝐼 is an uncountable family of indices; and it is also true when 𝑓𝑛

are continuous
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§13 SEMICONTINUITY, RIGHT AND LEFT LIMITS

with 𝑈𝑛 ⊇ 𝑈𝑛+1. Then there exists a sequence (𝑥𝑛) ⊂ 𝑋 with 𝑥𝑛 ∈ 𝑈𝑛 and 𝑥𝑛 ≠ 𝑥
and such that

lim
𝑛→∞

𝑓(𝑥𝑛) = lim inf
𝑥→𝑥

𝑓(𝑥) .

(Note that in general we do not claim neither expect that 𝑥𝑛 → 𝑥). Hidden solution:
[UNACCESSIBLE UUID '13X']

E13.a.12 Let (𝑋, 𝜏) be a topological space and 𝑓 ∶ 𝑋 → ℝ a function; let 𝑥 ∈ 𝑋 be [13Y]

an accumulation point; let 𝐴 be the set of all the limits lim𝑛 𝑓(𝑥𝑛) (when they exist)
for all sequences (𝑥𝑛) ⊂ 𝑋 such that 𝑥𝑛 → 𝑥; then

lim inf
𝑥→𝑥

𝑓(𝑥) ≤ inf𝐴 ;

moreover, if (𝑋, 𝜏) satisfies the first axiom of countability, then equality holds and
inf𝐴 = min𝐴.

E13.a.13 Let 𝑓1 ∶ [0, ∞] → [0, ∞] monotonic function (weakly increasing) and right [13Z]

continuous. Let then 𝑓2 ∶ [0, ∞) → [0, ∞] be given by

𝑓2(𝑠) = sup{𝑡 ≥ 0 ∶ 𝑓1(𝑡) > 𝑠}

(with the convention that sup∅ = 0) and then again 𝑓3 ∶ [0, ∞) → [0, ∞] defined
by

𝑓3(𝑠) = sup{𝑡 ≥ 0 ∶ 𝑓2(𝑡) > 𝑠} ∶
then 𝑓1 ≡ 𝑓3.
Hidden solution: [UNACCESSIBLE UUID '140']

§13.b Regulated functions [2CT]

Definition 13.b.1. [141]

Let 𝐼 ⊂ ℝ be an interval. Regulated functions 𝑓 ∶ 𝐼 → ℝ are the functions that
admit, at every point, right and left limits. †89

(Note in particular that every monotonic function is regulated, and every continuous
function is regulated.)

Exercises

E13.b.2 Show that a regulated function 𝑓 ∶ [𝑎, 𝑏] → ℝ is bounded. [142]

E13.b.3 Prerequisites:13.a.10. Let 𝐼 = [𝑎, 𝑏] be closed and bounded interval. Show [143]

that

• 𝑓 ∶ [𝑎, 𝑏] → ℝ is regulated if and only if
• for any 𝜀 > 0, there exists a finite set of points 𝑃 ⊂ 𝐼 such that, for every 𝐽 ⊆ 𝐼
with 𝐽 an open interval that does not contain any point of 𝑃, the oscillation of
𝑓 in 𝐽 is less than 𝜀.
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§13.c Sup transform

E13.b.4 Let 𝐼 = [𝑎, 𝑏]. Let 𝑉 be the set of functions 𝑓 ∶ [𝑎, 𝑏] → ℝ that are piecewise [144]

constant; it is the vector space generated by 𝟙𝐽 , all the characteristic functions of all
intervals 𝐽 ⊆ 𝐼. Prove that the closure of 𝑉 (according to uniform convergence)
coincides with the space of regulated functions.
So the space of regulated functions, endowed with the norm ‖⋅‖∞, is a Banach space.

See also exercises 16.7, 16.8, 16.9 and 18.8.

§13.c Sup transform [2CR]

Definition 13.c.1. Suppose that either 𝐼 = ℝ+ or 𝐼 = ℝ in the following, for simplicity. [2CS]

Let 𝜀 > 0; given a bounded function 𝑓 ∶ 𝐼 → ℝ †90 , we define the ”sup transform”
as the function 𝑔 ∶ 𝐼 → ℝ given by

𝑔(𝑥) = sup
𝑦∈(𝑥,𝑥+𝜀)

𝑓(𝑦) . (13.c.2)

We summarize this transformation with the notation 𝑔 = 𝐹(𝜀, 𝑓).

Exercises

E13.c.3 Prerequisites:13.c.1.Show that 𝑔 is regulated. [145]

E13.c.4 Prerequisites:13.c.1.Show that 𝑔 is lower semicontinuous. [146]

E13.c.5 Prerequisites:13.c.1.Show that 𝑓 = 𝑔 if and only if 𝑓 is monotonic weakly [147]

decreasing and right continuous.

E13.c.6 Prerequisites:13.c.1.Given [148]

𝑔(𝑥) = {−1 𝑥 = 4
0 𝑥 ≠ 4

find 𝑓 such that 𝑔 = 𝐹(1, 𝑓).
Hidden solution: [UNACCESSIBLE UUID '149']

E13.c.7 Prerequisites:13.c.1.Show that if 𝑓 is continuous then 𝑔 is continuous. [14B]

Hidden solution: [UNACCESSIBLE UUID '14C']

E13.c.8 Prerequisites:13.c.1,12.c.3.Let 𝐶𝑏 = 𝐶𝑏(𝐼) be the space of continuous bounded [14D]

functions 𝑓 ∶ 𝐼 ∶→ ℝ). This is a Banach space (a complete normed space) with the
norm ‖𝑓‖∞ = sup𝑥 |𝑓(𝑥)|.
Consider the map 𝐹 ∶ [0, ∞) × 𝐶𝑏 → 𝐶𝑏 transforming 𝑔 = 𝐹(𝜀, 𝑓), as defined in the
eqn. (13.c.2).
Show that 𝐹 is continuous.

E13.c.9 Prerequisites:13.c.1.How do previous exercises change if you define instead [14F]

𝑔(𝑥) = sup
𝑦∈[𝑥,𝑥+𝜀]

𝑓(𝑦) ? (13.c.10)

Hidden solution: [UNACCESSIBLE UUID '14G']

†89At the extremes, of course, only one of the two limits is required.
†90The ”bounded” hypothesis is convenient, the following resulst are valid even without this hypothesis,

with simple modifications.
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§14 CONTINUITY

§14 Continuity [14J]

§14.a Continuous functions [2DP]

Definition 14.a.1. Let 𝐴 ⊆ ℝ and 𝑓 ∶ 𝐴 → ℝ be a function; let 𝑥 ∈ 𝐴; 𝑓 is called [2DN]

continuous at 𝑥 if

∀𝜀 > 0, ∃𝛿 > 0, ∀𝑦 ∈ 𝐴, |𝑥 − 𝑦| < 𝛿 ⟹ |𝑓(𝑥) − 𝑓(𝑦)| < 𝜀 .

𝑓 is called continuous if it is continuous in every point.
The set of all continuous functions 𝑓 ∶ 𝐴 → ℝ is denoted with 𝐶(𝐴); it is a vector

space.

Further informations on this subject may be found in Chap. 3 in [4], or Chap. 4 of
[22].

Exercises

E14.a.2 Suppose that 𝑓 ∶ (0, 1] → ℝ is a continuous function. Prove that, it is bounded [14K]

from above †91 if and only if lim sup𝑥→0+ 𝑓(𝑥) < +∞.

E14.a.3 Prerequisites:10.g.8.Let 𝑓 ∶ ℝ → ℝ be a bounded function. Let it be shown [14M]

that there at most countably many points where a discontinuity may be removed (i.e.
the points 𝑧 for which lim𝑥→𝑧 𝑓(𝑥) ≠ 𝑓(𝑧), see [52]).

E14.a.4 Prerequisites:10.g.8.Let 𝑓 ∶ ℝ → ℝ be a bounded function. Show that the set [14N]

of discontinuity points of the second type is countable at most (i.e. the points 𝑧 where
the lateral limits exist but lim𝑥→𝑧+ 𝑓(𝑥) ≠ lim𝑥→𝑧− 𝑓(𝑥), see [52]).

E14.a.5 Prerequisites:6.8.Fixed 𝛼 > 1 we define, for 𝑥 ∈ ℝ, 𝛼𝑥 as in 6.8. Show that [21N]

this is a continuous function and that it is a homeomorphism between ℝ and (0, ∞).
The inverse of 𝑦 = 𝛼𝑥 is the function logarithm 𝑥 = log𝛼 𝑦.

E14.a.6 Prerequisites:10.f.4.Difficulty:*. [14P]

Let 𝐶 ⊂ ℝ be a closed set, and let 𝑓 ∶ 𝐶 → ℝ be continuous function. Show that
there exists 𝑔 ∶ ℝ → ℝ continuous and extending 𝑓, i.e. 𝑔|𝐶 = 𝑓.
Hidden solution: [UNACCESSIBLE UUID '14Q']

E14.a.7 Difficulty:**.Find a continuous function 𝑓 ∶ ℝ → ℝ that is not monotonic in [14R]

any interval (open nonempty).

E14.a.8 Prerequisites:Riemann integral. [14T]

Given a continuous function 𝑓 = 𝑓(𝑥, 𝑦) ∶ ℝ × [0, 1] → ℝ, setting

𝑔(𝑥) = ∫
1

0
𝑓(𝑥, 𝑦)d𝑦 ,

show that 𝑔 is continuous.
Hidden solution: [UNACCESSIBLE UUID '14V']
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§14.b Uniformly continuous functions

E14.a.9 Given a continuous function 𝑓 = 𝑓(𝑥, 𝑦) ∶ ℝ × [0, 1] → ℝ , and setting [14W]

𝑔(𝑥) = max
𝑦∈[0,1]

𝑓(𝑥, 𝑦)

show that 𝑔 is continuous. Hidden solution: [UNACCESSIBLE UUID '14X']

E14.a.10 Let 𝑥𝑛, 𝑦𝑛 be strictly positive real sequences with limit zero; there is a con- [14Y]

tinuous and monotonic function 𝑓 ∶ [0, ∞) → [0, ∞) such that 𝑓(0) = 0 and
∀𝑥 > 0, 𝑓(𝑥) > 0, and such that ∀𝑛, 𝑓(𝑥𝑛) < 𝑦𝑛 (hence lim𝑥→0+ 𝑓(𝑥) = 0).
Hidden solution: [UNACCESSIBLE UUID '14Z']

E14.a.11 Let be given a function 𝑔 ∶ [0, ∞) → [0, ∞] such that 𝑔(0) = 0 and [150]

lim𝑥→0+ 𝑔(𝑥) = 0; then there exists a continuous and monotonic function 𝑓 ∶
[0, ∞) → [0, ∞] such that 𝑓(0) = 0, lim𝑥→0+ 𝑓(𝑥) = 0, and 𝑓 ≥ 𝑔.

E14.a.12 Prove that if a monotonic function is defined on a dense subset of an open [151]

interval 𝐼, and has dense image in another open interval 𝐽, then it can be extended to
a monotonic continuous function between the two open intervals 𝐼, 𝐽.
(What happens if 𝐼 is closed but 𝐽 is open?)

E14.a.13 Prerequisites:categories of Baire Sec. §10.k.Difficulty:*. [152]

Show that there is no function 𝑓 ∶ ℝ → ℝ which is continuous on the rational
points and discontinuous on the irrational points. (Hint. Show that the set ℝ ⧵ ℚ of
irrationals is not a 𝐹𝜎 set in ℝ, using Baire’s theorem.)
Hidden solution: [UNACCESSIBLE UUID '153']

§14.b Uniformly continuous functions [2DQ]

Definition 14.b.1. Let 𝐴 ⊆ ℝ and 𝑓 ∶ 𝐴 → ℝ be a function; 𝑓 is called uniformly [155]

continuous if

∀𝜀 > 0, ∃𝛿 > 0, ∀𝑥, 𝑦 ∈ 𝐴, |𝑥 − 𝑦| < 𝛿 ⟹ |𝑓(𝑥) − 𝑓(𝑦)| < 𝜀 .

More in general, given (𝑋1, 𝑑1) and (𝑋2, 𝑑2) metric spaces, given the function 𝑓 ∶
𝑋1 → 𝑋2, 𝑓 is uniformly continuous if

∀𝜀 > 0, ∃𝛿 > 0, ∀𝑥, 𝑦 ∈ 𝑋1, 𝑑1(𝑥, 𝑦) < 𝛿 ⟹ 𝑑2(𝑓(𝑥), 𝑓(𝑦)) < 𝜀 .

It is easy to see that a function uniformly continuous is continuous at every point.

Exercises

E14.b.2 Prerequisites:14.b.1.Let 𝑓 ∶ 𝑋1 → 𝑋2 with (𝑋1, 𝑑1) and (𝑋2, 𝑑2) metric spaces. [156]

A monotonic (weakly) increasing function 𝜔 ∶ [0, ∞) → [0, ∞], with 𝜔(0) = 0 and
lim𝑡→0+ 𝜔(𝑡) = 0, such that

∀𝑥, 𝑦 ∈ 𝑋1, 𝑑2(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝜔(𝑑1(𝑥, 𝑦)) , (14.b.3)
†91i.e. there exists 𝑐 ∈ ℝ such that ∀𝑥 ∈ (0, 1] you have 𝑓(𝑥) < 𝑐
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§14 CONTINUITY

is called continuity modulus for the function 𝑓. (Note that 𝑓 can have many conti-
nuity moduli).
For example, if the function 𝑓 is Lipschitz, i.e. there exists 𝐿 > 0 such that

∀𝑥, 𝑦 ∈ 𝑋1, 𝑑2(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝐿 𝑑1(𝑥, 𝑦)

then 𝑓 satisfies the eqz. (14.b.3) by placing 𝜔(𝑡) = 𝐿𝑡.
We will now see that the existence of a continuity modulus is equivalent to the uni-
form continuity of 𝑓.

• If 𝑓 is uniformly continuous, show that the function

𝜔𝑓(𝑡) = sup{𝑑2(𝑓(𝑥), 𝑓(𝑦)) ∶ 𝑥, 𝑦 ∈ 𝑋1, 𝑑1(𝑥, 𝑦) ≤ 𝑡} (14.b.4)

is the smallest continuity modulus.†92

• Note that the modulus defined in (14.b.4) may not be continuous, and may be
infinite for 𝑡 large — find examples of this behaviour.

• Also show that if 𝑓 is uniformly continuous, there is a modulus that is contin-
uous where it is finite.

• Conversely, it is easy to verify that if 𝑓 has a continuity modulus, then it is
uniformly continuous.

If you don’t know metric space theory, you can prove the previous results in case
𝑓 ∶ 𝐼 → ℝ with 𝐼 ⊆ ℝ. (See also the exercise 14.b.12, which shows that in this case
the modulus 𝜔 defined in (14.b.4) is continuous and is finite).
Hidden solution: [UNACCESSIBLE UUID '157'][UNACCESSIBLE UUID '158'] [UNACCESSIBLE UUID

'159']

E14.b.5 Let (𝑋, 𝑑) metric space and ℱ the set of uniformly continuous functions 𝑓 ∶ [15C]

𝑋 → ℝ, show that ℱ is a vector space.
This is more generally true if 𝑓 ∶ 𝑋 → 𝑋2 where 𝑋2 is a normed vector space (to
which we associate the distance derived from the norm).
Hidden solution: [UNACCESSIBLE UUID '15D']

E14.b.6 Difficulty:*.Let (𝑋1, 𝑑1) and (𝑋2, 𝑑2) metric spaces, with (𝑋2, 𝑑2) complete. [15F]

Let 𝐴 ⊂ 𝑋1 and 𝑓 ∶ 𝐴 → 𝑋2 be a uniformly continuous function. Show that there is
a uniformly continuous function 𝑔 ∶ 𝐴 → 𝑋2 extending 𝑓; In addition, the extension
𝑔 is unique.
Note that if 𝜔 is a continuity modulus for 𝑓 then it is also a continuity modulus for
𝑔. (We assume that 𝜔 is continuous, or, at least, that it is upper semicontinuous).
Hidden solution: [UNACCESSIBLE UUID '15G'][UNACCESSIBLE UUID '15H']

E14.b.7 Prerequisites:14.b.6.Let 𝐴 ⊂ ℝ𝑛 be bounded and 𝑓 ∶ 𝐴 → ℝ a continuous [15J]

function. Show that 𝑓 is uniformly continuous if and only there exists a continuous
function 𝑔 ∶ 𝐴 → ℝ extending 𝑓; In addition, the extension 𝑔 is unique.
Hidden solution: [UNACCESSIBLE UUID '15K']
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§14.c Lipschitz and Hölder functions

E14.b.8 Let 𝑓 ∶ (0, 1] → ℝ be a continuous function. Prove that it is uniformly [15M]

continuous, if and only if the limit lim𝑥→0+ 𝑓(𝑥) exists and is finite. Hidden solution:
[UNACCESSIBLE UUID '15N']

E14.b.9 Let𝑓 ∶ [0, ∞) → ℝ be a continuous function and such that the limit lim𝑥→∞ 𝑓(𝑥)[15P]
exists and is finite. Show that it is uniformly continuous. Hidden solution: [UNACCESSIBLE

UUID '15Q']

E14.b.10 Let 𝑓 ∶ [0, ∞) → ℝ be a continuous function, show that these two clauses [15R]

are equivalent.

• There exists 𝑔 ∶ [0, ∞) → ℝ uniformly continuous and such that the limit
lim𝑥→∞(𝑓(𝑥) − 𝑔(𝑥)) exists and finite.

• 𝑓 is uniformly continuous.

Hidden solution: [UNACCESSIBLE UUID '15S']

E14.b.11 Find an example of 𝑓 ∶ [0, ∞) → ℝ continuous and bounded, but not uni- [15T]

formly continuous. Hidden solution: [UNACCESSIBLE UUID '15V']

E14.b.12 Let 𝐼 ⊆ ℝ be an interval, and let 𝑓 ∶ 𝐼 → ℝ be uniformly continuous. Let [15W]

𝜔 be the continuity modulus, defined by the eqz. (14.b.4), as in the exercise 14.b.2.
Show that 𝜔 is subadditive i.e.

𝜔(𝑡) + 𝜔(𝑠) ≥ 𝜔(𝑡 + 𝑠) .

Knowing that lim𝑡→0+ 𝜔(𝑡) = 0 we conclude that 𝜔 is continuous. Hidden solution:
[UNACCESSIBLE UUID '15X']

E14.b.13 Prerequisites:14.b.12. Let 𝑓 ∶ ℝ → ℝ be uniformly continuous; show that [15Z]

lim sup
𝑥→±∞

|𝑓(𝑥)|/𝑥 < ∞

or, equivalently, that there exists a constant 𝐶 such that |𝑓(𝑥)| ≤ 𝐶(1 + |𝑥|) for every
𝑥. Hidden solution: [UNACCESSIBLE UUID '160']

E14.b.14 Prerequisites:10.b.22. Let (𝑋1, 𝑑1), (𝑋2, 𝑑2) and (𝑌, 𝛿) be three metric spaces; [161]

consider the product 𝑋 = 𝑋1 × 𝑋2 equipped with the distance 𝑑(𝑥, 𝑦) = 𝑑1(𝑥1, 𝑦1) +
𝑑2(𝑥2, 𝑦2). †93 Let 𝑓 ∶ 𝑋 → 𝑌 be a function with the following properties:

• For each fixed 𝑥1 ∈ 𝑋1 the function 𝑥2 ↦ 𝑓(𝑥1, 𝑥2) is continuous (as a function
from 𝑋2 to 𝑌 );

• There is a continuity modulus 𝜔 such that

∀𝑥1, ̃𝑥1 ∈ 𝑋2 , ∀𝑥2 ∈ 𝑋2 , 𝛿(𝑓(𝑥1, 𝑥2), 𝑓( ̃𝑥1, 𝑥2)) ≤ 𝜔(𝑑1(𝑥1, ̃𝑥1))

(We could define this property by saying that the function 𝑥1 ↦ 𝑓(𝑥1, 𝑥2) is
uniformly continuous, with constants independent of the choice of 𝑥2).

Then show that 𝑓 is continuous.

See also point 3 of the exercise 18.8.
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§14 CONTINUITY

§14.c Lipschitz and Hölder functions [2DR]

Definition 14.c.1. Let 𝐴 ⊂ ℝ. A function 𝑓 ∶ 𝐴 → ℝ is said Lipschitz continuous [162]

if there exists 𝐿 > 0 such that ∀𝑥, 𝑦 ∈ 𝐴,

|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝐿|𝑥 − 𝑦| .

A function 𝑓 ∶ 𝐴 → ℝ is saidHölder continuous if 𝐿 > 0 and 𝛼 ∈ (0, 1] exist such
that ∀𝑥, 𝑦 ∈ 𝐴,

|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝐿|𝑥 − 𝑦|𝛼 .
The constant 𝛼 is called the order.

As in the case of ”uniform continuity”, this notion extends to maps between metric
spaces.

Exercises

E14.c.2 Prerequisites:14.b.2.Show that the Lipschitz functions, as well as Hölder func- [163]

tions, are uniformly continuous What can be said about their continuity modulus?

E14.c.3 Let 𝐼 ⊂ ℝ be an open interval. Let 𝑓 ∶ 𝐼 → ℝ be differentiable. Show that 𝑓′ [164]

is bounded on 𝐼, if and only if 𝑓 is Lipschitz continuous.

E14.c.4 Let 𝐼 ⊂ ℝ interval. Let 𝑓 ∶ 𝐼 → ℝ such that there exists 𝛼 > 1 such that [165]

∀𝑥, 𝑦, |𝑓(𝑥) − 𝑓(𝑦)| ≤ |𝑥 − 𝑦|𝛼 (i.e. 𝑓 is Hölder continuous of order 𝛼 > 1): Show
that f is constant.

E14.c.5 Let be given 𝑓 ∶ [𝑎, 𝑏] → ℝ and a decomposition of [𝑎, 𝑏] into intervals [166]

𝐼1 = [𝑎, 𝑡1], 𝐼2 = [𝑡1, 𝑡2], … , 𝐼𝑛 = [𝑡𝑛−1, 𝑏] such that the restriction of 𝑓 on each 𝐼𝑘 is
Lipschitz of constant 𝐶. Show that 𝑓 is Lipschitz of constant 𝐶.
Similarly for Hölder functions.

E14.c.6 Let 𝑓 ∶ [𝑎, 𝑏] → ℝ Hölder with exponent 𝛼 ≤ 1. Show that f is Hölderian [167]

with exponent 𝛽 for every 𝛽 < 𝛼.
Note that this is not technically true for 𝑓 ∶ ℝ → ℝ.

E14.c.7 Build 𝑓 ∶ [0, 1] → ℝ that is continuous but not Hölder continuous. Hidden [169]

solution: [UNACCESSIBLE UUID '16B'][UNACCESSIBLE UUID '16C']

E14.c.8 A linear function 𝑓 ∶ ℝ𝑛 → ℝ𝑘 is Lipschitz. [16D]

E14.c.9 For each of the following functions, say if it is continuous, uniformly contin- [16F]

uous, Hölder (and with which exponent), or Lipschitz.

• 𝑓 ∶ (0, 1) → ℝ, 𝑓(𝑥) = sin(1/𝑥).
• 𝑓 ∶ (0, 1) → ℝ, 𝑓(𝑥) = 𝑥1/𝑥.
• 𝑓 ∶ (1, ∞) → ℝ, 𝑓(𝑥) = sin(𝑥2)/𝑥

†92Note that the family on which the upper bound is calculated always contains the cases 𝑥 = 𝑦, therefore
𝜔(𝑡) ≥ 0.
†93We know from 12.10 and 10.b.22 that there are several possible choices of distances, but they are equiv-

alent to each other.
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§14.d Discontinuous functions

• 𝑓 ∶ [−1, 1] → ℝ, 𝑓(𝑥) = |𝑥|𝛽 with 𝛽 > 0.
• 𝑓 ∶ (0, ∞) → ℝ, 𝑓(𝑥) = sin(𝑥𝛽) with 𝛽 > 0.

Hidden solution: [UNACCESSIBLE UUID '16H']

E14.c.10 Given 𝐿 ∈ (0, 1) if 𝑓 ∶ ℝ → ℝ satisfies [16J]

|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝐿|𝑥 − 𝑦| ∀𝑥, 𝑦 ∈ ℝ

Then there is only one ”fixed point” that is a point 𝑥 for which 𝑓(𝑥) = 𝑥.

E14.c.11 Find a function 𝑓 ∶ ℝ → ℝ such that [16K]

|𝑓(𝑥) − 𝑓(𝑦)| < |𝑥 − 𝑦| ∀𝑥, 𝑦 ∈ ℝ

but for which there is no ”fixed point” (that is a point 𝑥 for which 𝑓(𝑥) = 𝑥=.
Hidden solution: [UNACCESSIBLE UUID '16M']

§14.d Discontinuous functions [2DS]

Let be in the following (𝑋, 𝑑) a metric space.

Definition 14.d.1. A set 𝐸 is called a 𝐹𝜎 if it is a countable union of closed sets. [2CX]

(See also exercise 10.b.30).

Exercises

E14.d.2 Note that every open set 𝐴 ⊂ 𝑋 nonempty is a 𝐹𝜎 set. (Hint: use 10.d.3). [16N]

Hidden solution: [UNACCESSIBLE UUID '16P']

E14.d.3 Prerequisites:13.a.10,13.a.4.Given a generic 𝑓 ∶ 𝑋 → ℝ, show that the set 𝐸 of [16Q]

points where 𝑓 is discontinuous is a 𝐹𝜎. Hidden solution: [UNACCESSIBLE UUID '16R']

E14.d.4 Prerequisites:14.d.1.Difficulty:*. [16S]

Suppose (𝑋, 𝑑) admits a subset 𝐷 that is dense but has empty interior. †94

Given a 𝐸 ⊂ 𝑋 which is a 𝐹𝜎, construct a function 𝑓 ∶ 𝑋 → ℝ for which 𝐸 is the set
of points of discontinuity.
Hidden solution: [UNACCESSIBLE UUID '16T']

†94That is, both 𝐷 and the complement 𝑋 ⧵ 𝐷 are dense. 𝑋 = ℝ meets this requirement, taking as an
example 𝐷 = ℚ.
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§15 CONVEX FUNCTIONS AND SETS

§15 Convex functions and sets [16V]

We will now discuss convexity. For simplicity, all results are presented using ℝ𝑛 as
domain; but most results hold more in general in a generic vector space.

§15.a Convex sets [2F0]

Definition 15.a.1. Given 𝑥1, … 𝑥𝑘 ∈ ℝ𝑛 , given 𝑡1, … 𝑡𝑘 ≥ 0 with 𝑡1 + ⋯ + 𝑡𝑘 = 1, [16W]

the sum
𝑥1𝑡1 + ⋯ + 𝑥𝑘𝑡𝑘

is a convex combination of the points 𝑥1, … 𝑥𝑘.

Remark 15.a.2. If 𝑘 = 2 then the convex combination is usually written as (𝑡𝑥 + (1 − [23P]

𝑡)𝑦) with 𝑡 ∈ [0, 1]; the set of all these points is the segment that connects 𝑥 to 𝑦.

Definition 15.a.3. Let 𝐶 ⊆ ℝ𝑛 be a set; it is called convex if [16X]

∀𝑡 ∈ [0, 1], ∀𝑥, 𝑦 ∈ 𝐶, (𝑡𝑥 + (1 − 𝑡)𝑦) ∈ 𝐶

that is, if the segment connecting each 𝑥, 𝑦 ∈ 𝐶 is all inclusive in 𝐶.

(We note that ∅ is a convex set, and that every vector subspace or affine subspace
of ℝ𝑛 is convex).

Convex sets enjoy a lot of interesting properties, this one below is just a small list.

Topology

Exercises

E15.a.4 Let 𝐶 ⊆ ℝ𝑛 be a set; show that it is convex if and only if it contains ev- [16Y]

ery convex combination of its points, that is: for every 𝑘 ≥ 1, for every choice of
𝑥1, … 𝑥𝑘 ∈ 𝐶 , for each choice 𝑡1, … 𝑡𝑘 ≥ 0 with 𝑡1 + ⋯ + 𝑡𝑘 = 1, you have

𝑥1𝑡1 + ⋯ + 𝑥𝑘𝑡𝑘 ∈ 𝐶 .

E15.a.5 Topics:simplex. [16Z]

Given 𝑥0, … 𝑥𝑘 ∈ ℝ𝑛, let

{
𝑘

∑
𝑖=0

𝑥𝑖𝑡𝑖 ∶
𝑘

∑
𝑖=0

𝑡𝑖 = 1∀𝑖, 𝑡𝑖 ≥ 0} (15.a.6)

the set of all possible combinations: prove that this set is convex.
When the vectors 𝑥1 −𝑥0, 𝑥2 −𝑥0 … 𝑥𝑘 −𝑥0 are linearly independent, the set defined
above is a simplex of dimension 𝑘.
Show that, if 𝑛 = 𝑘, then the simplex has a non-empty interior, equal to

{
𝑛

∑
𝑖=0

𝑥𝑖𝑡𝑖 ∶
𝑛

∑
𝑖=0

𝑡𝑖 = 1∀𝑖, 𝑡𝑖 > 0} (15.a.7)
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§15.a Convex sets

E15.a.8 Let 𝐴 ⊂ ℝ𝑛 be a convex set containing at least two points, and 𝑉 the small- [170]

est affine space that contains 𝐴 (show that this concept is well defined); and, view-
ing 𝐴 as a subset of 𝑉 , prove that 𝐴 has non-empty inner part. Hidden solution:
[UNACCESSIBLE UUID '171']

E15.a.9 If 𝐴 ⊂ ℝ𝑛 is convex, 𝑥 ∈ 𝐴∘ and 𝑦 ∈ 𝐴 then the segment that links them is [172]

contained in 𝐴∘, except possibly for the extreme 𝑦, that is, ∀𝑡 ∈ (0, 1), 𝑡𝑥+(1−𝑡)𝑦 ∈
𝐴∘. Hidden solution: [UNACCESSIBLE UUID '173']

E15.a.10 Prerequisites:15.a.9,10.b.5.If 𝐴 ⊂ ℝ𝑛 is convex, 𝑥 ∈ 𝐴∘ and 𝑧 ∈ 𝜕𝐴 then the [174]

segment that connects them is contained in 𝐴∘, except possibly for the extreme 𝑧 (i.e.
∀𝑡 ∈ (0, 1), 𝑡𝑥 + (1 − 𝑡)𝑧 ∈ 𝐴∘). Hidden solution: [UNACCESSIBLE UUID '175']

E15.a.11 Given 𝐴 ⊂ ℝ𝑛 convex, show that its interior, as well as its closure, are still [176]

convex. Hidden solution: [UNACCESSIBLE UUID '177']

E15.a.12 Prerequisites:10.b.29,15.a.10.Given 𝐴 ⊂ ℝ𝑛 convex with non-empty interior, [178]

show that 𝐴 = (𝐴∘) (the closure of the interior of 𝐴). Then find a simple example of
𝐴 for which 𝐴 ≠ (𝐴∘).Hidden solution: [UNACCESSIBLE UUID '179']

E15.a.13 Prerequisites:8.13.Difficulty:*. [17B]

Given 𝐴 ⊂ ℝ𝑛 convex, show that 𝐴∘ = (𝐴)
∘
(the inner part of the closure of 𝐴).

Using 15.a.18 it is easily shown that 𝐴∘ ⊇ (𝐴)
∘
; unfortunately this result is useful

in one of the possible proofs of 15.a.18 (!); an alternative proof uses simplexes as
neighbourhoods, cf 15.a.5. Hidden solution: [UNACCESSIBLE UUID '17C']

E15.a.14 Suppose that 𝐶𝑖 ⊆ ℝ𝑛 are convex sets, for 𝑖 ∈ 𝐼: prove that [059]

⋂
𝑖∈𝐼

𝐶𝑖

is convex.

Definition 15.a.15. Let then 𝐴 ⊆ ℝ𝑛 be a non-empty set, the convex hull (or convex [2G4]

envelop) 𝑐𝑜(𝐴) of 𝐴 is the intersection of all convex sets containing 𝐴. Because of
15.a.14, 𝑐𝑜(𝐴) is the smallest convex sets containing 𝐴.

See also exercises 12.f.7, 12.g.15 and 12.g.16.

§15.a.a Projection, separation

Exercises

E15.a.16 Topics:projection.Difficulty:*. Note:This is the well-known ”projection theorem”, which holds [17D]

for 𝐴 convex closed in a Hilbert space; if 𝐴 ⊂ ℝ𝑛 then the proof is simpler, and it’s a useful exercise..

Given 𝐴 ⊂ ℝ𝑛 closed convex non-empty and 𝑧 ∈ ℝ𝑛, show that there is only one
minimum point 𝑥∗ for the problem

min
𝑥∈𝐴

‖𝑧 − 𝑥‖ .

Show that 𝑥∗ is the minimum if and only if

∀𝑦 ∈ 𝐴, ⟨𝑧 − 𝑥∗, 𝑦 − 𝑥∗⟩ ≤ 0 .

𝑥∗ is called ”the projection of 𝑧 on 𝐴”.
zx*

y
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§15 CONVEX FUNCTIONS AND SETS

(Note that this last condition is simply saying that the angle must be obtuse.)
Hidden solution: [UNACCESSIBLE UUID '17G']

E15.a.17 Topics:separation. Prerequisites:15.a.16. [17H]

Given 𝐴 ⊂ ℝ𝑛 closed non-empty convex and 𝑧 ∉ 𝐴, let 𝑥∗ be defined as in the
previous exercise 15.a.16; define 𝛿 = ‖𝑧 − 𝑥∗‖, 𝑣 = (𝑧 − 𝑥∗)/𝛿 and 𝑎 = ⟨𝑣, 𝑥∗⟩.
Prove that 𝑣, 𝑎 and 𝑣, 𝑎 + 𝛿 define two parallel hyperplanes that strongly separate 𝑧
from 𝐴, in the sense that ⟨𝑧, 𝑣⟩ = 𝑎 + 𝛿 but ∀𝑥 ∈ 𝐴, ⟨𝑥, 𝑣⟩ ≤ 𝑎.

E15.a.18 Topics:separation.Difficulty:*. [17J]

This result applies in very general contexts, and is a consequence of Hahn–Banach
theorem (which makes use of Zorn’s Lemma); if 𝐴 ⊂ ℝ𝑛 it can be proven in an
elementary way, I invite you to try.
Given 𝐴 ⊂ ℝ𝑛 open convex non-empty and 𝑧 ∉ 𝐴, show that there is a hyperplane
𝑃 separating 𝑧 from 𝐴, that is, 𝑧 ∈ 𝑃 while 𝐴 is entirely contained in one of the two
closed half-spaces bounded by the hyperplane 𝑃. Equivalently, in analytical form,
there exist 𝑎 ∈ ℝ, 𝑣 ∈ ℝ𝑛, 𝑣 ≠ 0 such that ⟨𝑧, 𝑣⟩ = 𝑎 but ∀𝑥 ∈ 𝐴, ⟨𝑥, 𝑣⟩ < 𝑎; and

𝑃 = {𝑦 ∈ ℝ𝑛 ∶ ⟨𝑦, 𝑣⟩ = 𝑎} .

The hyperplane 𝑃 thus defined is called supporting hyperplane of 𝑧 for 𝐴.
There are (at least) two possible proofs. A possible proof is made by induction on

𝑛; we can assume without loss of generality that 𝑧 = 𝑒1 = (1, 0 … 0), 0 ∈ 𝐴, 𝑎 = 1;
keep in mind that the intersection of a convex open sets with ℝ𝑛−1 × {0} ⊂ ℝ𝑛 is an
open convex set in ℝ𝑛−1; this proof is complex but does not use any prerequisite. A
second proof uses 15.a.11 and 15.a.17 if 𝑧 ∉ 𝜕𝐴; if 𝑧 ∈ 𝜕𝐴 it also uses 15.a.12 to
find (𝑧𝑛) ⊂ (𝐴𝑐)∘ with 𝑧𝑛 → 𝑧 . Hidden solution: [UNACCESSIBLE UUID '17K']

E15.a.19 Prerequisites:15.a.18,12.f.3.If 𝐴, 𝐵 are disjoint convex, with 𝐴 open, show [17M]

that there is a hyperplane separating 𝐴 and 𝐵, that is, there exist 𝑣 ∈ ℝ𝑛, 𝑣 ≠ 0 and
𝑐 ∈ ℝ such that

∀𝑥 ∈ 𝐴, ⟨𝑥, 𝑣⟩ < 𝑐 but ∀𝑦 ∈ 𝐵, ⟨𝑦, 𝑣⟩ ≥ 𝑐 ; (15.a.20)

moreover show that if also 𝐵 is open, then you can have strict separation (i.e. strict
inequality in the last term in (15.a.20)).
(Hint: given 𝐴, 𝐵 ⊆ ℝ𝑛 convex nonempty, show that

𝐴 − 𝐵 def= {𝑥 − 𝑦, 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}

is convex; show that if 𝐴 is open then 𝐴 − 𝐵 is open, as in 12.f.3.) Hidden solution:
[UNACCESSIBLE UUID '17N']

E15.a.21 Find an example of open convex sets 𝐴, 𝐵 ⊂ ℝ2 with 𝐴, 𝐵 disjoint, and such [17P]

that there is a single hyperplane separating them (i.e. an ”unique” choice of 𝑣, 𝑐 that
satisfies (15.a.20); ”unique”, up to multiplying 𝑣, 𝑐 by the same positive constant).
Hidden solution: [UNACCESSIBLE UUID '17Q']

E15.a.22 Prerequisites:15.a.18.If 𝐴 ⊂ ℝ𝑛 is convex, 𝑥 ∈ 𝐴∘ and 𝑦 ∈ 𝜕𝐴, then the [17R]

straight line that connects them, continuing over 𝑦, stays out of 𝐴 (i.e. ∀𝑡 > 1, 𝑡𝑦 +
(1 − 𝑡)𝑥 ∉ 𝐴). Hidden solution: [UNACCESSIBLE UUID '17S']

Copyright A. C. G. Mennucci
The sections comprising theory and exercises’ statements are released under License WP:CC BY-SA

171

https://coldoc.sns.it/UUID/EDB/17G
https://coldoc.sns.it/UUID/EDB/17H/
https://coldoc.sns.it/UUID/EDB/17J/
https://coldoc.sns.it/UUID/EDB/17K
https://coldoc.sns.it/UUID/EDB/17M/
https://coldoc.sns.it/UUID/EDB/17N
https://coldoc.sns.it/UUID/EDB/17P/
https://coldoc.sns.it/UUID/EDB/17Q
https://coldoc.sns.it/UUID/EDB/17R/
https://coldoc.sns.it/UUID/EDB/17S
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License


§15.b Convex function

E15.a.23 Topics:separation,support. Prerequisites: 15.a.8,15.a.18, 15.a.13. [17T]

Given 𝐴 ⊂ ℝ𝑛 convex non-empty and 𝑧 ∈ 𝜕𝐴, prove that there exist 𝑣 ∈ ℝ𝑛, 𝑎 ∈ ℝ
such that ⟨𝑧, 𝑣⟩ = 𝑎 and ∀𝑥 ∈ 𝐴, ⟨𝑥, 𝑣⟩ ≤ 𝑎. The hyperplane thus defined is called
support hyperplane of 𝑧 for 𝐴. Hidden solution: [UNACCESSIBLE UUID '17V']

E15.a.24 Difficulty:*.Given a set 𝐴 ⊂ ℝ2 bounded convex open nonempty, show that [17W]

𝜕𝐴 is support of a closed simple arc (that is also Lipschitz continuous).
Hidden solution: [UNACCESSIBLE UUID '17X']

§15.b Convex function
Definition 15.b.1. Let 𝐶 ⊂ ℝ𝑛 be a convex set, and 𝑓 ∶ 𝐶 → ℝ a function. 𝑓 is [17Y]

convex if

∀𝑡 ∈ [0, 1], ∀𝑥, 𝑦 ∈ 𝐶, 𝑓(𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑡𝑓(𝑥) + (1 − 𝑡)𝑓(𝑦) .

𝑓 is strictly convex if also

∀𝑡 ∈ (0, 1), ∀𝑥, 𝑦 ∈ 𝐶, 𝑥 ≠ 𝑦, 𝑓(𝑡𝑥 + (1 − 𝑡)𝑦) < 𝑡𝑓(𝑥) + (1 − 𝑡)𝑓(𝑦) .

Definition 15.b.2. 𝑓 is said (strictly) concave if −𝑓 is (strictly) convex. [17Z]

Convex functions enjoy a lot of interesting properties, this one below is just a small
list.

... equivalent definitions

Exercises

E15.b.3 Let 𝐶 ⊂ ℝ𝑛 be a convex set. Let 𝑓 ∶ 𝐶 → ℝ be convex; let 𝑥1, … , 𝑥𝑛 ∈ 𝐶 [180]

and 𝑡1, … , 𝑡𝑛 ∈ [0, 1] be such that ∑𝑛
𝑖=1 𝑡𝑖 = 1. Show that

𝑛
∑
𝑖=1

𝑡𝑖𝑥𝑖 ∈ 𝐶

and

𝑓 (
𝑛

∑
𝑖=1

𝑡𝑖𝑥𝑖) ≤
𝑛

∑
𝑖=1

𝑡𝑖𝑓(𝑥𝑖) .

E15.b.4 Let 𝐶 ⊂ ℝ𝑛 be a convex set. Let 𝑓 ∶ 𝐶 → ℝ, show that 𝑓 is convex if and [181]

only if the epigraph
{(𝑥, 𝑦) | 𝑥 ∈ 𝐶 , 𝑓(𝑥) ≤ 𝑦}

is a convex subset of 𝐶 × ℝ.

Properties

The following is a list of properties for convex functions 𝑓 ∶ 𝐶 → ℝ with 𝐶 ⊆ ℝ𝑛.
Obviously these properties also apply when 𝑛 = 1; but when 𝑛 = 1 proofs are usually
easier, see the next section.
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§15 CONVEX FUNCTIONS AND SETS

Exercises

E15.b.5 Let 𝐶 ⊆ ℝ𝑛 be a convex set, and 𝑓 ∶ 𝐶 → ℝ a convex function. Given 𝑙 ∈ ℝ, [182]

define the sublevel set as

𝐿𝑙 = {𝑥 ∈ ℝ𝑛 ∶ 𝑓(𝑥) ≤ 𝑙} .

Show that 𝐿𝑙 is a convex (possibly empty) set. Deduce that the minimum points of
𝑓 are a convex (possibly empty) set. Show that if 𝑓 is strictly convex there can be at
most one minimum point.

E15.b.6 Let𝐶 ⊂ ℝ𝑛 be a convex set; suppose that 𝑓𝑖 ∶ 𝐶 → ℝ are convex, where 𝑖 ∈ 𝐼 [183]

(a non-empty, and arbitrary, family of indices), and we define 𝑓(𝑥) = sup𝑖∈𝐼 𝑓𝑖(𝑥),
where we suppose (for simplicity) that 𝑓(𝑥) < ∞ for every 𝑖: show that 𝑓 is convex.

E15.b.7 Prerequisites:15.b.4,15.a.23.Difficulty:*.Let 𝐶 ⊆ ℝ𝑛 be a convex set, let 𝑓 ∶ [184]

𝐶 → ℝ be a convex function, we fix 𝑧 ∈ 𝐶∘: show that there exists 𝑣 ∈ ℝ𝑛 such
that

∀𝑥 ∈ 𝐶, 𝑓(𝑥) ≥ 𝑓(𝑧) + ⟨𝑣, 𝑥 − 𝑧⟩ . (15.b.8)

The plane thus defined is called support plan for 𝑓 in 𝑧. Note:It is preferable not to assume

that 𝑓 is continuous, while proving this result, as this result is generally used to prove that 𝑓 is continuous!.Hidden
solution: [UNACCESSIBLE UUID '185']

E15.b.9 Prerequisites:12.a.1,12.10,15.b.7.Difficulty:*. [186]

Let 𝐶 ⊂ ℝ𝑛 be an open convex set, and 𝑓 ∶ 𝐶 → ℝ a convex function, show that 𝑓
is continuous.
Note:In the case of dimension 𝑛 = 1, the proof is much easier, see 15.c.5.

Hidden solution: [UNACCESSIBLE UUID '187']

E15.b.10 Topics:subdifferential.Prerequisites:15.b.7.Difficulty:*. [188]

Let 𝐶 ⊆ ℝ𝑛 be an open convex set, and 𝑓 ∶ 𝐶 → ℝ a convex function; Given 𝑧 ∈ 𝐶,
we define the subdifferential 𝜕𝑓(𝑧) as the set of 𝑣 for which the relation (15.b.8) is
valid (i.e., 𝜕𝑓(𝑧) contains all vectors 𝑣 defining the support planes to 𝑓 in 𝑧).
𝜕𝑓(𝑧) enjoys interesting properties.

• 𝜕𝑓(𝑧) is locally bounded: if 𝑧 ∈ 𝐶 and 𝑟 > 0 is such that 𝐵(𝑧, 2𝑟) ⊂ 𝐶, then
𝐿 > 0 exists such that ∀𝑦 ∈ 𝐵(𝑧, 𝑟), ∀𝑣 ∈ 𝜕𝑓(𝑥) you have |𝑣| ≤ 𝐿. In particular,
for every 𝑧 ∈ 𝐶, we have that 𝜕𝑓(𝑧) is a bounded set.

• Show that 𝜕𝑓 is upper continuous in this sense: if 𝑧 ∈ 𝐶 and (𝑧𝑛)𝑛 ⊂ 𝐶 and
𝑣𝑛 ∈ 𝜕𝑓(𝑧𝑛) and if 𝑧𝑛 →𝑛 𝑧 and 𝑣𝑛 →𝑛 𝑣 then 𝑣 ∈ 𝜕𝑓(𝑧). In particular, for
every 𝑧 ∈ 𝐶, 𝜕𝑓(𝑧) is a closed set.

Hidden solution: [UNACCESSIBLE UUID '189']

E15.b.11 Topics:minimum. Prerequisites:15.b.10.Let 𝐶 ⊆ ℝ𝑛 be a convex set, and 𝑓 ∶ [18B]

𝐶 → ℝ a convex function. Show that 𝑧 ∈ 𝐶∘ is a minimum if and only if 0 ∈ 𝜕𝑓(𝑧).

E15.b.12 Prerequisites:15.b.7,15.b.10.Note:A vice versa of 15.b.6. [18C]

Let 𝐶 ⊂ ℝ𝑛 be an open convex set; suppose that 𝑓 ∶ 𝐶 → ℝ is convex; sequences
(𝑎ℎ)ℎ ⊆ ℝ, (𝑣ℎ)ℎ ∈ ℝ𝑛 exist (for ℎ ∈ ℕ), such that 𝑓(𝑥) = supℎ∈ℕ(𝑎ℎ + 𝑣ℎ ⋅ 𝑥).
Hidden solution: [UNACCESSIBLE UUID '18D']
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§15.c Real case

§15.c Real case
Let 𝐼 ⊂ ℝ, then 𝐼 is convex if and only it is an interval (see 10.f.1). In the following we
will consider 𝑓 ∶ 𝐼 → ℝ where 𝐼 = (𝑎, 𝑏) is an open interval.

Exercises

E15.c.1 Show that 𝑓(𝑥) is convex if and only if the map 𝑅(𝑥, 𝑦) = 𝑓(𝑥)−𝑓(𝑦)
𝑥−𝑦

is mono- [18F]

tonically weakly increasing in 𝑥. †95 Moreover, 𝑓 is strictly convex if and only if 𝑅
is strictly increasing. Hidden solution: [UNACCESSIBLE UUID '18G']

E15.c.2 Show that for a convex function 𝑓 ∶ (𝑎, 𝑏) → ℝ there are only three possibil- [18H]

ities:

• 𝑓 is strictly increasing
• 𝑓 is strictly decreasing
• There are two values 𝑙− ≤ 𝑙+ such that 𝑓 is strictly increasing in [𝑙+, 𝑏), 𝑓 is
strictly decreasing in (𝑎, 𝑙−], and the interval [𝑙−, 𝑙+] are all minimum points of
𝑓;

If also 𝑓 is strictly convex then there is at most only one minimum point.

E15.c.3 Let 𝑓 ∶ (𝑎, 𝑏) → ℝ be convex. Show that, for every closed interval 𝐼 ⊂ [18J]

(𝑎, 𝑏), there exists a constant 𝐶 such that 𝑓|𝐼 is Lipschitz with constant 𝐶. Provide
an example of a continuous and convex function defined on a closed interval that is
not Lipschitz.

E15.c.4 Prove that a continuous function 𝑓 ∶ (𝑎, 𝑏) → ℝ is convex if and only if, for [18K]

every 𝑢, 𝑣 ∈ (𝑎, 𝑏),
𝑓 ( 𝑢 + 𝑣

2 ) ≤ 𝑓(𝑢) + 𝑓(𝑣)
2 .

§15.c.a Convexity and derivatives

Exercises

E15.c.5 Prerequisites:15.c.1.Let 𝑓 ∶ (𝑎, 𝑏) → ℝ be convex. [18M]

1. Show that, at every point, right derivative 𝑑+(𝑥) and left derivative 𝑑−(𝑥) exist
(In particular 𝑓 is continuous).

2. Show that 𝑑−(𝑥) ≤ 𝑑+(𝑥),
3. while, for 𝑥 < 𝑦, 𝑑+(𝑥) ≤ 𝑅(𝑥, 𝑦) ≤ 𝑑−(𝑦).
4. hence 𝑑+(𝑥) and 𝑑−(𝑥) are monotonic weakly increasing.
5. Show that 𝑑+(𝑥) is right continuous, while 𝑑−(𝑥) is left continuous.
6. Also show that lim𝑠→𝑥− 𝑑+(𝑠) = 𝑑−(𝑥), while lim𝑠→𝑥+ 𝑑−(𝑠) = 𝑑+(𝑥). In

particular 𝑑+ is continuous in 𝑥, if and only if 𝑑− is continuous in 𝑥, if and
only if 𝑑−(𝑥) = 𝑑+(𝑥).
So 𝑑+, 𝑑− are, so to speak, the same monotonic function, with the exception
that, at any point of discontinuity, 𝑑+ assumes the value of the right limit while
𝑑− the value of the left limit.

†95Note that 𝑅(𝑥, 𝑦) is symmetrical.
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§15 CONVEX FUNCTIONS AND SETS

7. Use the above to show that 𝑓 is differentiable in 𝑥 if and only if 𝑑+ is continuous
in 𝑥, if and only if 𝑑− is continuous in 𝑥.

8. Eventually, prove that 𝑓 is differentiable, except in a countable number of
points.

Hidden solution: [UNACCESSIBLE UUID '18N']

E15.c.6 Prerequisites:15.c.1.If 𝑓 ∶ (𝑎, 𝑏) → ℝ is differentiable, then 𝑓 is convex if and [18P]

only if 𝑓′ is weakly increasing. Hidden solution: [UNACCESSIBLE UUID '18Q']

E15.c.7 Prerequisites:15.c.1,15.c.6.If 𝑓 ∶ (𝑎, 𝑏) → ℝ is differentiable, then 𝑓 is strictly [18R]

convex, if and only if 𝑓′ is strictly increasing. Hidden solution: [UNACCESSIBLE UUID

'18S']

E15.c.8 Prerequisites:15.c.1, 15.c.6.Suppose that 𝑓 ∶ (𝑎, 𝑏) → ℝ is twice differen- [18T]

tiable. 𝑓 is convex if and only if𝑓″ ≥ 0 at every point. Hidden solution: [UNACCESSIBLE

UUID '18V']

E15.c.9 Prerequisites:15.c.8. [18W]

Let 𝐽 ⊂ ℝ be an open nonempty interval, and 𝑓 ∶ 𝐽 → ℝ be a twice differentiable
and convex function. Show that the following facts are equivalent:

1. 𝑓 is strictly convex,
2. the set {𝑥 ∈ 𝐽 ∶ 𝑓″(𝑥) = 0} has an empty interior,
3. 𝑓′ is monotonic strictly increasing.

Hidden solution: [UNACCESSIBLE UUID '18X']

See also the exercise 16.13 for the relationship between integral and convexity.

§15.c.b Convex functions with extended values

We consider convex functions that can also take on value +∞. Let 𝐼 be an interval.

Exercises

E15.c.10 Let 𝑓 ∶ 𝐼 → ℝ ∪ {∞} be convex, show that 𝐽 = {𝑥 ∈ 𝐼 ∶ 𝑓(𝑥) < ∞} is an [18Y]

interval.

E15.c.11 Note:another vice versa of 15.b.6. [18Z]

Given 𝐼 ⊆ ℝ interval and 𝑓 ∶ 𝐼 → ℝ ∪ {∞} convex and lower semicontinuous, there
exist sequences 𝑎𝑛, 𝑏𝑛 ∈ ℝ such that 𝑓(𝑥) = sup𝑛(𝑎𝑛 + 𝑏𝑛𝑥).
Hidden solution: [UNACCESSIBLE UUID '190']

§15.d Additional properties and exercises
Exercises

E15.d.1 Let 𝐶 ⊂ ℝ𝑛 be a convex set, 𝑓 ∶ 𝐶 → ℝ a convex function, and 𝑔 ∶ ℝ → ℝ [191]

a convex and weakly increasing function: prove that 𝑓◦𝑔 is convex.

E15.d.2 Let 𝑓 ∶ [0, ∞) → ℝ be concave, with 𝑓(0) = 0 and 𝑓 continuous in zero. [192]
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• Prove that 𝑓 is subadditive, i.e.

𝑓(𝑡) + 𝑓(𝑠) ≥ 𝑓(𝑡 + 𝑠)

for every 𝑡, 𝑠 ≥ 0. If moreover 𝑓 is strictly concave and 𝑡 > 0 then

𝑓(𝑡) + 𝑓(𝑠) > 𝑓(𝑡 + 𝑠) .

• Prove that, if ∀𝑥, 𝑓(𝑥) ≥ 0, then 𝑓 is weakly increasing.
• The other way around? Find an example of 𝑓 ∶ [0, ∞) → [0, ∞)with 𝑓(0) = 0,
continuous, monotonic increasing and subadditive, but not concave.

Hidden solution: [UNACCESSIBLE UUID '193']

E15.d.3 Prove Young inequality: given 𝑎, 𝑏 > 0 and 𝑝, 𝑞 > 1 such that 1/𝑝 + 1/𝑞 = 1 [194]

then
𝑎𝑏 ≤ 𝑎𝑝

𝑝 + 𝑏𝑞

𝑞 (15.d.4)

with equality if and only if 𝑎𝑝 = 𝑏𝑞; prove this using concavity of the logarithm.
See also 24.16. Hidden solution: [UNACCESSIBLE UUID '195']

E15.d.5 Let 𝛼 ∈ (0, 1), show that 𝑥𝛼 is 𝛼-Hölder (possibly using the above results). [196]

Hidden solution: [UNACCESSIBLE UUID '197']

See also exercise 16.29.

§15.d.a Distance function

Exercises

E15.d.6 Topics:Distance function, convex sets. Prerequisites:10.d.3,15.d.8.Let𝐴 ⊂ ℝ𝑛 be [198]

a closed nonempty set, and 𝑑𝐴 the distance function defined in the exercise 10.d.3,
that is 𝑑𝐴(𝑥) = inf𝑦∈𝐴 |𝑥 − 𝑦|. Prove that 𝐴 is a convex set, if and only if 𝑑𝐴 is a
convex function.
Hidden solution: [UNACCESSIBLE UUID '199']

E15.d.7 Topics:Distance function, convex sets. Prerequisites:10.d.3,15.a.16. [19B]

Given 𝐴 ⊂ ℝ𝑛 a closed convex set, we define the distance function 𝑑𝐴(𝑥) as in
10.d.3; let 𝑧 ∉ 𝐴 and 𝑥∗ the projection of 𝑧 on 𝐴 (i.e. the point of minimum distance
in the definition of 𝑑𝐴(𝑧)). Having fixed 𝑣 = (𝑧 −𝑥∗)/|𝑧−𝑥∗|, show that 𝑣 ∈ 𝜕𝑓(𝑧);
where 𝜕𝑓 is the subdifferential defined in 15.b.10.

§15.d.b Strictly convex functions and sets

Exercises

E15.d.8 Let 𝐶 ⊂ ℝ𝑛 be a convex, 𝑓 ∶ 𝐶 → ℝ a convex function, and 𝑟 ∈ ℝ: then [19C]

{𝑥 ∈ 𝐶, 𝑓(𝑥) < 𝑟} and {𝑥 ∈ 𝐶, 𝑓(𝑥) ≤ 𝑟} are convex (possibly empty) sets.

Remark 15.d.9. The vice versa is also true: given 𝐴 ⊂ ℝ𝑛 a closed convex set, a [23N]

convex function 𝑓 ∶ ℝ𝑛 → ℝ such that 𝐴 = {𝑥 ∶ 𝑓(𝑥) ≤ 0} always exists: For
example, you can use 𝑓 = 𝑑𝐴, as seen in 15.d.7 in the previous section.
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§15 CONVEX FUNCTIONS AND SETS

One wonders now, what if 𝑓 is strictly convex?

Definition 15.d.10. A closed convex set 𝐴 ⊂ ℝ𝑛 is said strictly convex if, for every [19D]

𝑥, 𝑦 ∈ 𝐴 with 𝑥 ≠ 𝑦 and every 𝑡 ∈ (0, 1) you have

(𝑡𝑥 + (1 − 𝑡)𝑦) ∈ 𝐴∘ .

(Note that a strictly convex set necessarily has a non-empty interior).

Remark 15.d.11. From the exercises 15.a.9 and 15.a.10 it follows that if 𝑥 ∈ 𝐴∘ or [19F]

𝑦 ∈ 𝐴∘ then (𝑡𝑥 + (1 − 𝑡)𝑦) ∈ 𝐴∘: so the definition is ”interesting” when 𝑥, 𝑦 ∈ 𝜕𝐴.

Exercises

E15.d.12 Prerequisites:15.b.9.Let 𝑓 ∶ ℝ𝑛 → ℝ be a strictly convex function and 𝑟 ∈ ℝ [19G]

then 𝐴 = {𝑥, 𝑓(𝑥) ≤ 𝑟} is a closed and strictly convex (possibly empty) set. Hidden
solution: [UNACCESSIBLE UUID '19H']
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§16 Riemann integral [19K]

All definitions and theorems needed to solve the following exercises may be found in
Chap. 1 in [4], or Chap. 6 of [22].

Exercises

E16.1 Let 𝑝 be a polynomial (with complex coefficients); fix 𝜃 ∈ ℂ, 𝜃 ≠ 0. Define [19M]

𝑓(𝑥) = − ∫𝑥
0 𝑒−𝜃𝑡𝑝(𝑡) 𝕕𝑡. Show that 𝑓(𝑥) = 𝑒−𝜃𝑥𝑞(𝑥) − 𝑞(0) where 𝑞 is a polyno-

mial that has the same degree as 𝑝. Determine the linear map (i.e. the matrix) that
transforms the coefficients of 𝑝 into the coefficients of 𝑞; and its inverse.
Hidden solution: [UNACCESSIBLE UUID '19N'][UNACCESSIBLE UUID '19P']

E16.2 Note:Similar to point 8 from exercise 18.8.Suppose𝑓𝑛 ∶ [𝑎, 𝑏] → ℝ are Riemann-integrable, [19Q]

and 𝑓 ∶ [𝑎, 𝑏] → ℝ a generic function.
Find an example where 𝑓𝑛 →𝑛 𝑓 pointwise, 𝑓 is bounded, but 𝑓 is not Riemann
integrable.
Show that, if the convergence is uniform, then 𝑓 is Riemann integrable and

lim
𝑛→∞

∫
𝑏

𝑎
𝑓𝑛 𝕕𝑥 = ∫

𝑏

𝑎
𝑓 𝕕𝑥 .

Hidden solution: [UNACCESSIBLE UUID '19R']

E16.3 Prerequisites:16.2, 18.4. [19S]

Let 𝐼 ⊂ ℝ be an interval with extremes 𝑎, 𝑏. Let 𝑓, 𝑓𝑛 ∶ 𝐼 → ℝ be continuous non-
negative functions such that 𝑓𝑛(𝑥) ↗𝑛 𝑓 pointwise (i.e. for every 𝑥 and 𝑛 we have
0 ≤ 𝑓𝑛(𝑥) ≤ 𝑓𝑛+1(𝑥) and lim𝑛 𝑓𝑛(𝑥) = 𝑓(𝑥)). Prove that

lim
𝑛→∞

∫
𝑏

𝑎
𝑓𝑛(𝑥) 𝕕𝑥 = ∫

𝑏

𝑎
𝑓(𝑥) 𝕕𝑥 .

(Note if the interval is open or semiopen or unbounded then the Riemann integrals
are understood in a generalized sense; in this case the right term can also be +∞).
Hidden solution: [UNACCESSIBLE UUID '19T']

The previous result is called Monotonic Convergence Theorem and holds in very
general hypotheses; in the case of Riemann integrals, however, it can be seen as a
consequence of the results 16.2 and 18.4.

E16.4 Suppose that 𝑓 ∶ [𝑎, 𝑏] → ℝ is Riemann integrable and 𝑔 ∶ ℝ → ℝ is continu- [19V]

ous, prove that 𝑔◦𝑓 is Riemann integrable.
Hidden solution: [UNACCESSIBLE UUID '19W']

E16.5 Say which of these functions 𝑓 ∶ [0, 1] → ℝ are Riemann integrable: [19Y]

1. the characteristic function of the Cantor set.
2. 𝑓(0) = 0, 𝑓(𝑥) = sin(1/𝑥)
3. 𝑓(0) = 0 and

𝑓(𝑥) = 1 − cos(𝑥)
𝑥2 + | sin(1/𝑥)|
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4. 𝑓(𝑥) = 0 if 𝑥 is irrational, 𝑓(𝑥) = cos(1/𝑚) if 𝑥 = 𝑛/𝑚 with 𝑛, 𝑚 coprime.
5. 𝑓(𝑥) = 0 if 𝑥 is irrational, 𝑓(𝑥) = sin(1/𝑚) if 𝑥 = 𝑛/𝑚 with 𝑛, 𝑚 coprime.

E16.6 Prerequisites:Fundamental theorem of integral calculus. [1B0]

Suppose that 𝑓 ∶ [𝑎, 𝑏] → ℝ is continuous and 𝑔 ∶ ℝ → ℝ has class 𝐶1: prove that

∫
𝑏

𝑎
𝑓(𝑔(𝑡))𝑔′(𝑡) 𝕕𝑡 = ∫

𝑔(𝑏)

𝑔(𝑎)
𝑓(𝑠) 𝕕𝑠 .

Hidden solution: [UNACCESSIBLE UUID '1B2'] Note that for this result it is not necessary
to assume that 𝑔 is monotonic.

E16.7 Prerequisites:regulated functions Sec. §13.b. [1B3]

Show that a regulated function 𝑓 ∶ [𝑎, 𝑏] → ℝ is Riemann integrable.

E16.8 Prerequisites:Regulated functions Sec. §13.b. [1B4]

Find a Riemann integrable function 𝑓 ∶ [0, 1] → ℝ that is not regulated.
Hidden solution: [UNACCESSIBLE UUID '1B5']

E16.9 Difficulty:*.Can there be a Riemann integrable function 𝑓 ∶ [0, 1] → ℝ that [1B6]

is not regulated (i.e., it does not allow right and left limits) at any point? Hidden
solution: [UNACCESSIBLE UUID '1B7']

E16.10 If 𝑓, 𝑔 ∶ [𝐴, 𝐵] → ℝ are Riemann integrable, then ℎ(𝑥) = max{𝑓(𝑥), 𝑔(𝑥)} is [1B8]

Riemann integrable.

E16.11 Find a lower semicontinuous function 𝑓 ∶ [0, 1] → ℝ, bounded, but not Rie- [1B9]

mann integrable.

E16.12 We define the Beta function as [1BC]

𝐵(𝑥, 𝑦) = ∫
1

0
𝑡𝑥−1(1 − 𝑡)𝑦−1 𝑑𝑡 .

1. Show that the integral exists (finite) if and only if 𝑥, 𝑦 > 0.
2. Note that 𝐵(𝑥, 𝑦) = 𝐵(𝑦, 𝑥)
3. Relate 𝐵(𝑛, 𝑚) to 𝐵(𝑛 − 1, 𝑚 + 1). Then calculate the value of 𝐵(𝑛, 𝑚) for 𝑛, 𝑚

natural positives.
4. Use the result to calculate

∫
𝜋/2

0
sin(𝑡)9 cos(𝑡)7 𝑑𝑡 .

Hidden solution: [UNACCESSIBLE UUID '1BD']

E16.13 Prerequisites:convex functions.Let 𝐼 ⊂ ℝ be an open interval, and 𝑥0 ∈ 𝐼. Prove [1BF]

that these two facts are equivalent:

1. 𝐹 ∶ 𝐼 → ℝ is convex.
2. There exists 𝑓 ∶ 𝐼 → ℝ monotonic (weakly) increasing, and such that 𝐹(𝑥) =

𝐹(𝑥0) + ∫𝑥
𝑥0

𝑓(𝑠) 𝕕𝑠,
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and verify that you can choose 𝑓 be the right (or left) derivative of 𝐹.

E16.14 Exhibit an integrable function 𝑓 ∶ [0, 1] → ℝ such that the derivative of the [1BG]

function 𝐹(𝑥) = ∫𝑥
𝑎 𝑓(𝑡)𝑑𝑡 is not 𝑓. Hidden solution: [UNACCESSIBLE UUID '1BH']

E16.15 Calculate explicitly †96 primitive formulas for [1BJ]

1
sin(𝑥)2 , 1

√1 + 𝑥2
, 1

2 + sin(𝑥) .

Hidden solution: [UNACCESSIBLE UUID '1BK']

E16.16 We define the Gamma function 𝛤 ∶ (0, ∞) → ℝ as [1BM]

𝛤(𝑥) = ∫
∞

0
𝑡𝑥−1𝑒−𝑡 𝕕𝑡 .

• Show that 𝛤(𝑥) is well defined for 𝑥 > 0 real.
• Show that 𝛤(𝑥 + 1) = 𝑥𝛤(𝑥) and deduce that 𝛤(𝑛 + 1) = 𝑛! for 𝑛 ∈ ℕ.
• Show that 𝛤(𝑥) is analytic.
(You can assume that derivatives of 𝛤 are 𝛤(𝑛)(𝑥) = ∫∞

0 (log 𝑡)𝑛𝑡𝑥−1𝑒−𝑡 𝕕𝑡;
those are obtained by derivation under integral sign.)

E16.17 Calculate [1BN]

lim
𝑛→∞

1
𝑛 + 1

𝑛 + 1 + ⋯ + 1
3𝑛

seeing it as an approximate sum of a Riemann integral.

E16.18 Prerequisites:17.c.3.Let 𝑎 ∈ ℝ, let 𝐼 be open interval with 𝑎 ∈ 𝐼, and 𝜑0 ∶ 𝐼 → [1BP]

ℝ continuous.
We recursively define 𝜑𝑛 ∶ 𝐼 → ℝ for 𝑛 ≥ 1 via 𝜑𝑛(𝑥) = ∫𝑥

𝑎 𝜑𝑛−1(𝑡) 𝕕𝑡; show that

𝜑𝑛+1(𝑥) = 1
𝑛! ∫

𝑥

𝑎
(𝑥 − 𝑡)𝑛𝜑0(𝑡) 𝕕𝑡 (16.19)

Hidden solution: [UNACCESSIBLE UUID '1BQ']

E16.20 Prerequisites:16.18.Note:See also Apostol [3]. [1BR]

Fix 𝑎 ∈ ℝ, and 𝐼 open interval with 𝑎 ∈ 𝐼; assuming that 𝑓 ∶ 𝐼 → ℝ is if class 𝐶𝑛+1,
prove Taylor’s formula with integral remainder

𝑓(𝑥) =
𝑛

∑
𝑘=0

𝑓(𝑘)(𝑎)
𝑘! (𝑥 − 𝑎)𝑘 + 1

𝑛! ∫
𝑥

𝑎
(𝑥 − 𝑡)𝑛𝑓(𝑛+1)(𝑡) 𝕕𝑡 .

Hidden solution: [UNACCESSIBLE UUID '1BS']
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E16.21 Prerequisites:15.c.1, 16.13.Let 𝐼 ⊂ ℝ be an open interval. Suppose that 𝑔 ∶ [1BT]

𝐼 → ℝ in Riemann integrable on any bounded closed interval contained in 𝐼. Fixed
𝑥, 𝑦 ∈ ℝ with 𝑥 ≠ 𝑦, let

𝑅(𝑥, 𝑦) = 1
𝑦 − 𝑥 ∫

𝑦

𝑥
𝑔(𝑠) 𝕕𝑠

(with the usual convention that∫𝑦
𝑥 𝑔(𝑠) 𝕕𝑠 = − ∫𝑥

𝑦 𝑔(𝑠) 𝕕𝑠, so that 𝑅(𝑥, 𝑦) = 𝑅(𝑦, 𝑥)).
If 𝑔 is monotonic, show that 𝑅(𝑥, 𝑦) is monotonic in each variable. If 𝑔 is continuous
and 𝑅(𝑥, 𝑦) is monotonic in each variable, show that 𝑔 is monotonic.
Hidden solution: [UNACCESSIBLE UUID '1BV']

E16.22 Let 𝑓 ∶ [𝑎, 𝑏] → ℝ continuous and such that [1BW]

∫
𝑏

𝑎
𝑓(𝑥)𝑔(𝑥) 𝕕𝑥 = 0

for any 𝑔 ∶ [𝑎, 𝑏] → ℝ continuous: prove that 𝑓 ≡ 0.

E16.23 Let’s go back to the exercise 7.c.33: computing the Cauchy product of the se- [1BX]

ries∑∞
𝑛=1

(−1)𝑛−1

√𝑛
with itself, produces the series∑𝑛(−1)𝑛𝑐𝑛 with 𝑐𝑛 = ∑𝑛−1

𝑘=1
1

√𝑘(𝑛−𝑘)
;

show that 𝑐𝑛 → 𝜋.
Hidden solution: [UNACCESSIBLE UUID '1BY']

E16.24 Difficulty:*.Suppose that 𝑓 ∶ ℝ → ℝ is continuous and bounded, show that [1BZ]

lim
𝑦→0+

𝑦
𝜋 ∫

∞

−∞

𝑓(𝑥)
𝑥2 + 𝑦2 𝕕𝑥 = 𝑓(0)

(Hint. start with the case when 𝑓 is constant.)

E16.25 Let 𝑛, 𝑚 ≥ 1 be integers, and set [1C0]

𝐼𝑛,𝑚 = ∫
1

0
𝑥𝑛(log𝑥)𝑚 𝕕𝑥 ∶

relate 𝐼𝑛,𝑚 with 𝐼𝑛,𝑚−1; use that relation to explicitly calculate

∫
1

0
𝑥𝑛(log𝑥)𝑛 𝕕𝑥 .

Hidden solution: [UNACCESSIBLE UUID '1C1']

E16.26 Prerequisites:16.25.Difficulty:**.Show identities [1C2]

∫
1

0
𝑥−𝑥 𝑑𝑥 =

∞
∑
𝑛=1

𝑛−𝑛 (=∼ 1.291285997 … ) (16.27)

∫
1

0
𝑥𝑥 𝑑𝑥 =

∞
∑
𝑛=1

(−1)𝑛+1𝑛−𝑛 (=∼ 0.783430510712 … ) (16.28)

(Hint: use the Taylor series 𝑒𝑧, and substitute 𝑧 = 𝑥 log(𝑥); use the exercise 16.25
above.)
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E16.29 Difficulty:*.Let 𝑓 ∶ [0, 1] → ℝ be Riemann integrable and 𝜑 ∶ ℝ → ℝ [1C3]

convex: show that

𝜑 (∫
1

0
𝑓(𝑥)) 𝕕𝑥) ≤ ∫

1

0
𝜑(𝑓(𝑥)) 𝕕𝑥 . (16.30)

This result is known as Jensen’s inequality.

E16.31 Difficulty:*.Suppose that 𝑓 ∶ (0, 1) → (0, ∞) is continuous and decreasing [1C4]

and ∫1
0 𝑓(𝑡) 𝕕𝑡 < ∞ then lim𝑟→0 𝑟𝑓(𝑟) = 0.

Other exercises regarding Riemann integration can be found in 14.a.8, 17.c.2, 18.8
(part 8).

†96Taken from the book by Giaquinta and Modica [8], p. 162 and following.
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§17 DIFFERENTIABLE FUNCTIONS

§17 Differentiable functions [1C5]

Definition 17.1. Let in the following 𝐴 ⊆ ℝ be an open set. [2D0]

By saying that 𝑓 ∶ 𝐴 → ℝ is differentiable we mean differentiable at any point.
Recall that, given 𝑘 ≥ 1 integer, 𝑓 is of class 𝐶𝑘 if 𝑓 is differentiable 𝑘-times and the

k-th derivative 𝑓(𝑘) is continuous; and 𝑓 is of class 𝐶∞ if 𝑓 is differentiable infinitely
many times. (Sometimes we may write 𝑓 ∈ 𝐶𝑘 to signify that 𝑓 is of class 𝐶𝑘.)

To address the following exercises, it may be necessary to know some fundamental
results in Analysis and Differential Calculus that may be found e.g. in [22, 4]; specifi-
cally:

• Lagrange’s Theorem †97 : Theorem 5.10 in in [22], or [61].

• De l’Hôpital’ rule, and corollaries: : Theorem 5.13 in in [22], Sec. 7.12 in [4] or
[24, 59];

• Taylor’s Theorem, and the possible remainders: Theorem 5.15 in in [22], Chap. 7
in [4], or [66].

Exercises

E17.2 Let 𝐼 ⊆ ℝ be an open interval. Let 𝑓 ∶ 𝐼 → ℝ be differentiable, and 𝑥, 𝑦 ∈ 𝐼 [1C6]

with 𝑥 < 𝑦. Show that if 𝑓′(𝑥) ⋅ 𝑓′(𝑦) < 0 then 𝜉 ∈ 𝐼 exists with 𝑥 < 𝜉 < 𝑦 such
that 𝑓′(𝜉) = 0. Hidden solution: [UNACCESSIBLE UUID '1C7']

E17.3 Prerequisites:17.2.Note:Darboux properties. [1C8]

Let 𝐴 ⊆ ℝ be an open set, and suppose that 𝑓 ∶ 𝐴 → ℝ is differentiable. We want
to show that, for each interval 𝐼 ⊂ 𝐴, the image 𝑓′(𝐼) is an interval.
So prove this result. For 𝑥, 𝑦 ∈ 𝐼 with 𝑥 < 𝑦, let’s define 𝑎 = 𝑓′(𝑥), 𝑏 = 𝑓′(𝑦). Let’s
assume for simplicity that 𝑎 < 𝑏. For any 𝑐 with 𝑎 < 𝑐 < 𝑏, there exists 𝜉 ∈ 𝐼 with
𝑥 < 𝜉 < 𝑦 such that 𝑓′(𝜉) = 𝑐.
(Finally, show that this property actually implies that the image 𝑓′(𝐼) of an interval 𝐼
is an interval.)
Hidden solution: [UNACCESSIBLE UUID '1C9']

E17.4 Prerequisites:17.3. [1CB]

Let 𝐼 ⊆ ℝ be an open interval. Let 𝑓 ∶ 𝐼 → ℝ be a differentiable function such that
𝑓′(𝑡) ≠ 0 for every 𝑡 ∈ 𝐼: show then that 𝑓′(𝑡) has always the same sign.
Hidden solution: [UNACCESSIBLE UUID '1CC']

E17.5 Prerequisites:17.3.Difficulty:*. [1CD]

Find a bounded function 𝑓 ∶ ℝ → ℝ that maps intervals into intervals, but such that
there does not exist 𝑔 ∶ ℝ → ℝ differentiable at every point and with 𝑓 = 𝑔′.
(Note that 𝑓 cannot be continuous, due to the Fundamental Theorem of Calculus.)
Hidden solution: [UNACCESSIBLE UUID '1CF']

E17.6 Suppose that 𝑓 ∶ ℝ → ℝ be differentiable, with 𝑓′ = 𝑓: prove, in an elementary [1CG]

way, that that there exists 𝜆 ∈ ℝ s.t. 𝑓(𝑥) = 𝜆𝑒𝑥. Hidden solution: [UNACCESSIBLE UUID

'1CH']

†97a.k.a. Mean Value Theorem
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E17.7 Find a differentiable function 𝑓 ∶ ℝ → ℝ whose derivative is bounded but not [1CJ]

continuous. Hidden solution: [UNACCESSIBLE UUID '1CK']

E17.8 Find a continuous and differentiable function 𝑓 ∶ [−1, 1] → ℝ †98 whose deriva- [1CM]

tive is unbounded. Hidden solution: [UNACCESSIBLE UUID '1CN']

E17.9 Difficulty:*. Describe a function 𝑓 ∶ ℝ → ℝ that is differentiable and such that [1CP]

the image of [0, 1] using 𝑓′ is 𝑓′([0, 1]) = (−1, 1).
Before looking for the example, ponder on this notions. We remember the Darboux
property 17.3: the image 𝑓′(𝐼) of an interval 𝐼 is an interval; but this does not say
that the image of 𝑓′([0, 1]) should be a closed and bounded interval. If, however, we
also knew that 𝑓′ is continuous, what could we say of 𝑓′([0, 1])? So what do you
deduce a priori about the sought example?
Hidden solution: [UNACCESSIBLE UUID '1CQ']

E17.10 Let 𝐼 = (𝑎, 𝑏) ⊂ ℝ be an open interval. Let 𝑓 ∶ 𝐼 → ℝ be differentiable: show [1CV]

that 𝑓′ is continuous, if and only if for every 𝑥

𝑓′(𝑥) = lim
(𝑠,𝑡)→(𝑥,𝑥),𝑠≠𝑡

𝑓(𝑡) − 𝑓(𝑠)
𝑡 − 𝑠 .

Hidden solution: [UNACCESSIBLE UUID '1CW']

E17.11 Let f be differentiable in the interval (𝑎, 𝑏), let 𝑥0 ∈ (𝑎, 𝑏) and 𝑥0 < 𝛼𝑛 < [1CX]

𝛽𝑛, 𝛽𝑛 → 𝑥0 for 𝑛 → ∞. Show that if the sequence 𝛽𝑛−𝑥0
𝛽𝑛−𝛼𝑛

is bounded then

𝑓(𝛽𝑛) − 𝑓(𝛼𝑛)
𝛽𝑛 − 𝛼𝑛

→𝑛 𝑓′(𝑥0)

Show by example that this conclusion is false if the given condition is not verified.

E17.12 Suppose that a given function 𝑓 ∶ (𝑎, 𝑏) → 𝑅 is differentiable at every point [1CZ]

of (𝑎, 𝑏) except 𝑥0, and that the limit lim𝑡→𝑥0 𝑓(𝑡) exists and is finite. Show that f is
also differentiable in 𝑥0 and that 𝑓(𝑥0) = lim𝑡→𝑥0 𝑓(𝑡).

E17.13 Prerequisites:10.g.8.Let 𝑓, 𝑔 ∶ ℝ → ℝ be two functions that can be differenti- [1D1]

ated at every point. Show that max{𝑓, 𝑔} is differentiable, except on a set that is at
most countable. Hidden solution: [UNACCESSIBLE UUID '1D2'][UNACCESSIBLE UUID '1D3']

E17.14 Let 𝑓 ∶ (𝑎, 𝑏) → ℝ be differentiable and such that, if 𝑓(𝑡) = 0, then 𝑓′(𝑡) = 0. [1D4]

Show that the function 𝑔(𝑡) = |𝑓(𝑡)| is differentiable. Hidden solution: [UNACCESSIBLE

UUID '1D6']

E17.15 Let 𝑝(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ... + 𝑎0 a polynomial with all real roots and [1D7]

coefficients all non-zero. Show that the number of positive roots (counted with mul-
tiplicity) is equal to the number of sign changes in the sequence of coefficients of
𝑝. [Hint. Use induction on 𝑛, using the fact that between two consecutive roots of
𝑝 there exists a root of 𝑝′ .]This result is known as Descartes’ rule of signs.

E17.16 Let 𝑓 ∶ ℝ → ℝ be continuous and differentiable, and 𝑎, 𝑏 ∈ ℝ with 𝑎 < 𝑏. [1D9]

Show that, if 𝑓′(𝑎) = 𝑓′(𝑏), then 𝜉 exists with 𝑎 < 𝜉 < 𝑏 such that

𝑓′(𝜉) = 𝑓(𝜉) − 𝑓(𝑎)
𝜉 − 𝑎 .

†98In this sense: the derivative 𝑓′(𝑥) exists and is finite for every 𝑥 ∈ [−1, 1]; at the extremes 𝑥 = −1, 1
only the right and left derivatives are calculated.
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§17 DIFFERENTIABLE FUNCTIONS

§17.a Higher derivatives [2D1]

Exercises

E17.a.1 Let 𝐼 be an open interval and 𝑥0 ∈ 𝐼, let 𝑓 ∶ 𝐼 → ℝ be differentiable in 𝐼 and [1DD]

such that there exists the second derivative 𝑓″ in 𝑥0: then show that the limit exists

lim
𝑡→0

𝑓(𝑥0 + 𝑡) + 𝑓(𝑥0 − 𝑡) − 2𝑓(𝑥0)
𝑡2

and that it coincides with 𝑓″(𝑥0).
Find then a simple example of 𝑓 differentiable in (−1, 1) and such that the second
derivative 𝑓″ in 𝑥0 = 0 does not exist, but the previous limit exists.
Hidden solution: [UNACCESSIBLE UUID '1DF']

E17.a.2 5 Let 𝑛 ≥ 1 be an integer. Let 𝐼 be an open interval and 𝑥0 ∈ 𝐼, let𝑓, 𝑔 ∶ 𝐼 → ℝ [1DG]

be functions 𝑛−1 times differentiable in the interval, and whose (𝑛−1)-th derivative
is differentiable in 𝑥0.
Show that the product 𝑓𝑔 is differentiable 𝑛 − 1 times in the interval, and its (𝑛 − 1)-
th derivative is differentiable in 𝑥0. Write an explicit formula for the n-th derivative
(𝑓𝑔)(𝑛) in 𝑥0 of the product of the two functions, (formula that uses derivatives of
only 𝑓 and only 𝑔).
(If you don’t find it, look in Wikipedia at the General Leibniz rule [55]) .

Hidden solution: [UNACCESSIBLE UUID '1DH']

E17.a.3 Difficulty:*.Let 𝑛 ≥ 1 be an integer. Let 𝐼, 𝐽 be open intervals with 𝑥0 ∈ [1DJ]

𝐼, 𝑦0 ∈ 𝐽. Let then be given 𝑔 ∶ 𝐼 → ℝ and 𝑓 ∶ 𝐽 → ℝ such that 𝑔(𝐼) ⊆ 𝐽, 𝑓, 𝑔 are
𝑛 − 1 times differentiable in their respective intervals, their (𝑛 − 1)-th derivative is
differentiable in 𝑥0 (resp. 𝑦0) and finally 𝑔(𝑥0) = 𝑦0.
Show that the composite function 𝑓◦𝑔 is differentiable 𝑛−1 times in the interval and
its derivative (𝑛 − 1)-th is differentiable in 𝑥0.
Then write an explicit formula for the nth derivative (𝑓◦𝑔)(𝑛) in
𝑥0 of the composition of the two functions, (formula that uses
derivatives of 𝑓 and 𝑔).
(If you can’t find it, read the wikipedia page [54]; or, see
this presentation: https://drive.google.com/drive/folders/

1746bdJ89ZywciaEqvIMlGZ7kKHWVekhb ).

Hidden solution: [UNACCESSIBLE UUID '1DK']

E17.a.4 Prerequisites:17.a.3,3.l.1.Show that the function [1DM]

𝜑(𝑥) = {𝑒−1/𝑥 if 𝑥 > 0
0 if 𝑥 ≤ 0 (17.a.5)

is of class 𝐶∞, and for 𝑥 > 0

𝜑(𝑛)(𝑥) = 𝑒−1/𝑥
𝑛

∑
𝑚=1

( 𝑛 − 1
𝑚 − 1) 𝑛!

𝑚!
(−1)𝑚+𝑛

𝑥𝑚+𝑛 ,

( 𝑛 − 1
𝑚 − 1) = (𝑛 − 1)!

(𝑛 − 𝑚)!(𝑚 − 1)! .
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§17.a Higher derivatives

whereas 𝜑(𝑛)(𝑥) = 0 for each 𝑛 ∈ ℕ, 𝑥 ≤ 0.
Proceed similarly to

𝜓(𝑥) = {𝑒−1/|𝑥| if 𝑥 ≠ 0
0 if 𝑥 = 0 (17.a.6)

again 𝜓 ∈ 𝐶∞ and 𝜓(𝑛)(0) = 0 for each 𝑛 ∈ ℕ; but in this case 𝜓(𝑥) = 0 ⟺ 𝑥 =
0. Hidden solution: [UNACCESSIBLE UUID '1DN'][UNACCESSIBLE UUID '1DP'] [UNACCESSIBLE UUID

'1DQ']

E17.a.7 Let it be given 𝑁 positive integer. Find an example of a function 𝐶∞ with [1DR]

𝜑(𝑥) = 0 for 𝑥 < 0 while 𝜑(𝑛)(𝑥) > 0 for 0 ≤ 𝑛 ≤ 𝑁 and 𝑥 > 0.
Hidden solution: [UNACCESSIBLE UUID '1DS'] Note however that it cannot be required
that all derivatives be positive, because of exercise 20.2.

E17.a.8 What can you put in place of ”???” so that the function [1DT]

𝑔(𝑥) =
⎧
⎨
⎩

??? if 0 < 𝑥 < 1 ,
1 if 𝑥 ≥ 1 ,
0 if 𝑥 ≤ 0 .

is 𝐶∞?
More generally, how can two 𝐶∞ functions be connected, so that the whole function
is 𝐶∞? Given 𝑓0, 𝑓1 ∈ 𝐶∞, show †99 that there is a function 𝑓 ∈ 𝐶∞ that satisfies

𝑓(𝑥) = 𝑓0(𝑥) if 𝑥 ≤ 0 ,
𝑓(𝑥) = 𝑓1(𝑥) if 𝑥 ≥ 1 .

Hidden solution: [UNACCESSIBLE UUID '1DV']

E17.a.9 Difficulty:*.Let 𝑓0, 𝑓1 ∶ ℝ → ℝ, 𝑓0, 𝑓1 ∈ 𝐶∞ with 𝑓′
0 , 𝑓′

1 > 0 and 𝑓1(1) > [1DW]

𝑓0(0): then one can interpolate with a function 𝑓 ∈ 𝐶∞ that satisfies

𝑓(𝑥) = 𝑓0(𝑥) if 𝑥 ≤ 0
𝑓(𝑥) = 𝑓1(𝑥) if 𝑥 ≥ 1

so that the interpolant has 𝑓′ > 0.
What if 𝑓1(1) = 𝑓0(0)?
Hidden solution: [UNACCESSIBLE UUID '1DX']

E17.a.10 Prerequisites:17.a.4. Find an example of function 𝑓 ∶ ℝ → ℝ with 𝑓 ∈ 𝐶∞ [1DZ]

and such that, setting 𝐴 = {𝑥 ∶ 𝑓(𝑥) = 0}, the point 0 will be the only point of
accumulation of 𝐴, i.e. 𝐷(𝐴) = {0}. Compare this example with Prop. 6.8.4 in the
notes [2]; and with the example 20.7. Hidden solution: [UNACCESSIBLE UUID '1F0']

E17.a.11 Difficulty:*.Note:Hadamard’s lemma. [1F1]

Let 𝑓 ∶ ℝ → ℝ be a function of class 𝐶∞, and such that 𝑓(0) = 0. Define, for
𝑥 ≠ 0, 𝑔(𝑥) def= 𝑓(𝑥)/𝑥. Show that 𝑔 can be prolonged, assigning an appropriate
value to 𝑔(0), and that the prolonged function is𝐶∞. What is the relationship between
𝑔(𝑛)(0) and 𝑓(𝑛+1)(0)?
Hidden solution: [UNACCESSIBLE UUID '1F2']
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§17 DIFFERENTIABLE FUNCTIONS

E17.a.12 Prerequisites:17.a.11.Difficulty:*.Let 𝑓 ∶ ℝ → [0, ∞) be a function of class [1F4]

𝐶∞ such that 𝑓(0) = 0, 𝑓(𝑥) > 0 for 𝑥 ≠ 0, and 𝑓″(0) ≠ 0: show that

𝑔(𝑥) = {√𝑓(𝑥) 𝑠𝑒 𝑥 ≥ 0
−√𝑓(𝑥) 𝑠𝑒 𝑥 < 0

is of class 𝐶∞. Hidden solution: [UNACCESSIBLE UUID '1F5']

E17.a.13 Difficulty:* . Given 𝑥0 < 𝑥1 < 𝑥2 < … < 𝑥𝑛 and given real numbers 𝑎𝑖,ℎ [1F7]

(with 𝑖, ℎ = 0, … 𝑛) show that there is a polynomial 𝑝(𝑥) such that 𝑝(𝑖)(𝑥ℎ) = 𝑎𝑖,ℎ.
This result is the starting point of the Hermit method of polynomial interpolation, see
[57].
Hidden solution: [UNACCESSIBLE UUID '1F8']

E17.a.14 Prerequisites:convex functions.Note:Exercise 1, written exam March 1st, 2010. [1F9]

Let’s consider the functions 𝑓 ∶ ℝ → ℝ of class 𝐶∞, such that for every fixed
𝑛 ≥ 0, 𝑓(𝑛)(𝑥) has constant sign (i.e. it is never zero) †100. We associate to each such
function the sequence of signs that are assumed by 𝑓, 𝑓′, 𝑓″ ….
What are the possible sequences of signs, and what are the impossible sequences?
(E.g. for 𝑓(𝑥) = 𝑒𝑥, the associated sequence is + + + + + …, which is therefore a
possible sequence.)
See also the exercise 20.2.

See also the exercises 15.c.8 and 15.c.9 on the relationship between convexity and
properties of derivatives.

§17.b Taylor polynomial [2D2]

Definition 17.b.1 (Landau Symbols). Let 𝑎 ∈ ℝ and 𝐼 be a neighborhood of 𝑎. Let [1FB]

𝑓, 𝑔 ∶ 𝐼 → ℝ. We will say that ”𝑓(𝑥) = 𝑜(𝑔(𝑥)) for 𝑥 tending to 𝑎” if †101

∀𝜀 > 0, ∃𝛿 > 0, 𝑥 ∈ 𝐼 ∧ |𝑥 − 𝑎| < 𝛿 ⇒ |𝑓(𝑥)| ≤ 𝜀|𝑔(𝑥)| .
This notation reads like ”f is small o of g”.
If 𝑔(𝑥) ≠ 0 for 𝑥 ≠ 𝑎, then equivalently we can write

lim
𝑥→𝑎

𝑓(𝑥)
𝑔(𝑥) = 0 .

We will say that ”𝑓(𝑥) = 𝑂(𝑔(𝑥)) for 𝑥 tending to 𝑎” if if there is a constant 𝑐 > 0
and a neighborhood 𝐽 of 𝑎 for which ∀𝑥 ∈ 𝐽, |𝑓(𝑥)| ≤ 𝑐|𝑔(𝑥)|.

Again, if 𝑔(𝑥) ≠ 0 for 𝑥 ≠ 𝑎, then equivalently we can write

lim sup
𝑥→𝑎

|𝑓(𝑥)|
|𝑔(𝑥)| < ∞ ,

This notation reads like ”f is big O of g”.
For further information, and more notations, see [50].
This notation is usually attributed to Landau.

†99Possibly with a simple construction based on example 17.a.4.
†100We agree that 𝑓(0) = 𝑓.
†101Consider that 𝐽 = {𝑥 ∈ 𝐼 ∶ |𝑥 − 𝑎| < 𝛿} is a neighborhood of 𝑎.
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§17.b Taylor polynomial

In the following for simplicity we consider only the case in which lim𝑥→𝑎 𝑔(𝑥) = 0;
moreover in Taylor’s expansionwe always have that 𝑔(𝑥) = (𝑥−𝑎)𝑛 with 𝑛 ≥ 1 integer.
†102

Remark 17.b.2. Attention! The symbols ”small o” and ”big O” are used differently [1FC]

from other symbols of mathematics. In fact, they can represent different functions, even
in the same context! For example, if we write

sin(𝑥) = 𝑥 + 𝑜(𝑥) , cos(𝑥) = 1 + 𝑜(𝑥)
the two symbols ”𝑜(𝑥)” on the right and left represent different functions. Particular
care must therefore be taken in showing the properties used in the calculus. When many
of such symbols are present, it is advisable to replace them with placeholder function
symbols, as in the following examples.

Let’s see two examples. Let 𝑎 = 0 for simplicity.
Example 17.b.3. We informally state this property. [1FD]

If 𝑛 ≥ 𝑚 ≥ 1 then 𝑜(𝑥𝑛) + 𝑜(𝑥𝑚) = 𝑜(𝑥𝑚).
To prove it, we convert it into a precise statement. First of all, let’s rewrite it like this.

If 𝑓(𝑥) = 𝑜(𝑥𝑛) and 𝑔(𝑥) = 𝑜(𝑥𝑚) then 𝑓(𝑥) + 𝑔(𝑥) = 𝑜(𝑥𝑚).
So let’s prove it. From the hypotheses,

lim
𝑥→0

𝑓(𝑥)𝑥−𝑛 = 0 and lim
𝑥→0

𝑔(𝑥)𝑥−𝑚 = 0

then

lim
𝑥→0

𝑓(𝑥) + 𝑔(𝑥)
𝑥𝑚 = lim

𝑥→0

𝑓(𝑥)
𝑥𝑚 + lim

𝑥→0

𝑔(𝑥)
𝑥𝑚 = lim

𝑥→0
𝑥𝑛−𝑚 𝑓(𝑥)

𝑥𝑛 + 0 = 0.

Example 17.b.4. We informally state this second property [1FF]

If 𝑛 ≥ 1 then 𝑜(𝑥𝑛 + 𝑜(𝑥𝑛)) = 𝑜(𝑥𝑛).

We rewrite it like this.

If 𝑓(𝑥) = 𝑜(𝑥𝑛) and 𝑔(𝑥) = 𝑜(𝑥𝑛 + 𝑓(𝑥)) then 𝑔(𝑥) = 𝑜(𝑥𝑛).
We note that, for 𝑥 ≠ 0 small, 𝑥𝑛 + 𝑓(𝑥) is not zero, as there is a neighborhood
in which |𝑓(𝑥)| ≤ |𝑥𝑛/2|. As a hypothesis we have that lim𝑥→0 𝑓(𝑥)𝑥−𝑛 = 0 and
lim𝑥→0 𝑔(𝑥)/(𝑥𝑛 + 𝑓(𝑥)) = 0 then

lim
𝑥→0

𝑔(𝑥)
𝑥𝑛 = lim

𝑥→0

𝑔(𝑥)
𝑥𝑛 + 𝑓(𝑥)

𝑥𝑛 + 𝑓(𝑥)
𝑥𝑛

but
lim
𝑥→0

𝑔(𝑥)
𝑥𝑛 + 𝑓(𝑥) = 0

while
lim
𝑥→0

𝑥𝑛 + 𝑓(𝑥)
𝑥𝑛 = 1 .

†102Some authors also use the 𝑜(1) notation to indicate an infinitesimal quantity for 𝑥 → 𝑎, but this can
generate confusion .
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§17 DIFFERENTIABLE FUNCTIONS

Exercises

E17.b.5 Let 𝑎 = 0 for simplicity. Rewrite the following relations, and prove them. [1FG]

• If 𝑛 ≥ 𝑚 ≥ 1 then

𝑂(𝑥𝑛)+𝑂(𝑥𝑚) = 𝑂(𝑥𝑚), 𝑜(𝑥𝑛)+𝑂(𝑥𝑚) = 𝑂(𝑥𝑚), 𝑥𝑛+𝑂(𝑥𝑚) = 𝑂(𝑥𝑚) .

• If 𝑛 > 𝑚 ≥ 1 then

𝑂(𝑥𝑛) + 𝑜(𝑥𝑚) = 𝑜(𝑥𝑚), 𝑥𝑛 + 𝑜(𝑥𝑚) = 𝑜(𝑥𝑚).

• For 𝑛, 𝑚 ≥ 1

𝑥𝑛𝑂(𝑥𝑚) = 𝑂(𝑥𝑛+𝑚)
𝑥𝑛𝑜(𝑥𝑚) = 𝑜(𝑥𝑛+𝑚)

𝑂(𝑥𝑛)𝑂(𝑥𝑚) = 𝑂(𝑥𝑛+𝑚)
𝑜(𝑥𝑛)𝑂(𝑥𝑚) = 𝑜(𝑥𝑛+𝑚)

•

∫
𝑦

0
𝑂(𝑥𝑛) 𝕕𝑥 = 𝑂(𝑦𝑛+1) ∫

𝑦

0
𝑜(𝑥𝑛) 𝕕𝑥 = 𝑜(𝑦𝑛+1) .

E17.b.6 Write the Taylor polynomial of 𝑓(𝑥) around 𝑥0 = 0, using ”Landau’s calculus [1FJ]

of 𝑜(𝑥𝑛)” seen above.
𝑓(𝑥) = 𝑝(𝑥) + 𝑜(𝑥4)
(cos(𝑥))2 = +𝑜(𝑥4)
(cos(𝑥))3 = +𝑜(𝑥4)
cos(𝑥)𝑒𝑥 = +𝑜(𝑥4)
cos(sin(𝑥)) = +𝑜(𝑥4)
sin(cos(𝑥)) = +𝑜(𝑥4)
log(log(𝑒 + 𝑥)) = +𝑜(𝑥3)
(1 + 𝑥)1/𝑥 = +𝑜(𝑥3)

(A little imagination is required to address the last two. To reduce the computations,
develop the last two only up to 𝑜(𝑥3)).
Hidden solution: [UNACCESSIBLE UUID '1FK']

E17.b.7 Find a rational approximation of cos(1) with error less than 1/(10!) ∼ 2.10−7 [1FM]

Hidden solution: [UNACCESSIBLE UUID '1FN']

E17.b.8 Write Taylor’s polynomial of (1 + 𝑥)𝛼 with 𝛼 ∈ ℝ ⧵ ℕ. (Infer a generalization [1FP]

of the binomial symbol (𝛼
𝑘
)). The associated Taylor series is called binomial series,

it converges for |𝑥| < 1.
Hidden solution: [UNACCESSIBLE UUID '1FQ']

E17.b.9 Prerequisites:16.20.Note:From an idea in Apostol’s book [3], Chapter 7.3.Write Taylor’s poly- [1FR]

nomial (around 𝑥0 = 0) for − log(1 − 𝑥), integrating
1

(1 − 𝑥) = 1 + 𝑥 + 𝑥2 + … + 𝑥𝑛−1 + 𝑥𝑛

(1 − 𝑥) (17.b.10)
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and compare the ”remainder”

∫
𝑥

0

𝑡𝑛

(1 − 𝑡) 𝕕𝑡 (17.b.11)

thus obtained with with the ”integral remainder” of 𝑓(𝑥) = − log(1−𝑥) (as presented
in Exercise 16.20).
Proceed similarly for arctan(𝑥), integrating

1/(1 + 𝑥2) = 1 − 𝑥2 + 𝑥4 + … + (−1)𝑛𝑥2𝑛 − (−1)𝑛𝑥2𝑛+2/(1 + 𝑥2) . (17.b.12)

Hidden solution: [UNACCESSIBLE UUID '1FS']

E17.b.13 Prerequisites:16.20,17.b.9.Difficulty:.Evaluate for which 𝑟 > 0 we have that [1FT]

the Taylor remainder of 𝑓(𝑥) = − log(1 − 𝑥) is infinitesimal in 𝑛, uniformly for
|𝑥| < 𝑟; this, using the remainder seen in (17.b.11), using the integral remainder or
using the Lagrange remainder.
Hidden solution: [UNACCESSIBLE UUID '1FV']

See also exercise 16.20.

§17.c Partial and total derivatives, differentials [2D3]

Exercises

E17.c.1 Check that the following partial derivatives exist, and compute them: [1FX]

𝜕
𝜕𝑥 (4𝑥𝑦 + 3𝑥2𝑦 − 𝑧𝑦2) , 𝜕

𝜕𝑦 (4𝑥𝑦 + 3𝑥2𝑦 − 𝑧𝑦2)

𝜕
𝜕𝑥

𝑧𝑒𝑥+|𝑦|

1 + 𝑥2|𝑦| , 𝜕
𝜕𝑧

𝑧𝑒𝑥+|𝑦|

1 + 𝑥2|𝑦|
Hidden solution: [UNACCESSIBLE UUID '1FY']

E17.c.2 Prerequisites:Riemann integral,16.2.Let 𝐼 ⊆ ℝ open interval with 0 ∈ 𝐼. Given [1FZ]

𝑓 = 𝑓(𝑥, 𝑦) ∶ 𝐼 × [0, 1] → ℝ continuous, and such that also 𝜕
𝜕𝑥

𝑓 exists and is
continuous, set

𝑔(𝑥) = ∫
1

0
𝑓(𝑥, 𝑦) 𝕕𝑦 ,

show that 𝑔 is of class 𝐶1, and that

𝑔′(𝑥) = ∫
1

0

𝜕
𝜕𝑥 𝑓(𝑥, 𝑦) 𝕕𝑦 .

Hidden solution: [UNACCESSIBLE UUID '1G0'][UNACCESSIBLE UUID '1G1']

E17.c.3 Prerequisites:Riemann integral, 14.a.9, 14.a.8, 17.c.2.Let [1G2]

ℎ(𝑡) = ∫
𝑏(𝑡)

𝑎(𝑡)
𝑓(𝑡, 𝑧) 𝕕𝑧

where 𝑎, 𝑏, 𝑓 are 𝐶1 class functions: show that ℎ is class 𝐶1 and calculate the deriva-
tive.
Hidden solution: [UNACCESSIBLE UUID '1G3']
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E17.c.4 Are the following functions differentiable in (0, 0)? [1G4]

𝑓1(𝑥, 𝑦) = {𝑥 + 𝑦 if 𝑥 > 0
𝑥 + 𝑦𝑒−𝑥2 if 𝑥 ≤ 0 , 𝑓2(𝑥, 𝑦) = √𝑥2 + 𝑦2

𝑓3(𝑥, 𝑦) = (arctan(𝑦 + 1))𝑥+1, 𝑓4(𝑥, 𝑦) = max{𝑥2, 𝑦2} .

Hidden solution: [UNACCESSIBLE UUID '1G5']

E17.c.5 Prerequisites:3.l.1.Let 𝑓 ∶ ℝ𝑘 → ℝ be of class 𝐶∞. Recall that, by Schwarz’s [1G6]

theorem, permutiation of the order of partial derivatives does not change the result.
Let 𝑁(𝑛, 𝑘) be the number of partial (potentially different) derivatives of order 𝑛:
show that 𝑁(𝑛, 𝑘) = (𝑛+𝑘−1

𝑘−1
) (which is a polynomial with integer coefficients in the

variable 𝑛, of order 𝑘 − 1). Hidden solution: [UNACCESSIBLE UUID '1G7']

E17.c.6 Let 𝑊 ⊆ ℝ𝑛 be an open nonempty set, fix 𝑥 ∈ 𝑊 . Let then 𝜓 ∶ 𝑊 → ℝ of [1G8]

class 𝐶2. Let ∇𝜓(𝑥) be the row vector of coordinates 𝜕
𝜕𝑥𝑘

𝜓(𝑥) (which is the gradient
of 𝜓, a special case of the ”Jacobian matrix”); we abbreviate it to 𝐷 = ∇𝜓(𝑥) for
simplicity; let 𝐻 be the Hessian matrix of components 𝐻ℎ,𝑘 = 𝜕2

𝜕𝑥𝑘𝑥ℎ
𝜓(𝑥); show the

validity of Taylor’s formula at the second order

𝜓(𝑥 + 𝑣) = 𝜓(𝑥) + 𝐷𝑣 + 1
2 𝑣𝑡𝐻𝑣 + 𝑜(|𝑣|2)

(note that the product 𝐷𝑣 is a matrix 1 × 1 that we identify with a real number, and
similarly for 𝑣𝑡𝐻𝑣).

E17.c.7 Prerequisites:17.c.6.Let 𝑉, 𝑊 ⊆ ℝ𝑛 be open nonempty sets, and 𝐺 ∶ 𝑉 → 𝑊 [1GB]

of class 𝐶2. Fix 𝑦 ∈ 𝑉 and 𝑥 = 𝐺(𝑦) ∈ 𝑊 . Suppose that 𝜓 ∶ 𝑊 → ℝ is of class 𝐶2;
define ̃𝜓 = 𝜓◦𝐺, then compare Taylor’s second-order formulas for 𝜓 and ̃𝜓 (centered
in 𝑥 and 𝑦, respectively). Assuming also that 𝐺 is a diffeomorphism, verify that

• 𝑥 is a stationary point for 𝜓 if and only if 𝑦 is stationary point for ̃𝜓,
• and in this case the Hessians of 𝜓 and ̃𝜓 are similar (i.e. the matrices are equal,
up to coordinate changes).

Hidden solution: [UNACCESSIBLE UUID '1GC']

§17.d Implicit function theorem [2D4]

Wewill use the Implicit Function Theorem, in the multivariable version (Theorem 7.7.4
in [2]). We recall it here for convenience, with some small changes in notations.

Theorem 17.d.1 (Implicit function theorem in ℝ𝑛). Let 𝑓 ∶ 𝐴 ⊆ ℝ𝑛 → ℝ be contin- [1GD]

uous, with 𝐴 open, and let 𝑥 = (𝑥′, 𝑥𝑛) ∈ 𝐴 be such that 𝜕𝑥𝑛 𝑓 exists in a neighborhood
of 𝑥, is continuous in 𝑥 and 𝜕𝑥𝑛 𝑓(𝑥) ≠ 0. Define 𝑎 = 𝑓(𝑥).

There is then a ”cylindrical” neighborhood 𝑈 of 𝑥

𝑈 = 𝑈 ′ × 𝐽

where
𝑈 ′ = 𝐵(𝑥′, 𝛼)
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§17.d Implicit function theorem

is the open ball in ℝ𝑛−1 centered in 𝑥′
of radius 𝛼 > 0, and

𝐽 = (𝑥𝑛 − 𝛽, 𝑥𝑛 + 𝛽)

with 𝛽 > 0. Inside this neighborhood𝑈∩𝑓−1({𝑎}) coincides with the graph 𝑥𝑛 = 𝑔(𝑥′),
with 𝑔 ∶ 𝑈 ′ → 𝐽 continuous.

This means that, for every 𝑥 = (𝑥′, 𝑥𝑛) ∈ 𝑈 , 𝑓(𝑥) = 𝑎 if and only if 𝑥𝑛 = 𝑔(𝑥′).
Moreover, if 𝑓 is of class 𝐶𝑘 on 𝐴 for some 𝑘 ∈ ℕ∗, then 𝑔 is of class 𝐶𝑘 on 𝑈 ′ and

𝜕𝑔
𝜕𝑥𝑖

(𝑥′) = −

𝜕𝑓
𝜕𝑥𝑖

(𝑥′, 𝑔(𝑥′))

𝜕𝑓
𝜕𝑥𝑛

(𝑥′, 𝑔(𝑥′))
∀𝑥′ ∈ 𝑈 ′, ∀𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1 . (17.d.2)

Exercises

E17.d.3 Consider the following 𝐶∞ function of 2 variables [1GF]

𝑓(𝑥, 𝑦) = 𝑥3 + 𝑦4 − 1 .

Check that {𝑓 = 0} = {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑓(𝑥, 𝑦) = 0} is not empty; then, for each point
of the plane where 𝑓 vanishes, discuss whether the implicit function theorem can be
applied, and therefore if the set {𝑓 = 0} is locally graph of a 𝐶∞ function. Also study
the set {𝑓 = 0}: is it compact? How many connected components are there?
(Please note what is shown in 17.d.13).
Hidden solution: [UNACCESSIBLE UUID '1GG']

E17.d.4 Repeat the study of the previous exercise 17.d.3 for the function [1GJ]

𝑓(𝑥, 𝑦) = sin(𝑥 + 𝑦) + 𝑥2 .

Hidden solution: [UNACCESSIBLE UUID '1GK'][UNACCESSIBLE UUID '1GN']

E17.d.5 Note:Exercise 2, Written exam, June 30th 2017.Repeat the study of the previous exercise for [1GP]

the function
𝑓(𝑥, 𝑦) = 1 + 4𝑥 + 𝑒𝑥𝑦 + 𝑦4 .

Show that the zero set is not compact.

E17.d.6 Let 𝐴 ⊂ ℝ3 be an open set and suppose that 𝑓, 𝑔 ∶ 𝐴 → ℝ is differentiable, [1GQ]

and such that in 𝑝0 = (𝑥0, 𝑦0, 𝑧0) ∈ 𝐴 we have that ∇𝑓(𝑝0), ∇𝑔(𝑝0) are linearly
independent and 𝑓(𝑝0) = 𝑔(𝑝0) = 0: show that the set 𝐸 = {𝑓 = 0, 𝑔 = 0} is a curve
in a neighborhood of 𝑝0.
(Hint: consider that the vector product 𝑤 = ∇𝑓(𝑝0)×∇𝑔(𝑝0) is nonzero if and only
if the vectors are linearly independent — in fact it is formed by the determinants of
the minors of the Jacobian matrix. Assuming without loss of generality that 𝑤3 ≠ 0,
show that 𝐸 is locally the graph of a function (𝑥, 𝑦) = 𝛾(𝑧).)
Hidden solution: [UNACCESSIBLE UUID '1GR']

E17.d.7 Note:Written exam, July 4th 2018.The figure 5 shows the set 𝐸 = {(𝑥, 𝑦) ∶ 𝑦𝑒𝑥 + 𝑥𝑒𝑦 = [1GS]

1}.
Properly prove the following properties:
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Figure 5: Figure for exercise 17.d.7.

(i) at every point (𝑥0, 𝑦0) ∈ 𝐸 the assumptions of the implicit function theorem
are satisfied;

(ii) 𝐸 ∩ {(𝑥, 𝑦) ∶ 𝑥 > 0} coincides with the graph, in the form 𝑦 = 𝑓(𝑥), of a single
function 𝑓 defined on (0, +∞);

(iii) 𝐸 is connected;
(iv) lim𝑥→+∞ 𝑓(𝑥) = 0.
(v) Show (at least intuitively) that 𝑥0 > 0 exists with the property that 𝑓 is decreas-

ing for 0 < 𝑥 < 𝑥0, increasing for 𝑥 > 𝑥0.

Hidden solution: [UNACCESSIBLE UUID '1GV']

E17.d.8 Let 𝐸 be the set of horizontal lines [1GW]

𝐸 = {(𝑥, 0) ∶ 𝑥 ∈ ℝ} ∪
∞

⋃
𝑛=1

{(𝑥, 1/𝑛) ∶ 𝑥 ∈ ℝ} .

Find a function 𝑓 ∶ ℝ2 → ℝ, 𝑓 = 𝑓(𝑥, 𝑦) class 𝐶1 such that 𝐸 = {(𝑥, 𝑦) ∶ 𝑓(𝑥, 𝑦) =
0}.
Prove that necessarily 𝜕𝑦𝑓(0, 0) = 0.
Set (𝑥, 𝑦) = (0, 0). Note that there is a function 𝑔 ∶ ℝ → ℝ such that 𝑔(0) = 0
and 𝑓(𝑥, 𝑔(𝑥)) = 0! In fact, the function 𝑔 ≡ 0 is the only function with such
characteristics. Thus part of the thesis in the implicit function theorem is satisfied.
So explain precisely why the thesis of the implicit function theorem is not satisfied.

§17.d.a Extensions

Now let’s see some variations of the ”standard” theorem.

Copyright A. C. G. Mennucci
The sections comprising theory and exercises’ statements are released under License WP:CC BY-SA

193

https://coldoc.sns.it/UUID/EDB/1GV
https://coldoc.sns.it/UUID/EDB/1GW/
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License


§17.d Implicit function theorem

Exercises

E17.d.9 Prerequisites:14.c.1. [1GX]

We work in the hypotheses of the theorem 17.d.1. Show that, if 𝑓(⋅, 𝑦) is Lipschitz
of constant 𝐿 for every fixed 𝑦, i.e.

|𝑓(𝑥′
1, 𝑦) − 𝑓(𝑥′

2, 𝑦)| ≤ 𝐿|𝑥′
1 − 𝑥′

2| ∀𝑥′
1, 𝑥2 ∈ 𝑈 ′, 𝑦 ∈ 𝐽

(and 𝐿 > 0 does not depend on 𝑥′
1, 𝑥′

2, 𝑦), then 𝑔 is Lipschitz of constant 𝐿′. What is
the relationship between the constants 𝐿 and 𝐿′?
Similarly if 𝑓 is Hölderian.
Hidden solution: [UNACCESSIBLE UUID '1GY']

E17.d.10 In the same assumptions as the previous theorem 17.d.1, show that there [1GZ]

exist 𝜀 > 0 and a continuous function ̃𝑔 ∶ 𝑉 → ℝ where 𝐼 = (𝑎 − 𝜀, 𝑎 + 𝜀) and
𝑉 = 𝑈 ′ × 𝐼 is open in ℝ𝑛, such that

∀(𝑥′, 𝑎) ∈ 𝑉 , (𝑥′, ̃𝑔(𝑥′, 𝑎)) ∈ 𝑈 e 𝑓(𝑥′, ̃𝑔(𝑥′, 𝑎)) = 𝑎 . (17.d.11)

Vice versa if 𝑥 ∈ 𝑈 and 𝑎 = 𝑓(𝑥) and 𝑎 ∈ 𝐼 then 𝑥𝑛 = ̃𝑔(𝑥′, 𝑎).
Note that the previous relation means that, for each fixed 𝑥′ ∈ 𝑈 ′, the function

̃𝑔(𝑥′, ⋅) is the inverse of the function 𝑓(𝑥′, ⋅) (when defined on appropriate open in-
tervals).
So, moreover, the function ̃𝑔 is always differentiable with respect to 𝑎, and the partial
derivative is

𝜕
𝜕𝑎 ̃𝑔(𝑥′, 𝑎) = 1

𝜕
𝜕𝑥𝑛

𝑓(𝑥′, ̃𝑔(𝑥′, 𝑎))
.

The other derivatives instead (obviously) are as in the theorem 17.d.1.
The regularity of ̃𝑔 is the same as 𝑔: if 𝑓 is Lipschitz then ̃𝑔 is Lipschitz; if 𝑓 ∈ 𝐶𝑘(𝑈)
then ̃𝑔 ∈ 𝐶𝑘(𝑉).
Hidden solution: [UNACCESSIBLE UUID '1H0']

E17.d.12 In the same hypotheses of the exercise 17.d.10, we also assume that 𝑓 ∈ [1H1]

𝐶1(𝐴).

• We decompose 𝑦 = (𝑦′, 𝑦𝑛), ∈ ℝ𝑛 as we did for 𝑥. We define the function
𝐺 ∶ 𝑉 → ℝ𝑛 as 𝐺(𝑦) = (𝑦′, ̃𝑔(𝑦)). Let 𝑊 = 𝐺(𝑉) be the image of 𝑉 , show
that 𝑊 ⊆ 𝑈 and that 𝑊 is open.

• Show that is 𝐺 ∶ 𝑉 → 𝑊 is a diffeomorphism; and that its inverse is the map
𝐹(𝑥) = (𝑥′, 𝑓(𝑥)).

• Let’s define ̃𝑓 = 𝑓◦𝐺. Show that ̃𝑓(𝑥) = 𝑥𝑛.

(This exercise will be used, together with 17.c.7, to address constrained problems, in
Section §17.e). Hidden solution: [UNACCESSIBLE UUID '1H2']

E17.d.13 Prerequisites: 8.e.17, 8.e.18, 10.g.8, 10.g.9, 17.a.8, 17.d.1, 21.7 and 21.a.4. [1H3]

Difficulty:**.

For this exercise we need definitions and results presented in the Chapter §21.
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Let 𝑟 ≥ 1 integer, or 𝑟 = ∞. Let 𝐹 ∶ ℝ2 → ℝ of class 𝐶𝑟, and such that ∇𝐹 ≠ 0 at
every point 𝐹 = 0.
We know, from 8.e.17, that {𝐹 = 0} is the disjoint union of connected components,
and from 8.e.18 that every connected component is a closed.
Show that, for every connected component 𝐾, there is an open set 𝐴 ⊇ 𝐾 such that
𝐾 = 𝐴 ∩ {𝐹 = 0}, and that therefore there are at most countably many connected
components.
Show that each connected component is the support of a simple immersed curve of
class 𝐶𝑟, of one of the following two types:

• the curve is closed, or
• The curve 𝛾 ∶ ℝ → ℝ2 is not closed and is unbounded (i.e. lim𝑡→±∞ |𝛾(𝑡)| =

∞).

The first case occurs if and only if the connected component is a compact.

Hidden solution: [UNACCESSIBLE UUID '1H4'][UNACCESSIBLE UUID '1H5']
b

c

a

d’

a’

𝑦𝑖+1(𝑥𝑖+1, 𝑦𝑖+1)

𝑥𝑖

(𝑥, 𝑔(𝑥))

(ℎ(𝑦), 𝑦)

𝑈𝑖

𝐾

(𝑥𝑖, 𝑦𝑖)

𝑈𝑖+1

̃𝑦

̃𝑥

𝑑

§17.e Constrained problems [2D5]

Definition 17.e.1. Let now 𝐴 ⊆ ℝ𝑛 an open non-empty set, let 𝑓, 𝜑 ∶ 𝐴 → ℝ be real [1F6]

functions of class 𝐶1 on 𝐴. Having fixed 𝑎 ∈ ℝ we then define the level set

𝐸𝑎 = {𝑥 ∈ 𝐴 ∶ 𝜑(𝑥) = 𝑎}
we assume that 𝐸𝑎 is non-empty, and that ∇𝜑(𝑥) ≠ 0 for each 𝑥 ∈ 𝐸𝑎.

We call local minimum point of 𝑓 bound to 𝐸𝑎 a point of 𝐸𝑎 that is a local minimum
for 𝑓|𝐸𝑎 ; and similarly for maxima.

To solve the following exercises it may be useful to apply the results seen in 17.c.6,
17.c.7, 17.d.12.
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§17.e Constrained problems

Exercises

E17.e.2 Prerequisites:17.e.1,17.d.12. Let 𝑓, 𝜑 be class 𝐶1 in the open set 𝐴, and let 𝑥 [1H8]

be a local minimum point for 𝑓 bound to 𝐸𝑎 (so 𝜑(𝑥) = 𝑎). Show that 𝜆 ∈ ℝ exists
such that ∇𝑓(𝑥) + 𝜆∇𝜑(𝑥) = 0; this 𝜆 is called the Lagrange multiplier.
Hidden solution: [UNACCESSIBLE UUID '1H9']

E17.e.3 Prerequisites:17.e.1,17.c.7,17.e.2.Let 𝑓, 𝜑 be of class 𝐶2 in the open set 𝐴, and [1HB]

let 𝑥 be a minimum point for 𝑓 constrained to 𝐸𝑎; let 𝜆 be the Lagrange multiplier;
let’s define ℎ = 𝑓(𝑥) + 𝜆𝜑(𝑥), then

∀𝑣, 𝑣 ⋅ ∇𝜑(𝑥) = 0 ⟹ 𝑣 ⋅ 𝐻𝑣 ≥ 0

where 𝐻 is the Hessian matrix of ℎ.
Hidden solution: [UNACCESSIBLE UUID '1HC']

E17.e.4 In the same hypotheses, we see a ”vice versa”. Let 𝑓, 𝜑 ∶ 𝐴 → ℝ be of class [1HD]

𝐶2 in the open set 𝐴, and let 𝑥 ∈ 𝐸𝑎 and 𝜆 ∈ ℝ be such that ∇𝑓(𝑥) + 𝜆∇𝜑(𝑥) = 0;
suppose that

∀𝑣, 𝑣 ⋅ ∇𝜑(𝑥) = 0 ⟹ 𝑣 ⋅ 𝐻𝑣 > 0
where

ℎ(𝑥) = 𝑓(𝑥) + 𝜆𝜑(𝑥)
and 𝐻 is the Hessian matrix of ℎ in 𝑥. Show that 𝑥 is a local minimum point for 𝑓
bound to 𝐸𝑎.
Hidden solution: [UNACCESSIBLE UUID '1HF']

§17.e.a Constraints with inequalities

Now let’s consider a different kind of constraint.

Definition 17.e.5. Let [2BH]

𝐹𝑎 = {𝑥 ∈ 𝐴 ∶ 𝜑(𝑥) ≤ 𝑎} ;
we always assume that 𝐹𝑎 is non-empty and that ∇𝜑(𝑥) ≠ 0 for each 𝑥 ∈ 𝐸𝑎.

We call local minimum point of 𝑓 bound to 𝐹𝑎 a point of 𝐹𝑎 that is of local minimum
for 𝑓|𝐹𝑎 ; and similarly for maxima.

Exercises

E17.e.6 Prerequisites:17.e.5,17.e.1.Show that 𝜕𝐹𝑎 = 𝐸𝑎 and that 𝐹𝑎 coincides with the [1HG]

closure of its interior. (Topological operations must be performed within 𝐴, seen as
a topological space!)

E17.e.7 Prerequisites:17.e.5.Show that a necessary condition for 𝑥 ∈ 𝐴 to be a local [1HH]

minimum of 𝑓 bound to 𝐹𝑎, is that,

• either 𝜑(𝑥) < 𝑎 and ∇𝑓(𝑥) = 0,
• or 𝜑(𝑥) = 𝑎 and ∇𝑓(𝑥) + 𝜆∇𝜑(𝑥) = 0 with 𝜆 ≥ 0.

These are the Karush–Kuhn–Tucker conditions.
Hidden solution: [UNACCESSIBLE UUID '1HJ']
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§17 DIFFERENTIABLE FUNCTIONS

E17.e.8 Prerequisites:17.e.5.In the case 𝑛 = 1, suppose 𝐴 is an open interval, show that [1HK]

if 𝜑(𝑥) = 𝑎 and 𝑓′(𝑥)𝜑′(𝑥) < 0 then the point 𝑥 is a local minimum point for 𝑓
bound to 𝐹𝑎.

E17.e.9 Prerequisites:17.e.5.Find a simple example in the case 𝑛 = 2 where the point [1HM]

𝑥 is not a local minimum for 𝑓 bound to 𝐹𝑎, but 𝜑(𝑥) = 𝑎 and ∇𝑓(𝑥) + 𝜆∇𝜑(𝑥) = 0
with 𝜆 > 0.
Hidden solution: [UNACCESSIBLE UUID '1HN']
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§18 Limits of functions [1HQ]

Definition 18.1. Consider a set 𝐴, a function 𝑓 ∶ 𝐴 → ℝ and a sequence of functions [2DT]

𝑓𝑛 ∶ 𝐴 → ℝ. We will say that 𝑓𝑛 converges to 𝑓 pointwise if

∀𝑥 ∈ 𝐴 , lim
𝑛→∞

𝑓𝑛(𝑥) = 𝑓(𝑥) .

We will say that 𝑓𝑛 converges to 𝑓 uniformly if

∀𝜀 > 0∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, ∀𝑥 ∈ 𝐴 , |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀 .

Further informations on these subjects may be found in Chap. 6 of [2], Chap. 11 in
[4], or Chap. 7 of [22].

Definition 18.2. Let (𝑋1, 𝑑1) and (𝑋2, 𝑑2) be metric spaces. Let ℱ be a family of [1HR]

functions 𝑓 ∶ 𝑋1 → 𝑋2, we will say that it is an equicontinuous family if one of these
equivalent properties holds.

• ∀𝜀 > 0 ∃𝛿 > 0 ∀𝑓 ∈ ℱ

∀𝑥, 𝑦 ∈ 𝑋1, 𝑑1(𝑥, 𝑦) ≤ 𝛿 ⇒ 𝑑2(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝜀 .

• There exists a a fixed monotonically weakly increasing function 𝜔 ∶ [0, ∞) →
[0, ∞], for which lim𝑡→0+ 𝜔(𝑡) = 𝜔(0) = 0 (𝜔 is called ”continuity modulus”
†103) such that

∀𝑓 ∈ ℱ, ∀𝑥, 𝑦 ∈ 𝑋1, 𝑑2(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝜔(𝑑1(𝑥, 𝑦)) . (18.3)

• There exists a fixed continuous function 𝜔 ∶ [0, ∞) → [0, ∞] with 𝜔(0) = 0 such
that (18.3) holds.

(The result 14.a.11 can be useful to prove equivalence of the last two clauses.)

Exercises

E18.4 Note:This result is known as ”Dini’s lemma”. [1HS]

Let (𝑋, 𝑑) be a metric space, let 𝐼 ⊂ 𝑋 be a compact set, and suppose that 𝑓, 𝑓𝑛 ∶
𝐼 → ℝ are continuous and such that 𝑓𝑛(𝑥) ↘𝑛 𝑓(𝑥) pointwise (i.e. for every 𝑥 ∈ 𝐼
and 𝑛 we have 𝑓(𝑥) ≤ 𝑓𝑛+1(𝑥) ≤ 𝑓𝑛(𝑥) and lim𝑛 𝑓𝑛(𝑥) = 𝑓(𝑥)). Show that 𝑓𝑛 → 𝑓
uniformly.
Hidden solution: [UNACCESSIBLE UUID '1HT']

Hidden solution: [UNACCESSIBLE UUID '1HV']

In following exercises we will see that, if even one of the hypotheses fails, then there
are counterexamples.

E18.5 Find an example of continuous and bounded functions 𝑓𝑛 ∶ ℝ → ℝ such that [1HW]

𝑓𝑛(𝑥) ↘𝑛 0 pointwise, but not 𝑓𝑛 → 0 uniformly.
Hidden solution: [UNACCESSIBLE UUID '1HX']
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§18 LIMITS OF FUNCTIONS

E18.6 Find an example of continuous and bounded functions 𝑓𝑛 ∶ [0, 1] → [0, 1] such [1HY]

that 𝑓𝑛(𝑥) →𝑛 0 pointwise but not 𝑓𝑛 → 0 uniformly.
Hidden solution: [UNACCESSIBLE UUID '1HZ']

E18.7 Find an example of functions 𝑓𝑛 ∶ [0, 1] → [0, 1] continuous, bounded, and [1J1]

such that 𝑓𝑛(𝑥) ↘𝑛 𝑓(𝑥) pointwise to 𝑓 ∶ [0, 1] → [0, 1] (i.e. for every 𝑥 and 𝑛 we
have 0 ≤ 𝑓𝑛+1(𝑥) ≤ 𝑓𝑛(𝑥) ≤ 1 and lim𝑛 𝑓𝑛(𝑥) = 𝑓(𝑥)) but 𝑓 is not continuous and
the convergence 𝑓𝑛 → 𝑓 is not uniform.
Hidden solution: [UNACCESSIBLE UUID '1J2']

E18.8 Let 𝐼 ⊂ ℝ be an interval. Which of these classes ℱ of functions 𝑓 ∶ 𝐼 → ℝ are [1J3]

closed for uniform convergence? Which are closed for pointwise convergence?

1. The continuous and monotonic (weakly) increasing functions on 𝐼 = [0, 1].
Hidden solution: [UNACCESSIBLE UUID '1J4']

2. The convex functions on 𝐼 = [0, 1].
Hidden solution: [UNACCESSIBLE UUID '1J5']

3. Given 𝜔 ∶ [0, ∞) → [0, ∞) a fixed continuous function with 𝜔(0) = 0 (which
is called ”continuity modulus”), and

ℱ = {𝑓 ∶ [0, 1] → ℝ ∶ ∀𝑥, 𝑦, |𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝜔(|𝑥 − 𝑦|)}

(this is called a family of equicontinuous functions, as explained in the definition
18.2.)
Hidden solution: [UNACCESSIBLE UUID '1J6']

4. Given 𝑁 ≥ 0 fixed, the family of all polynomials of degree less than or equal
to 𝑁, seen as functions 𝑓 ∶ [0, 1] → ℝ.
Hidden solution: [UNACCESSIBLE UUID '1J7']

5. The regulated functions on 𝐼 = [0, 1]. †104
Hidden solution: [UNACCESSIBLE UUID '1J9']

6. The uniformly continuous and bounded functions on 𝐼 = ℝ.
Hidden solution: [UNACCESSIBLE UUID '1JB']

7. The Hoelder functions on 𝐼 = [0, 1], i.e.

{𝑓 ∶ [0, 1] → ℝ || ∃𝑏 > 0, ∃𝛼 ∈ (0, 1] ∀𝑥, 𝑦 ∈ [0, 1], |𝑓(𝑥)−𝑓(𝑦)| ≤ 𝑏|𝑥−𝑦|𝛼}

Hidden solution: [UNACCESSIBLE UUID '1JC'][UNACCESSIBLE UUID '1JD']

8. The Riemann integrable functions on 𝐼 = [0, 1].
Hidden solution: [UNACCESSIBLE UUID '1JF']

E18.9 We wonder if the previous classes ℱ enjoy a ”rigidity property”, that is, if [1JG]

from a more ”weak” convergence in the class follows a more ”strong” convergence.
Prove the following propositions.

†103See also 14.b.2, regarding the notion of ”continuity modulus”.
†104Regulated functions 𝑓 ∶ 𝐼 → ℝ are the functions that, at each point, have finite left limit, and finite
right limit. See Section §13.b.
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1. Let 𝑓𝑛, 𝑓 ∶ 𝐼 → ℝ be continuous and monotonic (weakly) increasing functions,
defined over a closed and bounded interval 𝐼 = [𝑎, 𝑏]. Suppose there is a dense
set 𝐽 in 𝐼 with 𝑎, 𝑏 ∈ 𝐽, such that ∀𝑥 ∈ 𝐽, 𝑓𝑛(𝑥) →𝑛 𝑓(𝑥), then 𝑓𝑛 →𝑛 𝑓
uniformly. Hidden solution: [UNACCESSIBLE UUID '1JH']

2. Let 𝐴 ⊆ ℝ be open interval. Let 𝑓𝑛, 𝑓 ∶ 𝐴 → ℝ be convex functions on 𝐴.
If there is a set 𝐽 dense in 𝐴 such that ∀𝑥 ∈ 𝐽, 𝑓𝑛(𝑥) →𝑛 𝑓(𝑥), then, for every
[𝑎, 𝑏] ⊂ 𝐴, we have that 𝑓𝑛 →𝑛 𝑓 uniformly on [𝑎, 𝑏].
Hidden solution: [UNACCESSIBLE UUID '1JJ']

3. Let 𝑓𝑛 ∶ 𝐼 → ℝ be a family of equicontinuous functions, †105 defined on a
closed and bounded interval 𝐼 = [𝑎, 𝑏], and let𝜔 be their modulus of continuity.
If there is a set 𝐽 dense in [𝑎, 𝑏] such that ∀𝑥 ∈ 𝐽, 𝑓𝑛(𝑥) →𝑛 𝑓(𝑥), then, 𝑓
extends from 𝐽 to 𝐼 so that it is continuous (with modulus 𝜔), and 𝑓𝑛 →𝑛 𝑓
uniformly on [𝑎, 𝑏].
Hidden solution: [UNACCESSIBLE UUID '1JK']

4. Let 𝑓𝑛, 𝑓 ∶ 𝐼 → ℝ be polynomials of degree less than or equal to 𝑁, seen
as functions defined on an interval 𝐼 = [𝑎, 𝑏] closed and bounded; fix 𝑁 + 1
distinct points 𝑎 ≤ 𝑥0 < 𝑥1 < 𝑥2 < … < 𝑥𝑁 ≤ 𝑏; assume that, for each
𝑥𝑖, 𝑓𝑛(𝑥𝑖) →𝑛 𝑓(𝑥𝑖): then 𝑓𝑛 converge to 𝑓 uniformly, and so do each of their
derivatives 𝐷𝑘𝑓𝑛 →𝑛 𝐷𝑘𝑓 uniformly.
Hidden solution: [UNACCESSIBLE UUID '1JM']

Also look for counterexamples for similar propositions, when applied to the other
classes of functions seen in the previous exercise.

E18.10 Prerequisites:18.2, 18.8 subpoint 6.Difficulty:*. [1JN]

If 𝑓𝑛, 𝑓 ∶ 𝐼 → ℝ are uniformly continuous on a set 𝐼 ⊂ ℝ, and 𝑓𝑛 →𝑛 𝑓 uniformly
on 𝐼, then 𝑓 is uniformly continuous, and the family (𝑓𝑛)𝑛 is equicontinuous.
Hidden solution: [UNACCESSIBLE UUID '1JP']

E18.11 Let 𝑓 ∶ ℝ → ℝ and let 𝑔𝑡 ∶ ℝ → ℝ be the translations of 𝑓, defined (for [1JQ]

𝑡 ∈ ℝ) by 𝑔𝑡(𝑥) = 𝑓(𝑥 − 𝑡). Show that 𝑔𝑡 tends pointwise to 𝑓 for 𝑡 → 0, if and
only if 𝑓 is continuous; and that 𝑔𝑡 tends uniformly to 𝑓 for 𝑡 → 0, if and only if 𝑓 is
uniformly continuous.
Hidden solution: [UNACCESSIBLE UUID '1JR']

E18.12 Let 𝐼 ⊂ ℝ be an open set, and let ̂𝑥 be an accumulation point for 𝐼 †106 , Let [1JS]

𝑓𝑚 ∶ 𝐼 → ℝ be a sequence of bounded functions that converge uniformly to 𝑓 ∶ 𝐼 →
ℝ when 𝑚 → ∞. Suppose that, for every 𝑚, there exists the limit lim𝑥→�̂� 𝑓𝑚(𝑥),
then

lim
𝑚→∞

lim
𝑥→�̂�

𝑓𝑚(𝑥) = lim
𝑥→�̂�

lim
𝑚→∞

𝑓𝑚(𝑥)

in the sense that if one of the two limits exists, then the other also exists, and they
are equal. (The above result also applies to right limits or left limits.)
Show with a simple example that, if the limit is not uniform, then the previous equal-
ity does not hold.
Hidden solution: [UNACCESSIBLE UUID '1JT'] (See also the exercise 7.a.8).

†105Definition is in 18.2
†106Including also the case where 𝐼 is not upper bounded, and �̂� = +∞; or the case where 𝐼 is not lower
bounded and �̂� = −∞.
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§18 LIMITS OF FUNCTIONS

E18.13 Let 𝐼 ⊂ ℝ be a compact interval, let 𝑓𝑛, 𝑓 ∶ 𝐼 → ℝ be continuous. Show that [1JV]

the following two facts are equivalent.

a. For every 𝑥 ∈ 𝑋 and for every sequence (𝑥𝑛)𝑛 ⊂ 𝐼 for which 𝑥𝑛 →𝑛 𝑥, we have
lim𝑛→∞ 𝑓𝑛(𝑥𝑛) = 𝑓(𝑥);

b. 𝑓𝑛 →𝑛 𝑓 uniformly on 𝐼.

Then find an example where 𝐼 = [0, 1), the first point holds, but 𝑓𝑛 does not tend
uniformly to 𝑓.
Hidden solution: [UNACCESSIBLE UUID '1JW']

§18.a On Ascoli–Arzelà’s Theorem
Now we’ll see some exercises that reconstruct the famous Ascoli–Arzelà Theorem.

Exercises

E18.a.1 Prerequisites:18.8 subpoint 6,18.10. Let 𝐼 ⊆ ℝ be a subset. Let 𝑋 be the set of [1JX]

functions 𝑓 ∶ 𝐼 → ℝ bounded and uniformly continuous. We equip 𝑋 with distance
𝑑∞(𝑓, 𝑔) = ‖𝑓 − 𝑔‖∞. Show that the metric space (𝑋, 𝑑∞) is complete. Hidden
solution: [UNACCESSIBLE UUID '1JY'] In particular, 𝑋 is a closed vector subspace of the
space 𝐶𝑏(𝐼) of continuous and bounded functions.

E18.a.2 Prerequisites:18.2,18.8.6,18.10.Difficulty:**. [1K0]

Define (𝑋, 𝑑∞) as in the previous exercise 18.a.1. Fix now ℱ ⊆ 𝑋 a family of
functions, suppose ℱ is totally bounded (as defined in 10.j.1): Show then that the
family ℱ is equicontinuous.
Hidden solution: [UNACCESSIBLE UUID '1K1']

E18.a.3 Prerequisites:18.2,10.j.6, 18.9.3.Difficulty:*. [1K2]

Let now 𝐼 ⊆ ℝ be a closed and bounded interval. Let 𝑓𝑛 ∶ 𝐼 → ℝ continuous
functions, and suppose that the sequence (𝑓𝑛) is equicontinuous and bounded (i.e.
sup𝑛 ‖𝑓𝑛‖∞ < ∞). Show that there is a subsequence 𝑓𝑛𝑘 that converges uniformly.
Hidden solution: [UNACCESSIBLE UUID '1K3']

E18.a.4 Prerequisites:18.2,10.j.1,10.j.12,18.a.3,18.a.2.Difficulty:**.Note:A version of Ascoli–Arzelà’s[1K4]

theorem.

Let 𝐼 ⊆ ℝ be a closed and bounded interval. Let 𝐶(𝐼) be the set of continuous
functions 𝑓 ∶ 𝐼 → ℝ. We equip 𝐶(𝐼) with distance 𝑑∞(𝑓, 𝑔) = ‖𝑓 − 𝑔‖∞. We know
that metric space (𝐶(𝐼), 𝑑∞) is complete.
Let ℱ ⊆ 𝐶(𝐼): the following are equivalent.

1. ℱ is compact
2. ℱ is closed, it is equicontinuous and bounded (i.e. sup𝑓∈ℱ ‖𝑓‖∞ < ∞).
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§19 Power series [1K6]

All definitions and theorems needed to solve the following exercises may be found in
Chap. 6 of [2], Sec. 11.6 in [4], or Chap. 8 of [22].

Exercises

E19.1 A power series ∑∞
𝑘=0 𝑎𝑘𝑥𝑘 has a positive convergence radius, if and only if, [1K7]

∃ℓ > 0 for which |𝑎𝑘| ≤ ℓ𝑘 for every 𝑘 ≥ 1.
Hidden solution: [UNACCESSIBLE UUID '1K8']

E19.2 Let 𝑐𝑘 be complex numbers, and 𝑎𝑘 = |𝑐𝑘|. Note that power series ∑∞
𝑘=0 𝑎𝑘𝑧𝑘 [1K9]

and ∑∞
𝑘=0 𝑐𝑘𝑧𝑘 have the same radius of convergence 𝑅.

Setting, for 𝑡 > 0 real, ̃𝑓(𝑡) = ∑∞
𝑘=0 𝑎𝑘𝑡𝑘, note that this formula defines a monotonic

function ̃𝑓 ∶ [0, ∞) → [0, ∞]; show that the radius of convergence 𝑅 coincides with
the upper bound of 𝑡 ≥ 0 such that ̃𝑓(𝑡) < ∞.
Hidden solution: [UNACCESSIBLE UUID '1KB'] Hidden solution: [UNACCESSIBLE UUID '1KC']

E19.3 Prerequisites:7.e.4.Given 𝑓(𝑡) = ∑∞
𝑘=0 𝑎𝑘𝑡𝑘 with 𝑎𝑘 ≥ 0, such that the radius of [1KD]

convergence is 𝑟 > 0, show that lim𝑡→𝑟− 𝑓(𝑡) = 𝑓(𝑟). Hidden solution: [UNACCESSIBLE

UUID '1KF']

E19.4 Find two examples of series 𝑓(𝑡) = ∑∞
𝑘=0 𝑎𝑘𝑡𝑘 with 𝑎𝑘 > 0 and with radius of [1KG]

convergence 𝑟 positive and finite, such that
• 𝑓(𝑟) < ∞
• 𝑓(𝑟) = ∞

Hidden solution: [UNACCESSIBLE UUID '1KH']

E19.5 Find an example of a series 𝑓(𝑡) = ∑∞
𝑘=0 𝑎𝑘𝑡𝑘 with 𝑎𝑘 ∈ ℝ and with radius of [1KJ]

convergence 𝑟 positive and finite, such that the limit lim𝑡→𝑟− 𝑓(𝑡) exists and is finite,
but the series does not converge in 𝑡 = 𝑟.
Hidden solution: [UNACCESSIBLE UUID '1KK']

Note that (byAbel’s lemma) if the series converges in 𝑡 = 𝑟 then the limit lim𝑡→𝑟− 𝑓(𝑡)
exists and lim𝑡→𝑟− 𝑓(𝑡) = 𝑓(𝑟).

E19.6 Let 𝑏 ∈ ℝ, 𝑛 ∈ ℕ. Assuming that 𝑓(𝑡) = ∑∞
𝑘=0 𝑎𝑘𝑡𝑘 with radius of convergence [1KM]

𝑟 positive and 𝑡 ∈ (−𝑟, 𝑟), determine the coefficients 𝑎𝑘 so as to satisfy the following
differential equations.,

1. 𝑓′(𝑡) = 𝑓(𝑡) and 𝑓(0) = 𝑏,
2. 𝑓′(𝑡) = 𝑡2𝑓(𝑡) and 𝑓(0) = 𝑏,
3. 𝑓″(𝑡) = 𝑡2𝑓(𝑡) and 𝑓(0) = 𝑏, 𝑓′(0) = 0,
4. 𝑡𝑓″(𝑡) + 𝑓′(𝑡) + 𝑡𝑓(𝑡) = 0 and 𝑓(0) = 𝑏, 𝑓′(0) = 0,
5. 𝑡2𝑓″(𝑡)+𝑡𝑓′(𝑡)+(𝑡2−𝑚2)𝑓(𝑡) = 0 𝑚 ≥ 2 integer, 𝑓(0) = 𝑓′(0) = … 𝑓(𝑚−1) =

0, and 𝑓(𝑚) = 𝑏.
(The last two are called Bessel equations). Hidden solution: [UNACCESSIBLE UUID

'1KP'][UNACCESSIBLE UUID '27G']

See also the exercises 20.3, 24.a.2, 24.a.4 and 24.a.1.
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§19 POWER SERIES

§19.a Sum and product, composition and inverse [2D6]

Exercises

E19.a.1 Prerequisites:19.2.Consider power series [1KQ]

𝑓(𝑥) =
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛 , 𝑔(𝑥) =
∞
∑

𝑚=0
𝑏𝑚𝑥𝑚 ,

with non-zero radius of convergence, respectively 𝑟𝑓 and 𝑟𝑔.
Show that the product function ℎ(𝑥) = 𝑓(𝑥)𝑔(𝑥) can be expressed in power series

ℎ(𝑥) =
∞
∑
𝑘=0

𝑐𝑘𝑥𝑘

where

𝑐𝑘 =
𝑘

∑
𝑗=0

𝑎𝑗𝑏𝑘−𝑗 ;

with radius of convergence 𝑟ℎ ≥ min{𝑟𝑓, 𝑟𝑔}. (Note the similarity with Cauchy’s
product, discussed in section §7.c.c)
Can it happen that 𝑟ℎ > min{𝑟𝑓, 𝑟𝑔}?
Hidden solution: [UNACCESSIBLE UUID '1KR']

E19.a.2 Prerequisites:19.1.Difficulty:*.Let 𝑔(𝑧) = ∑∞
𝑚=0 𝑏𝑚𝑧𝑚 with 𝑏0 = 𝑔(0) ≠ 0. [1KS]

Express formally the reciprocal function 𝑓(𝑥) = 1/𝑔(𝑥) as a power series and cal-
culate the coefficients starting from the coefficients 𝑏𝑚. If the radius of conver-
gence of 𝑔 is non-zero show that the radius of convergence of 𝑓 is non-zero and
that 𝑓(𝑥) = 1/𝑔(𝑥) where the two series 𝑓(𝑥), 𝑔(𝑥) converge. Hidden solution:
[UNACCESSIBLE UUID '1KT']

E19.a.3 Prerequisites:19.2,17.a.3.Difficulty:*. [1KV]

Consider the power series

𝑓(𝑥) =
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛 , 𝑔(𝑥) =
∞
∑

𝑚=0
𝑏𝑚𝑥𝑚 ,

with non-zero radius of convergence, respectively 𝑟𝑓 and 𝑟𝑔. Suppose 𝑔(0) = 0 = 𝑏0.
Let 𝐼𝑓, 𝐼𝑔 ⊂ ℂ be disks centered in zero with radii less than 𝑟𝑓 and 𝑟𝑔, respectively:
the previous series therefore define functions 𝑓 ∶ 𝐼𝑓 → ℂ and 𝑔 ∶ 𝐼𝑔 → ℂ. Up to
shrinking 𝐼𝑔, we assume that 𝑔(𝐼𝑔) ⊂ 𝐼𝑓.
Show that the composite function ℎ = 𝑓◦𝑔 ∶ 𝐼𝑔 → ℂ can be expressed as a power
series ℎ(𝑥) = ∑∞

𝑘=0 𝑐𝑘𝑥𝑘 (with radius of convergence at least 𝑟𝑔). Show how coeffi-
cients 𝑐𝑘 can be computed from coefficients 𝑎𝑘, 𝑏𝑘. Hidden solution: [UNACCESSIBLE

UUID '1KW'][UNACCESSIBLE UUID '1KX'] [UNACCESSIBLE UUID '1KY']

E19.a.4 Difficulty:*.Let 𝑔(𝑧) = ∑∞
𝑚=0 𝑏𝑚𝑧𝑚 with non-zero radius of convergence 𝑟𝑔. [1KZ]

Let 𝐼𝑔 ⊂ ℂ be a zero-centered disk of radius less than 𝑟𝑔; so we defined a function
𝑔 ∶ 𝐼𝑔 → ℂ. We assume 𝑔(0) = 0 and 𝑔′(0) ≠ 0. Assuming that the inverse
𝑓(𝑦) = 𝑔−1(𝑦) can be expressed in Taylor series 𝑓(𝑥) = ∑∞

𝑛=0 𝑎𝑛𝑥𝑛, compute the
coefficients of the series of 𝑓 starting from those of 𝑔.
Hidden solution: [UNACCESSIBLE UUID '1M0']
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§19.b Exp,sin,cos

E19.a.5 Prerequisites:19.a.4.Difficulty:**. [1M1]

Defining 𝑓(𝑥) = ∑∞
𝑛=0 𝑎𝑛𝑥𝑛 where the coefficients 𝑎𝑛 were derived in the previous

exercise 19.a.4, Try to show that the radius of convergence 𝑓 is positive. †107

§19.b Exp,sin,cos [2D7]

Exercises

E19.b.1 Prerequisites:19.2,19.a.1, 6.7, 6.8.It is customary to define [1M3]

𝑒𝑧 =
∞
∑
𝑘=0

1
𝑘! 𝑧𝑘

for 𝑧 ∈ ℂ. We want to reflect on this definition.

• First, for each 𝑧 ∈ ℂ, we can actually define

𝑓(𝑧) =
∞
∑
𝑘=0

1
𝑘! 𝑧𝑘

(Note that the radius of convergence is infinite — as it easily occurs using the
root criterion 7.c.1).

• We note that 𝑓(0) = 1; we define 𝑒 = 𝑓(1) which is Euler’s number†108

• Show that 𝑓(𝑧 + 𝑤) = 𝑓(𝑧)𝑓(𝑤) for 𝑧, 𝑤 ∈ ℂ.
• It is easy to verify that 𝑓(𝑥) is monotonic increasing for 𝑥 ∈ (0, ∞); by the
previous relation, 𝑓(𝑥) is monotonic increasing for 𝑥 ∈ ℝ.

• Then show that, for 𝑛, 𝑚 > 0 integer, 𝑓(𝑛/𝑚) = 𝑒𝑛/𝑚 (for the definition of
𝑒𝑛/𝑚 see 6.7).

• Deduce that, for every 𝑥 ∈ ℝ, 𝑓(𝑥) = 𝑒𝑥 (for the definition of 𝑒𝑥 see 6.8)

Hidden solution: [UNACCESSIBLE UUID '1M4']

E19.b.2 Prerequisites:7.e.4. [1M5]

Given 𝑧 ∈ ℂ, show that

lim
𝑁→∞

(1 + 𝑧
𝑁 )

𝑁
= 𝑒𝑧 (19.b.3)

and that the limit is uniform on compacts sets. Hidden solution: [UNACCESSIBLE UUID

'1M6']

E19.b.4 If 𝑧 = 𝑥 + 𝑖𝑦 with 𝑥, 𝑦 ∈ ℝ, then we can express the complex exponential [1M7]

as a product 𝑒𝑧 = 𝑒𝑥𝑒𝑖𝑦. Use power series developments to show Euler’s identity
𝑒𝑖𝑦 = cos 𝑦 + 𝑖 sin 𝑦 .
Hidden solution: [UNACCESSIBLE UUID '1M8']

E19.b.5 Conversely, note then that cos 𝑦 = 𝑒𝑖𝑦+𝑒−𝑖𝑦

2
, sin 𝑦 = 𝑒𝑖𝑦−𝑒−𝑖𝑦

𝑖2
. [1M9]
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§19 POWER SERIES

E19.b.6 Use the above formula to verify the identities [1MB]

sin(𝑥 + 𝑦) = cos𝑥 sin 𝑦 + cos 𝑦 sin𝑥

cos(𝑥 + 𝑦) = cos𝑥 cos 𝑦 − sin 𝑦 sin𝑥
Hidden solution: [UNACCESSIBLE UUID '1MC']

E19.b.7 We define the functions hyperbolic cosine †109 [1MD]

cosh 𝑦 = 𝑒𝑦 + 𝑒−𝑦

2
and hyperbolic sine

sinh 𝑦 = 𝑒𝑦 − 𝑒−𝑦

2 .

• Verify that
(cosh𝑥)2 − (sinh𝑥)2 = 1

(which justifies the name of ”hyperbolic”).
• Prove the validity of these power series expansion

cosh(𝑥) = 1 + 1
2 𝑥2 + 1

4! 𝑥4 + 1
6! 𝑥6 + …

sinh(𝑥) = 𝑥 + 1
3! 𝑥3 + 1

5! 𝑥5 + 1
7! 𝑥7 + …

• Check that
cosh′ = sinh , sinh′ = cosh

• Check the formulas

sinh(𝑥 + 𝑦) = cosh𝑥 sinh 𝑦 + cosh 𝑦 sinh𝑥

cosh(𝑥 + 𝑦) = cosh𝑥 cosh 𝑦 + sinh 𝑦 sinh𝑥 .

§19.c Matrix exponential [2D8]

Definition 19.c.1. We define the exponential of matrices as [1MF]

exp(𝐴) =
∞
∑
𝑛=0

𝐴𝑛

𝑛!

where we agree that 𝐴0 = 𝕀, the identity matrix.

Exercises

E19.c.2 Prerequisites:Section . §12.d,12.c.3, 12.e.4, 12.d.4, 19.b.2. [1MG]

We equip the space of the matricesℂ𝑛×𝑛 with one of the norms seen in Section §12.e.
†107 The proof can be found in Proposition 9.1 on pg 26 in Henri Cartan’s book [7].
†108Known as numero di Nepero in Italy.
†109See Wikipedia page “Derivazione delle funzioni iperboliche” [37] which explains in what sense 𝑦 is an
”angle”.
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§19.c Matrix exponential

• Show that the series ∑∞
𝑘=0 𝐴𝑘/𝑘! converges.

• Show that
exp(𝐴) = lim

𝑁→∞
(𝕀 + 𝐴/𝑁)

𝑁
(19.c.3)

where 𝕀 is the identity matrix in ℝ𝑛×𝑛; and that convergence is uniform in every
compact neighborhood of𝐴. (Hint: make good use of the similar result 19.b.2.)

Hidden solution: [UNACCESSIBLE UUID '1MH']

E19.c.4 If 𝐴 is invertible then [1MJ]

𝐴 exp(𝐵)𝐴−1 = exp(𝐴𝐵𝐴−1) .

E19.c.5 The derivative of [1MK]

𝑡 ∈ ℝ ↦ exp(𝑡𝐴)
is 𝐴 exp(𝑡𝐴). Hidden solution: [UNACCESSIBLE UUID '1MM']

E19.c.6 If 𝐴, 𝐵 commute, then [1MN]

𝐴 exp(𝐵) = exp(𝐵)𝐴 , exp(𝐴 + 𝐵) = exp(𝐴) exp(𝐵) .

In particular exp(𝐴) is always invertible and its inverse is exp(−𝐴).
Hidden solution: [UNACCESSIBLE UUID '1MP']

E19.c.7 Let [1MQ]

𝐴 = (1 0
0 0) , 𝐵 = (0 1

0 0) ∶

compute
exp(𝐴) exp(𝐵) , exp(𝐵) exp(𝐴) , exp(𝐴 + 𝐵) ;

Youwill get that they are all different from each other. Hidden solution: [UNACCESSIBLE

UUID '1MR']

E19.c.8 If 𝐴, 𝐵 then the directional derivative of exp at the point 𝐴 in the direction 𝐵 [1MS]

is 𝐵 exp(𝐴), i.e.
𝑑
𝑑𝑡 exp(𝐴 + 𝑡𝐵)|𝑡=0 = 𝐵 exp(𝐴) .

E19.c.9 Difficulty:*.Show that [1MT]

det(exp(𝐴)) = exp(tr(𝐴)) .

Hint: use Jacobi’s formula 24.14 to calculate the derivative of det(exp(𝑡𝐴)). Use the
previous result 19.c.5 — see also 23.f.4. Another proof can be obtained by switching
to Jordan’s form (using 19.c.4).
Hidden solution: [UNACCESSIBLE UUID '1MV']

E19.c.10 Difficulty:*.In the general case (when we do not know if 𝐴, 𝐵 commute) we [1MW]

proceed as follows. Let’s define [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴.
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§19 POWER SERIES

• Setting 𝐵0 = 𝐵 and 𝐵𝑛+1 = [𝐴, 𝐵𝑛] you have

𝐵𝑛 = 𝐴𝑛𝐵 − 𝑛𝐴𝑛−1𝐵𝐴 + 𝑛(𝑛 − 1)
2 𝐴𝑛−2𝐵𝐴2 + ⋯ + (−1)𝑛 𝐵𝐴𝑛 =

=
𝑛

∑
𝑘=0

(−1)𝑘(𝑛
𝑘)𝐴𝑛−𝑘𝐵𝐴𝑘 ;

• let’s define now 𝑍 = 𝑍(𝐴, 𝐵)

𝑍 def=
∞
∑
𝑛=0

𝐵𝑛
𝑛! , (19.c.11)

(note that 𝑍 is linear in 𝐵): prove that the above series converges, and that

exp(𝐴)𝐵 exp(−𝐴) = 𝑍 ; (19.c.12)

• from this finally it is shown that

exp(𝐴) exp(𝐵) exp(−𝐴) = exp(𝑍) .

(These formulas can be seen as consequences of the Baker–Campbell–Hausdorff
formula [48]). Hidden solution: [UNACCESSIBLE UUID '1MX']

E19.c.13 Prerequisites:19.c.2.In general (even when 𝐴, 𝐵 do not commute) [1MY]

exp(𝐴 + 𝐵) = lim
𝑁→∞

( exp(𝐴/𝑁) exp(𝐵/𝑁))
𝑁

Hidden solution: [UNACCESSIBLE UUID '1MZ']

E19.c.14 Prerequisites:23.f.3.Difficulty:**.In the general case (even when we do not [1N0]

know if 𝐴, 𝐵 commute), we can express exp(𝐴 + 𝑠𝐵) using a power series. Define

𝐶(𝑡) = exp(−𝑡𝐴)𝐵 exp(𝑡𝐴)

and (recursively) set 𝑄0 = 𝕀 (the identity matrix) and then

𝑄𝑛+1(𝑡) = ∫
𝑡

0
𝐶(𝜏)𝑄𝑛(𝜏) 𝕕𝜏

then

exp(−𝐴) exp(𝐴 + 𝑠𝐵) =
∞
∑
𝑛=0

𝑠𝑛𝑄𝑛(1) ; (19.c.15)

this series converges for every 𝑠.
In particular, the directional derivative of exp at the point 𝐴 in the direction 𝐵 is

𝑑
𝑑𝑠 exp(𝐴 + 𝑠𝐵)|𝑠=0 = exp(𝐴)𝑄1(1) = ∫

1

0
exp((1 − 𝜏)𝐴)𝐵 exp(𝜏𝐴) 𝕕𝜏 .

( Hint: Use the exercise 23.f.3 with 𝑌(𝑡, 𝑠) = exp(−𝑡𝐴) exp(𝑡(𝐴 + 𝑠𝐵)) and then set
𝑡 = 1. )
Hidden solution: [UNACCESSIBLE UUID '1N1']
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§19.c Matrix exponential

E19.c.16 Prerequisites:19.c.10.Difficulty:*. [1N2]

Prove the relations

𝑑
𝑑𝑡 exp(𝐴 + 𝑡𝐵)|𝑡=0 = ∫

1

0
exp(𝑠𝐴)𝐵 exp((1 − 𝑠)𝐴) 𝕕𝑠 .

using the relations (19.c.11) and (19.c.12) from exercise 19.c.10.
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§20 ANALYTIC FUNCTIONS

§20 Analytic functions [1N4]

All definitions and theorems needed to solve the following exercises, may be found in
Chap. 6 of [2] or Chap. 8 of [22].

Exercises

E20.1 Prerequisites:17.a.4. [1N5]

Verify that the function 𝜑 ∶ ℝ → ℝ

𝜑(𝑥) = {𝑒−1/𝑥 𝑠𝑒 𝑥 > 0
0 𝑠𝑒 𝑥 ≤ 0

(also seen in 17.a.4) is not analytic.
Hidden solution: [UNACCESSIBLE UUID '1N6']

E20.2 Note:Exercise 2, written exam March 2010. [1N7]

Let 𝐼 ⊆ ℝ be a not-empty open interval. Let 𝑓 ∶ 𝐼 → ℝ be of class 𝐶∞, and such
that ∀𝑥 ∈ 𝐼, ∀𝑘 ≥ 0 we have 𝑓(𝑘)(𝑥) ≥ 0. Prove that 𝑓 is analytic.
Hidden solution: [UNACCESSIBLE UUID '1N9'] See also the exercise 17.a.14.

E20.3 Prerequisites:19.a.1. [1NC]

Show that 𝑓(𝑥) = 1
1+𝑥2 is analytic on all ℝ, but the radius of convergence of the

Taylor seried centered in 𝑥0 is √1 + 𝑥2
0.

Hidden solution: [UNACCESSIBLE UUID '1ND'][UNACCESSIBLE UUID '1NF']

Study similarly 𝑓(𝑥) = √𝑥2 + 1 or 𝑓(𝑥) = 𝑒1/(𝑥2+1).

E20.4 Let 𝑓 ∶ ℝ → ℝ be a 𝐶∞ class function; fix 𝑥0 ∈ ℝ and define [1NG]

𝑔(𝑥) =
∞
∑
𝑛=0

𝑓(𝑛)(𝑥0)
𝑛! (𝑥 − 𝑥0)𝑛

using the Taylor series; suppose 𝑔 has radius of convergence 𝑅 > 0: So 𝑔 ∶ 𝐽 → ℝ is
a well-defined function, where 𝐽 = (𝑥0 − 𝑅, 𝑥0 + 𝑅). Can it happen that 𝑓(𝑥) ≠ 𝑔(𝑥)
for a point 𝑥 ∈ 𝐽?
And if 𝑓 is analytic? †110

Hidden solution: [UNACCESSIBLE UUID '1NH']

E20.5 Let 𝐼 ⊆ ℝ be a nonempty open interval. Let 𝑓 ∶ 𝐼 → ℝ be a 𝐶∞ class function. [1NJ]

Let
𝑏𝑛 = sup

𝑥∈𝐼
|𝑓(𝑛)(𝑥)| = ‖𝑓(𝑛)‖∞ ;

if
lim sup

𝑛→∞

1
𝑛

𝑛√𝑏𝑛 < ∞

†110By ”analytic” we mean: fixed 𝑥0 there is a series ℎ(𝑥) = ∑∞
𝑛=0 𝑎𝑛(𝑥 − 𝑥0)𝑛 with non-zero radius of

convergence such that 𝑓 = ℎ in an open neighborhood of 𝑥0 (neighborhood contained in the convergence
disk) .
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then 𝑓 is analytic.
Show with a simple example that the request is not necessary.
Hidden solution: [UNACCESSIBLE UUID '1NK'][UNACCESSIBLE UUID '1NM']

E20.6 Note:Exercise 1, written exam, June 30th, 2017. [1NN]

Let 𝑓 be a continuous function on the interval [0, 1]. Prove that the function

𝐹(𝑡) = ∫
1

0
𝑓(𝑥)𝑒𝑡𝑥 𝕕𝑥

is analytic on ℝ.
Hidden solution: [UNACCESSIBLE UUID '1NP']

E20.7 Let 𝐼 = (0, 1), find an example of an analytic function 𝑓 ∶ 𝐼 → ℝ not identically [1NQ]

zero, but such that𝐴 = {𝑥 ∈ 𝐼 ∶ 𝑓(𝑥) = 0} has an accumulation point inℝ. Compare
this example with Prop. 6.8.4 in the notes [2]; and with the example 17.a.10.
Hidden solution: [UNACCESSIBLE UUID '1NR']
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§21 CURVE

§21 Curve [1NT]

Let (𝑋, 𝑑) be a metric space.

Definition 21.1. Let 𝐼 ⊆ ℝ be an interval. [1NV]

• A continuous function 𝛾 ∶ 𝐼 → 𝑋 is called parametric curve, or more simply in
the following curve.

• If 𝛾 is injective, the curve is said to be simple.

• If 𝛾 is a homeomorphism onto its image, the curve is said to be embedded.

• If 𝑋 = ℝ𝑛 and 𝛾 is of class 𝐶1 and 𝛾′(𝑡) ≠ 0 for every 𝑡 ∈ 𝐼, then 𝛾 is called an
immersed curve or regular curve.

We will call support or trace the image 𝛾(𝐼) of a curve.
The term arc is also used as a synonym for curve; †111 this term is mainly used when

the curve is not (necessarily) closed.

We postpone the study of closed curves to the next section.
Here are two notions of equivalence of curves. The first was taken from an earlier

version of the the lecture notes [2].

Definition 21.2. Let 𝐼, 𝐽 ⊆ ℝ be intervals. Let 𝛾 ∶ 𝐼 → 𝑋 and 𝛿 ∶ 𝐽 → 𝑋 be two [1NW]

curves. We will write 𝛾 ∼ 𝛿 if there exists an increasing homeomorphism †112 𝜑 ∶ 𝐼 → 𝐽
such that 𝛾 = 𝛿◦𝜑.

The second is Definition 7.5.4 from chapter 7 section 6 in the notes [2].

Definition 21.3. Let 𝐼, 𝐽 ⊆ ℝ be intervals. Let 𝛾 ∶ 𝐼 → ℝ𝑛 and 𝛿 ∶ 𝐽 → ℝ𝑛 be [1NX]

two regular curves. We will write 𝛾 ≈ 𝛿 if there is a diffeomorphism †113 𝜑 ∶ 𝐼 → 𝐽
monotonic increasing, such that 𝛾 = 𝛿◦𝜑.

Exercises

E21.4 Prerequisites:21.2,21.3. [1J8]

Show that the relation 𝛾 ∼ 𝛿 is an equivalence relation.
Show that the relation 𝛾 ≈ 𝛿 is an equivalence relation.

E21.5 Let𝐴 ⊆ ℝ𝑛 be open and let 𝑓 ∶ 𝐴 → ℝ be a function. Show that 𝑓 is continuous [1NY]

if and only if, for each curve 𝛾 ∶ [0, 1] → 𝐴 we have that 𝑓◦𝛾 is continuous. Hidden
solution: [UNACCESSIBLE UUID '1NZ']

E21.6 Suppose 𝐼 is a closed and bounded interval; use the exercise 10.j.4 to show that a [1P0]

simple arc 𝛾 ∶ 𝐼 → 𝑋 is a homeomorphism with its image, so the curve is embedded.
Is the result still true if 𝐼 is not closed? What if 𝐼 is not bounded?

E21.7 Prerequisites:21.6.Difficulty:*. [1P1]

†111Note that in the book [22] an arc is an injective curve.
†112See 8.g.2.
†113A diffeomorphism is a bijective function 𝜑 ∶ 𝐼 → 𝐽 of class 𝐶1, the inverse of which is class 𝐶1; in
particular 𝜑′ is never zero, and (when domain and codomain are intervals) it always has the same sign.
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§21.a Closed curves

Fix a curve 𝛾 ∶ 𝐼 → ℝ𝑛. We define in the following ̂𝐼 = {𝑡 ∈ ℝ ∶ −𝑡 ∈ 𝐼} and
̂𝛾 ∶ ̂𝐼 → ℝ𝑛 via ̂𝛾(𝑡) = 𝛾(−𝑡).
We want to show that, in certain hypotheses, two curves have the same support if and
only if they are equivalent.

• Let 𝛾, 𝛿 ∶ [0, 1] → ℝ𝑛 be simple curves, but not closed, and with the same
support. Show that if 𝛾(0) = 𝛿(𝑡) then 𝑡 = 0 or 𝑡 = 1. In case 𝛾(0) = 𝛿(0),
show that 𝛾 ∼ 𝛿. If instead 𝛾(0) = 𝛿(1) then ̂𝛾 ∼ 𝛿.

• Let 𝛾, 𝛿 ∶ [0, 1] → ℝ𝑛 be simple immersed curves, but not closed, and with
the same support, and let 𝛾(0) = 𝛿(0): show that 𝛾 ≈ 𝛿. If instead 𝛾(0) = 𝛿(1)
then ̂𝛾 ≈ 𝛿.

(For the case of closed curves see 21.a.10)
Hidden solution: [UNACCESSIBLE UUID '1P2']

E21.8 Show that [0, 1] and [0, 1]2 are not homeomorphic. Hidden solution: [UNACCESSIBLE [1P3]

UUID '1P4']

E21.9 Prerequisites:10.j.4, 21.8.Show that you can’t find a curve 𝑐 ∶ [0, 1] → [0, 1]2 [1P5]

continuous and bijective. Therefore a curve 𝑐 ∶ [0, 1] → [0, 1]2 that is continuous
and surjective cannot be injective; such as the Peano curve, the Hilbert curve.
Hidden solution: [UNACCESSIBLE UUID '1P6']

E21.10 Note:Nice formula taken from [67]. [1P7]

Let 𝑆 = 𝑆(0, 1) ⊆ ℝ𝑛 be the unit sphere 𝑆 = {𝑥 ∶ |𝑥| = 1}. Let 𝑣, 𝑤 ∈ 𝑆 with 𝑣 ≠ 𝑤
and 𝑣 ≠ −𝑤; let 𝑇 = arccos(𝑣 ⋅ 𝑤) so that 𝑇 ∈ (0, 𝜋); then the geodesic (that is, the
arc-parameterized minimal length curve) 𝛾(𝑡) ∶ [0, 𝑇] → 𝑆 connecting 𝑣 to 𝑤 inside
𝑆 is

𝛾(𝑡) =
sin (𝑇 − 𝑡)
sin(𝑇) 𝑣 +

sin (𝑡)
sin(𝑇) 𝑤 ,

and its length is 𝑇.
(You may assume that, when 𝑣 ⋅ 𝑤 = 0 that is 𝑇 = 𝜋/2, then the geodesic is 𝛾(𝑡) =
𝑣 cos(𝑡) + 𝑤 sin(𝑡)). Hidden solution: [UNACCESSIBLE UUID '1P8']

§21.a Closed curves
We add other definitions to those already seen in 21.1.

Definition 21.a.1. Let (𝑋, 𝑑) be a metric space. Let 𝐼 = [𝑎, 𝑏] ⊆ ℝ be a closed and [1PB]

bounded interval. Let 𝛾 ∶ 𝐼 → 𝑋 be a parametric curve.

• If 𝛾(𝑎) = 𝛾(𝑏) we will say that the curve is closed;

• we also say that the curve is simple and closed if 𝛾(𝑎) = 𝛾(𝑏) and 𝛾 is injective
when restricted to [𝑎, 𝑏). †114

• If𝑋 = ℝ𝑛 and 𝛾 is class𝐶1 and is closed, it is further assumed that 𝛾′(𝑎) = 𝛾′(𝑏).
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§21 CURVE

A B

C D

Figure 6: Sets for exercise 21.a.2

Exercises

E21.a.2 Consider the subsets of the plane described in the following figures 6: which [1PC]

can be the support of a simple curve? or a simple closed curve? or union of supports
of two simple curves (possibly closed)? (Prove your claims.)

E21.a.3 Let 𝛾 ∶ [0, 1] → 𝑋 be a closed curve, show that it admits an extension ̃𝛾 ∶ [1PF]

ℝ → 𝑋 continuous and periodic with period 1.

E21.a.4 Let 𝛾 ∶ [0, 1] → ℝ𝑛 be a closed 𝐶1 curve, show that it admits an extension [1PG]

̃𝛾 ∶ ℝ → ℝ𝑛 periodic with period 1 and of class 𝐶1.

E21.a.5 We will use the definitions and results of the Section §10.o, in particular [1PH]

10.o.7.
Fix ̃𝛾 ∶ ℝ → 𝑋 continuous and periodic (of period 1); we can define the map ̂𝛾 ∶
𝑆1 → 𝑋 through the relation

̂𝛾((cos(𝑡), sin(𝑡))) = ̃𝛾(𝑡) .

Show that this is a good definition, and that ̂𝛾 is continuous.
Use the exercise 10.j.4 to show that every closed simple arc, when viewed equiva-
lently as a map ̂𝛾 ∶ 𝑆1 → 𝑋 , is a homeomorphism with its image.

In the following we will use periodic maps to represent the closed curves.

Exercises

E21.a.6 Adapt the notion of equivalence 21.2 to the case of simple and closed arcs, but [1PK]

considering them as maps 𝛾 ∶ ℝ → 𝑋 continuous and periodic (of period 1); what
hypotheses do we require from the maps 𝜑 ∶ ℝ → ℝ?
Hidden solution: [UNACCESSIBLE UUID '1PM']

E21.a.7 Prerequisites:21.2,21.a.3.Let 𝛾, 𝛿 be closed curves, but seen as maps defined on [1PN]

ℝ, continuous and periodic of period 1.
Let’s discuss a new relation: we write 𝛾 ∼𝑓 𝛿 if there is an increasing homeomor-
phism 𝜑 ∶ ℝ → ℝ such that 𝜑(𝑡 + 1) = 𝜑(𝑡) + 1 for every 𝑡 ∈ ℝ, and for which
𝛾 = 𝛿◦𝜑
Show that this is an equivalence relation.

†114That is, the injectivity is lost in the extremes.
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§21.a Closed curves

Compare it with the relation ∼.
Hidden solution: [UNACCESSIBLE UUID '1PP']

E21.a.8 Prerequisites:21.3,21.a.4.Let 𝛾, 𝛿 curves be closed and immersed, but seen as [1PQ]

maps defined on ℝ and 𝐶1 and periodic. with periods 1.
Let’s see a new relation: you have 𝛾 ≈𝑓 𝛿 if there is an increasing diffeomorphism
𝜑 ∶ ℝ → ℝ such that 𝜑(𝑡 + 1) = 𝜑(𝑡) + 1 for every 𝑡 ∈ ℝ and for which 𝛾 = 𝛿◦𝜑
Show that this is an equivalence relation.
Compare it with the relation ≈.

E21.a.9 Prerequisites:21.3,21.a.4,21.a.8.Give a simple example of closed curves im- [1PR]

mersed for which you have 𝛾 ≈𝑓 𝛿 but not 𝛾 ≈ 𝛿.
Hidden solution: [UNACCESSIBLE UUID '1PS']

E21.a.10 Prerequisites:21.6.Difficulty:*. [1PT]

Let 𝛾, 𝛿 ∶ 𝑆1 → ℝ𝑛 be simple and immersed closed curves with the same support;
Define ̂𝛾(𝑡) = 𝛾(−𝑡): show that either 𝛾 ≈𝑓 𝛿 or ̂𝛾 ≈𝑓 𝛿.
Hidden solution: [UNACCESSIBLE UUID '1PV']

Other exercises regarding curves are 11.21, 15.a.24, 17.d.13 and 24.4; see also Sec-
tion §23.d.
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§22 SURFACES

§22 Surfaces [1PZ]

Exercises

E22.1 Prerequisites:17.d.1.Let 𝐴 ⊂ ℝ𝑛 be open and 𝑓 ∶ 𝐴 → ℝ in 𝐶1. Fix 𝑥 ∈ 𝐴 [1Q0]

such that 𝑓(𝑥) = 0, and ∇𝑓(𝑥) ≠ 0: by the implicit function theorem 17.d.1 the set
𝐸 = {𝑓 = 0} is a graph in a neighborhood of 𝑥, and the plane tangent to this graph is
the set of 𝑥 for which

⟨𝑥 − 𝑥, ∇𝑓(𝑥)⟩ = 0 .
Compare this result to Lemma 7.7.1 in the notes [2]: ”the gradient is orthogonal to
the level sets” . Hidden solution: [UNACCESSIBLE UUID '1Q1']

E22.2 Given 𝑚 > 0, show that the relation 𝑥𝑦𝑧 = 𝑚3 defines a surface in ℝ3. Prove [1Q2]

that the planes tangent to the surface at the points of the first octant {𝑥 > 0, 𝑦 >
0, 𝑧 > 0} form with the coordinate planes of ℝ3 a tetrahedron of constant volume.
Hidden solution: [UNACCESSIBLE UUID '1Q3']

E22.3 Let 𝑎 > 0. Show that the equation √𝑥 + √𝑦 + √𝑧 = √𝑎 defines a regular [1Q4]

surface inside the first octant {𝑥 > 0, 𝑦 > 0, 𝑧 > 0}. Prove that planes tangent to
the surface cut the three coordinate axes at three points, the sum of whose distances
from the origin is constant.
Hidden solution: [UNACCESSIBLE UUID '1Q5']

E22.4 Fix 𝑎 > 0, 𝑏 > 0, 𝑐 > 0. Determine a plane tangent to the ellipsoid [1Q8]

𝑥2/𝑎2 + 𝑦2/𝑏2 + 𝑧2/𝑐2 = 1

at a point with 𝑥, 𝑦, 𝑧 > 0, so that the tetrahedron bounded by this plane and the
coordinated planes has minimum volume.
Hidden solution: [UNACCESSIBLE UUID '1Q9']
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§23 Ordinary Differential equations [1QB]

To solve the following exercises, it is imporant to know some fundamental results,
such as: the existence and uniqueness theorem †115, Gronwall’s Lemma; and in general
some methods to analyze, solve and qualitative study Ordinary Differential Equations
(abbreviated ODE). These may be found e.g. in [25, 20, 2].

Exercises

E23.1 For each point (𝑥, 𝑦) of the plane with 𝑥, 𝑦 > 0 passes a single ellipses 4𝑥2+𝑦2 = [1QC]

𝑎 (with 𝑎 > 0). Describe the family of curves that at each point are orthogonal to the
ellipse passing through that point. See figure 7.
Hidden solution: [UNACCESSIBLE UUID '1QF']

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.5  1  1.5  2

Figure 7: Ellipses (in red) and curves orthogonal to them.

E23.2 Prerequisites:17.4. [1QH]

Let 𝐼 ⊆ ℝ be an open interval.
Let 𝐹 ∶ 𝐼 × ℝ → (0, ∞) be a positive continuous function, and let 𝑓 ∶ 𝐼 → ℝ be a
differentiable function that solves the differential equation

(𝑓′(𝑥))2 = 𝐹(𝑥, 𝑓(𝑥)) .

Prove that 𝑥 is, either always increasing, in which case 𝑓′(𝑥) = √𝐹(𝑥, 𝑓(𝑥)) for
every 𝑥, or it is always decreasing, in which case 𝑓′(𝑥) = −√𝐹(𝑥, 𝑓(𝑥)); therefore
𝑓 is of class 𝐶1.
Hidden solution: [UNACCESSIBLE UUID '1QJ']

E23.3 Prerequisites:23.2. [1QK]

†115A.k.a. Picard–Lindelöf theorem, or Cauchy–Lipschitz theorem.
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§23 ORDINARY DIFFERENTIAL EQUATIONS

Figure 8: Figure for 23.3

Describe all the differentiable functions 𝑓 ∶ ℝ → ℝ that solve

∀𝑥 , (𝑓′(𝑥))2 + (𝑓(𝑥))2 = 1 .

Show that if −1 < 𝑓(𝑥) < 1 for 𝑥 ∈ 𝐼 open interval, then 𝑓 is a sine arc, for 𝑥 ∈ 𝐼.
Show that all solutions are 𝐶1, and that they are piecewise 𝐶∞.
Note that 𝑓 ≡ 1 and 𝑓 ≡ −1 are envelopes of the other solutions, as explained in the
section §23.d.
Hidden solution: [UNACCESSIBLE UUID '1QM']

E23.4 Let 𝑓 ∶ [0, 1] → ℝ be a function 𝐶2 such that 𝑓(0) = 𝑓(1) = 0 and 𝑓′(𝑥) = [1QN]

𝑓(𝑥)𝑓″(𝑥) for every 𝑥 ∈ [0, 1].
Prove that the function 𝑓 is identically zero.
Hidden solution: [UNACCESSIBLE UUID '1QP'][UNACCESSIBLE UUID '1QQ']

§23.a Autonomous problems
Exercises

E23.a.1 Prerequisites:16.3.Let su fix 𝑥0, 𝑡0 ∈ ℝ, and a bounded and continuous func- [1QR]

tion 𝑓 ∶ ℝ → ℝ, with 𝑓(𝑥0) = 0 but 𝑓(𝑥) > 0 for 𝑥 ≠ 𝑥0. We want to study the
autonomous problem

{𝑥′(𝑡) = 𝑓(𝑥(𝑡)) ,
𝑥(𝑡0) = 𝑥0 .

Note that 𝑥 ≡ 𝑥0 is a possible solution. Show that if, for 𝜀 > 0 small, †116

∫
𝑥0+𝜀

𝑥0

1
𝑓(𝑦) 𝕕𝑦 = ∞ (23.a.2)

∫
𝑥0

𝑥0−𝜀

1
𝑓(𝑦) 𝕕𝑦 = ∞ (23.a.3)

then 𝑥 ≡ 𝑥0 is the only solution; while otherwise there are many class 𝐶1 solutions:
describe them all.
Hidden solution: [UNACCESSIBLE UUID '1QS']

Conditions (23.a.2) and (23.a.3) are a special case of Osgood uniqueness condition,
see Problem 2.25 in [25].

†116If the condition holds for a 𝜀 > 0 then it holds for every 𝜀 > 0, since 𝑓 > 0 far from 𝑥0.
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§23.b Resolution

E23.a.4 Set 𝛼 > 1 and consider [1QV]

{𝑥′(𝑡) = |𝑥(𝑡)|𝛼 ,
𝑥(𝑡0) = 𝑥0

with 𝑥0, 𝑡0 ∈ ℝ fixed. Show that there is existence and uniqueness of the solution;
calculate the maximal definition interval; Use the variable separation method to ex-
plicitly calculate solutions. (Since the equation is autonomous, one could assume
that 𝑡0 = 0, but the example is perhaps clearer with a generic 𝑡0).
Hidden solution: [UNACCESSIBLE UUID '1QW']

E23.a.5 What happens in the previous exercise in the case 𝛼 ∈ (0, 1)? [1QX]

Hidden solution: [UNACCESSIBLE UUID '1QY']

E23.a.6 Prerequisites:23.a.4.Let us fix 𝛼 > 1, and consider again [1QZ]

{𝑥′(𝑡) = |𝑥(𝑡)|𝛼 ,
𝑥(0) = 1

We have seen in 23.a.4 that this ODE admits a maximal solution 𝑥 ∶ 𝐼𝛼 → ℝ. Fixed
𝑡 ∈ ℝ, show that 𝑡 ∈ 𝐼𝛼 for 𝛼 > 1 close to 1, and that lim𝛼→1+ 𝑥(𝑡) = 𝑒𝑡.
Note that 𝑒𝑡 is the only solution of 𝑥′(𝑡) = |𝑥(𝑡)| with 𝑥(0) = 1.
Hidden solution: [UNACCESSIBLE UUID '1R0']

§23.b Resolution
Exercises

E23.b.1 Let 𝛩 ∶ ℝ → ℝ be a continuous function, Describe all solutions 𝑓 ∶ ℝ → ℝ [1R1]

that solve
∀𝑥 ≠ 0 , 𝑓′(𝑥) = 𝛩 ( 𝑓(𝑥)

𝑥 )

(Hint: change variables 𝑓(𝑥) = 𝑥ℎ(𝑥) and find and solve a differential equation for
ℎ(𝑥).)
Hidden solution: [UNACCESSIBLE UUID '1R2']

E23.b.2 Find solutions to the problem [1R4]

𝑑𝑦
𝑑𝑥 = 𝑦

𝑥 + 𝑦

with substitution 𝑧 = 𝑦/𝑥, and also comparing it with the problem

𝑑𝑥
𝑑𝑦 = 𝑥 + 𝑦

𝑦 .
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§23 ORDINARY DIFFERENTIAL EQUATIONS

§23.c Qualitative discussions
For the following exercises the following simple comparison lemma may be useful.

Lemma 23.c.1. Let 𝑈 ⊆ ℝ2 be open, let 𝑓, 𝑔 ∶ 𝑈 → ℝ be continuous with 𝑓 ≥ 𝑔; let [1R7]

𝐼 ⊆ ℝ be an open interval with 𝑡0 ∈ 𝐼, and let 𝑥, 𝑤 ∶ 𝐼 → ℝ solutions of

𝑥′(𝑡) = 𝑓(𝑡, 𝑥(𝑡)) , 𝑤(𝑡) = 𝑔(𝑡, 𝑤(𝑡))

with 𝑥(𝑡0) ≥ 𝑤(𝑡0): then 𝑥(𝑡) ≥ 𝑤(𝑡) for 𝑡 ≥ 𝑡0. Note indeed that 𝑥′(𝑡) ≥ 𝑤′(𝑡) and
therefore 𝑥(𝑡) − 𝑤(𝑡) is an increasing function.

(There are much more refined versions of this lemma, see for example in section
8.6 in the course notes [2]).

Exercises

E23.c.2 Discuss solutions of [1R8]

{𝑦′(𝑥) = (𝑦(𝑥) − 𝑥)3

𝑦(0) = 𝑎 .

Qualitatively study the existence (local or global) of solutions, and the properties of
monotonicity and convexity/concavity.
Hidden solution: [UNACCESSIBLE UUID '1R9'][UNACCESSIBLE UUID '1RB']

E23.c.3 Considering the Cauchy problem [1RD]

{
𝑦′(𝑥) = 1

𝑦(𝑥)2+𝑥2

𝑦(0) = 1

show that there is only one global solution 𝑦 ∶ ℝ → ℝ, that 𝑦 is bounded, and the
limits lim𝑥→∞ 𝑦(𝑥), lim𝑥→−∞ 𝑦(𝑥) exist and are finite.
Hidden solution: [UNACCESSIBLE UUID '1RG'][UNACCESSIBLE UUID '1RH']

E23.c.4 Discuss the differential equation [1RK]

{
𝑦′(𝑥) = 1

𝑦(𝑥)−𝑥2

𝑦(0) = 𝑎

for 𝑎 ≠ 0, studying in a qualitative way the existence (local or global) of solutions,
and the properties of monotonicity and convexity/concavity. †117

Show that the solution exists for all positive times.
Show that for 𝑎 > 0 the solution does not extend to all negative times.
Difficulty:*.Show that there is a critical ̃𝑎 < 0 such that, for ̃𝑎 < 𝑎 < 0 the solution
does not extend to all negative times, while for 𝑎 ≤ ̃𝑎 the solution exists for all
negative times; also for 𝑎 = ̃𝑎 you have lim𝑥→−∞ 𝑦(𝑥) − 𝑥2 = 0.
Hidden solution: [UNACCESSIBLE UUID '1RP']
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§23.c Qualitative discussions
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Figure 9: Exercise 23.c.3. In purple the line of inflections. In yellow the solutions with
initial data 𝑦(0) = 1 and 𝑦(0) = 2.
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Figure 10: Exercise 23.c.4. Solutions for 𝑎 > 0
In purple the line of inflections. In red the parabola where the derivative of the
solution is infinite. In yellow the solutions with initial data 𝑦(0) = 2, 𝑦(0) = 1,

𝑦(0) = 1/1000.
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§23 ORDINARY DIFFERENTIAL EQUATIONS
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Figure 11: Exercise 23.c.4. Solutions for 𝑎 < 0
In purple the line of inflections. In red the parabola where the derivative of the
solution is infinite. Solutions are drawn with initial data 𝑎 = −1.4 (”green”),

𝑎 = −1.0188 (”orange”) and 𝑎 = −1.019 (”yellow”). Note that the latter two differ
only by 0.0002 in their initial data (indeed they are indistinguishable in the graph for

𝑥 > −1), but then for 𝑥 < −1 they move apart quickly, and for 𝑥 = −2 they are
respectively 3.25696 and 2.54856, with a difference of about 0.7 !

E23.c.5 Note:Exercise 4, written exam 9 July 2011.Show that the Cauchy problem [1RQ]

{𝑦′(𝑥) = 𝑦(𝑥)(𝑦(𝑥) − 𝑥2)
𝑦(2) = 1

admits a single solution 𝑦 = 𝑦(𝑥), defined on all of ℝ and such that

lim
𝑥→−∞

𝑦(𝑥) = +∞ , lim
𝑥→∞

𝑦(𝑥) = 0 .

†117The differential equation is taken from exercise 13 in [1].
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§23.d Envelope

§23.d Envelope
Given a family of planar curves, we want to define the envelope curve. Let’s see two
possible definitions.

Definition 23.d.1 (Curve Envelope). [23Y]

• Suppose the curves in the plane are described by the equation in implicit form
𝐹(𝑥, 𝑦, 𝑎) = 0; that is, fixed the parameter 𝑎, the curve is the locus

{(𝑥, 𝑦) ∶ 𝐹(𝑥, 𝑦, 𝑎) = 0} ;
Then the envelope is obtained by expliciting the variable 𝑎 from the equation
𝜕
𝜕𝑎

𝐹(𝑥, 𝑦, 𝑎) = 0 and substituting it into the 𝐹(𝑥, 𝑦, 𝑎) = 0.

• For simplicity, consider curves that are functions of the abscissa. Let 𝑦 = 𝑓(𝑥, 𝑎) =
𝑓𝑎(𝑥) be a family of functions, with 𝑥 ∈ 𝐼, 𝑎 ∈ 𝐽 (open intervals), then 𝑦 = 𝑔(𝑥)
is the envelope of 𝑓𝑎 if the graph of 𝑔 is covered by the union of the graphs of
𝑓𝑎 and the curve 𝑔 is tangent to every 𝑓𝑎 where it touches it. More precisely, for
every 𝑥 ∈ 𝐼 there is 𝑎 ∈ 𝐽 for which 𝑔(𝑥) = 𝑓(𝑥, 𝑎), and also, for every choice
of 𝑎 that satisfies 𝑔(𝑥) = 𝑓(𝑥, 𝑎), we have 𝑔′(𝑥) = 𝑓′(𝑥, 𝑎).

Remark 23.d.2. The envelope curve has an important property in the field of differen- [240]

tial equations. Suppose 𝑦 = 𝑓𝑎(𝑥) are solutions of the differential equation𝛷(𝑦′, 𝑦, 𝑥) =
0: then also 𝑔 is solution (immediate verification). †118

We want to see that the two previous definitions are equivalent in this sense.

Exercises

E23.d.3 Let’s start with the first definition. Suppose we can apply the Implicit Function [1RV]

Theorem to the locus

𝐸𝑎 = {(𝑥, 𝑎) ∶ 𝐹(𝑥, 𝑦, 𝑎) = 0} ;

Precisely, suppose that at a point (𝑥, 𝑦, 𝑎) we have that 𝜕𝐹
𝜕𝑦

≠ 0. To this we also

add the hypothesis 𝜕2𝐹
𝜕𝑎𝑎

≠ 0. Fixed 𝑎, you can express 𝐸𝑎 locally as a graph 𝑦 =

𝑓(𝑥, 𝑎) = 𝑓𝑎(𝑥). We also use the hypothesis 𝜕2𝐹
𝜕𝑎𝑎

≠ 0 to express locally 𝜕𝐹
𝜕𝑎

= 0 as

a graph 𝑎 = 𝛷(𝑥, 𝑦). Defining 𝐺(𝑥, 𝑦) def= 𝐹(𝑥, 𝑦, 𝛷(𝑥, 𝑦)), show that 𝐺 = 0 can be
represented as 𝑦 = 𝑔(𝑥). Finally, show that 𝑔 is the envelope of the curves 𝑓𝑎.
Hidden solution: [UNACCESSIBLE UUID '1RW'][UNACCESSIBLE UUID '1RX']

E23.d.4 In the above hypotheses, assuming that 𝜕𝐹
𝜕𝑦

> 0 and 𝜕2𝐹
𝜕𝑎𝑎

> 0, show that the [1RY]

envelope graph 𝑔 is locally the ”edge” of the union of the graphs 𝑓𝑎 (in the sense that
𝑔(𝑥) ≥ 𝑓𝑎(𝑥) with equality for only one 𝑎).
Hidden solution: [UNACCESSIBLE UUID '1RZ'][UNACCESSIBLE UUID '1S0']

E23.d.5 Note:From the text [19], pg 84..Consider the curves [1S1]

𝑦 = 𝑓(𝑥, 𝑎) = 𝑎𝑥 + 𝑎2

2
†118With equations in normal form, however, this notion is not interesting because there is local uniqueness
and then there can be no special solutions; that is, if 𝑔 = 𝑓𝑎 𝑔′ = 𝑓′𝑎 at a point 𝑥 then they coincide in a
neighborhood.
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§23 ORDINARY DIFFERENTIAL EQUATIONS

• Find a differential equation solved by all curves. (Sugg. Eliminate 𝑎 from the
system 𝑦 = 𝑓, 𝑦′ = 𝜕

𝜕𝑥
𝑓. The result can be left in non-normal form.)

• Calculate the envelope; check that it satisfies the differential equation obtained
above.

See also the figure 12. Hidden solution: [UNACCESSIBLE UUID '1S2']

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

-x*x/2.
x+1/2.

2.*x+2.
1.5*x+9./8.

x/2.+1/8.

Figure 12: Solution of 23.d.5: envelope.

E23.d.6 Consider ellipses 𝑎𝑥2 + 𝑦2/𝑎 = 2 (with 𝑎 > 0). [1S4]

• Find the region of the plane covered by these ellipses.
• Show that the edge of this region is the envelope of ellipses, and describe it.

Hidden solution: [UNACCESSIBLE UUID '1S5'][UNACCESSIBLE UUID '1S6']

E23.d.7 Let’s consider the lines 𝑎𝑥 + 𝑦/𝑎 = 1 (with 𝑎 > 0). [1S7]

• Find the region of the first quadrant covered by these lines.
• Show that the edge of this region is the envelope of the lines and describe it.

Hidden solution: [UNACCESSIBLE UUID '1S8']

E23.d.8 Let’s consider the straight lines [1S9]

𝑥
𝑎 + 𝑦

1 − 𝑎 = 1

with 𝑥, 𝑦, 𝑎 ∈ (0, 1). Describe the envelope curve.
Hidden solution: [UNACCESSIBLE UUID '1SB']
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§23.e Linear equations

§23.e Linear equations (with constant coefficients)
Definition 23.e.1. We formally indicate with𝐷 the operation ”computing of the deriva- [23Z]

tive”. Given a polynomial 𝑝(𝑥)
𝑝(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + … + 𝑎1𝑥 + 𝑎0

(which has constants coefficients 𝑎𝑖 ∈ ℂ) we formally construct the linear operator
𝑝(𝐷) = 𝑎𝑛𝐷𝑛 + 𝑎𝑛−1𝐷𝑛−1 + … 𝑎1𝐷 + 𝑎0

which transforms a function 𝑓 ∶ ℝ → ℂ of class 𝐶𝑛+𝑘 into the function 𝑝(𝐷)𝑓, class
at least 𝐶𝑘, defined pointwise by

[𝑝(𝐷)𝑓](𝑥) def= 𝑎𝑛𝑓(𝑛)(𝑥) + 𝑎𝑛−1𝑓(𝑛−1)(𝑥) + … 𝑎1𝑓′(𝑥) + 𝑎0𝑓(𝑥) .

Exercises

E23.e.2 Given two polynomials𝑝(𝑥), 𝑞(𝑥) and the product polynomial 𝑟(𝑥) = 𝑝(𝑥)𝑞(𝑥), [1SC]

show that 𝑝(𝐷)[𝑞(𝐷)𝑓] = 𝑟(𝐷)𝑓
E23.e.3 Define 𝑓(𝑥) = 𝑒𝜆𝑥, note that [1SD]

[𝑝(𝐷)𝑓](𝑥) = 𝑝(𝜆)𝑓(𝑥) .

We can therefore consider exponentials 𝑒𝜆𝑥 as eigenvectors of 𝑝(𝐷), with eigenvalue
𝑝(𝜆).

E23.e.4 Let 𝑓 ∶ ℝ → ℂ be a 𝐶𝑛 class function , let 𝜃 ∈ ℂ be a constant, and let [1SF]

𝑔(𝑥) = 𝑒𝜃𝑥𝑓(𝑥). Show that, if 𝑝 is a polynomial and 𝑞(𝑥) = 𝑝(𝑥 + 𝜃), then
𝑝(𝐷)𝑔 = 𝑒𝜃𝑥[𝑞(𝐷)𝑓] .

Note that we can also write the relation above as a ”conjugation”

𝑒−𝜃𝑥[𝑝(𝐷)[𝑒𝜃𝑥𝑓]] = 𝑝(𝐷 + 𝜃)𝑓 .

Hidden solution: [UNACCESSIBLE UUID '1SG']

E23.e.5 Prerequisites:23.e.4.Given 𝜃 ∈ ℂ and 𝑘 ∈ ℕ, define 𝑝(𝑥) = (𝑥 − 𝜃)𝑘, show [1SH]

that 𝑝(𝐷)𝑓 = 0 if and only if 𝑓(𝑥) = 𝑒𝜃𝑥𝑟(𝑥) with 𝑟 polynomial of degree at most
𝑘 − 1.
Hidden solution: [UNACCESSIBLE UUID '1SJ']

E23.e.6 Prerequisites:16.1, 23.e.4. [1SK]

Fix 𝜃, 𝜏 ∈ ℂwith 𝜃 ≠ 𝜏, 𝑞(𝑥) a polynomial, and 𝑘 ∈ ℕ. Let’s define 𝑝(𝑥) = (𝑥−𝜃)𝑘.
Show that

𝑝(𝐷)𝑓(𝑥) = 𝑒𝜏𝑥𝑞(𝑥)
if and only if

𝑓(𝑥) = 𝑒𝜃𝑥𝑟(𝑥) + 𝑒𝜏𝑥 ̃𝑞(𝑥) ,
with 𝑟 polynomial of degree at most 𝑘 − 1 and ̃𝑞 polynomial of the same degree as
𝑞.
Hidden solution: [UNACCESSIBLE UUID '1SM']
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§23 ORDINARY DIFFERENTIAL EQUATIONS

E23.e.7 Given 𝑎0 … 𝑎𝑛 ∈ ℂ constants, with 𝑎𝑛 ≠ 0, and defining 𝑝(𝑥) = 𝑎𝑛𝑥𝑛 + [1SN]

𝑎𝑛−1𝑥𝑛−1 + … 𝑎1𝑥 + 𝑎0, describe all possible solutions 𝑓 of

𝑝(𝐷)𝑓 = 0 .

Show that the solution space is a vector space (based on the field ℂ of complex
numbers) of dimension 𝑛.
( Hint. Factorize the polynomial and take advantage of previous exercises. ).

E23.e.8 Prerequisites:23.e.7.With 𝑝 as above, also analyze the problem [1SP]

𝑝(𝐷)𝑓 = 𝑒𝛼𝑥

(with 𝛼 ∈ ℂ constant).
What happens when 𝛼 approaches a root of the polynomial 𝑝?
[UNACCESSIBLE UUID '1SQ']Given parameters 𝑦0, … , 𝑦𝑛−1 ∈ ℂ, and also 𝛼 ∈ ℂ, the [1SR]

solution of the Cauchy problem

⎧⎪
⎨⎪
⎩

𝑝(𝐷)𝑓 = 𝑒𝛼𝑥

𝑓(0) = 𝑦0,
…
𝑓𝑛−1(0) = 𝑦𝑛−1

exists for all times, and depends continuously on the parameters 𝛼, 𝑦0, … , 𝑦𝑛−1 ∈ ℂ.

E23.e.9 Given ℎ = ℎ(𝑥), and 𝜃 ∈ ℝ, solve the differential equations [1SS]

(𝐷 − 𝜃)𝑓(𝑥) = ℎ(𝑥)

(𝐷 − 𝜃)2𝑓(𝑥) = ℎ(𝑥)
(𝐷2 + 𝜃2)𝑓(𝑥) = ℎ(𝑥)
(𝐷2 − 𝜃2)𝑓(𝑥) = ℎ(𝑥)

and special cases
(𝐷 − 1)𝑓(𝑥) = 𝑥𝑘

(𝐷 − 𝜃)𝑓(𝑥) = 𝑒𝛼𝑥

(with 𝛼 ∈ ℂ, and 𝑘 ∈ ℕ, constants).
Hidden solution: [UNACCESSIBLE UUID '1SV']
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§23.f Matrix equations

§23.f Matrix equations
To solve the following exercises you need to know the elementary properties of the
exponential of matrices, see section §19.c.

Exercises

E23.f.1 Prerequisites:19.c.6,19.c.5, Section §19.c. [1SW]

Given 𝐴, 𝐶 ∈ ℂ𝑛×𝑛 and 𝐹 ∶ ℝ → ℂ𝑛×𝑛 continuous matrix valued functions, solve
the ODE

𝑋 ′ = 𝐴𝑋 + 𝐹 , 𝑋(0) = 𝐶 ,
where 𝑋 ∶ ℝ → ℂ𝑛×𝑛.
( Hint: use the method of variation of constants: replace 𝑌(𝑡) = exp(−𝑡𝐴)𝑋(𝑡) )
Hidden solution: [UNACCESSIBLE UUID '1SX']

E23.f.2 Prerequisites:19.c.6,19.c.5, Sec. §19.c.Difficulty:*. [1SY]

Given matrixes 𝐴, 𝐵, 𝐶 ∈ ℂ𝑛×𝑛, solve the ODE

𝑋 ′ = 𝐴𝑋 + 𝑋𝐵 , 𝑋(0) = 𝐶 ,

where 𝑋 ∶ ℝ → ℂ𝑛×𝑛

Hidden solution: [UNACCESSIBLE UUID '1SZ']

E23.f.3 Prerequisites:12.c.3,12.e.5.Difficulty:*. [1T1]

Let 𝑉 = ℂ𝑛×𝑛 a matrix space, we equip it with a submultiplicative norm ‖𝐶‖𝑉 . Let
𝐶 ∈ 𝑉 and let 𝐴, 𝐵 ∶ ℝ → 𝑉 be continuous curves in space of matrices.

• We recursively define 𝑄0 = 𝐶, and

𝑄𝑛+1(𝑠) = ∫
𝑠

0
𝐴(𝜏)𝑄𝑛(𝜏)𝐵(𝜏) 𝕕𝜏 ;

show that the series

𝑌(𝑡) =
∞
∑
𝑛=0

𝑄𝑛(𝑡)

is well defined, showing that, for every 𝑇 > 0, it converges totally in the space
of continuous functions 𝐶0 = 𝐶0([−𝑇, 𝑇] → 𝑉), endowed with the norm

‖𝑄‖𝐶0
def= max

|𝑡|≤𝑇
‖𝑄(𝑡)‖𝑉 .

• Show that the function just defined is the solution of the differential equation

𝑑
𝑑𝑡 𝑌(𝑡) = 𝐴(𝑡)𝑌(𝑡)𝐵(𝑡) , 𝑌(0) = 𝐶 .

• If 𝐴, 𝐵 are constant, note that

𝑌(𝑡) =
∞
∑
𝑛=0

𝑡𝑛 𝐴𝑛𝐶𝐵𝑛

𝑛! .
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§23 ORDINARY DIFFERENTIAL EQUATIONS

Hidden solution: [UNACCESSIBLE UUID '1T2']

E23.f.4 Prerequisites:23.f.3,23.f.4.Note:Abel’s identity. [1T3]

Let be given 𝐶 ∈ ℂ𝑛×𝑛, 𝐴 ∶ ℝ → ℂ𝑛×𝑛 continuous, and the solution 𝑌(𝑡) of the
ODE

𝑑
𝑑𝑡 𝑌(𝑡) = 𝐴(𝑡)𝑌(𝑡) , 𝑌(0) = 𝐶

(which has been studied in 23.f.3). Set 𝑎(𝑡) = tr(𝐴(𝑡)), show that

det(𝑌(𝑡)) = det(𝐶)𝑒∫𝑡
0 𝑎(𝜏) 𝕕𝜏 .

If 𝐶 is invertible, it follows that 𝑌(𝑡) is always invertible.
Hidden solution: [UNACCESSIBLE UUID '1T4']

E23.f.5 Prerequisites:19.c.6,19.c.5,23.f.3. [1T6]

Let be given 𝐶 ∈ ℂ𝑛×𝑛, 𝐹, 𝐴 ∶ ℝ → ℂ𝑛×𝑛 continuous, and the solution 𝑌(𝑡) of the
ODE

𝑑
𝑑𝑡 𝑌(𝑡) = 𝐴(𝑡)𝑌(𝑡) , 𝑌(0) = Id .

Solve the equation
𝑋 ′ = 𝐴𝑋 + 𝐹 , 𝑋(0) = 𝐶 ,

where 𝑋 ∶ ℝ → ℂ𝑛×𝑛, using 𝑌(𝑡) as an auxiliary function.
Hidden solution: [UNACCESSIBLE UUID '1T7']
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§24 Written exams and pseudo–exams [1T8]

Exercises

E24.1 Note:reworked from the written exam held January 26th, 2016. [1T9]

Let (𝑞𝑛)𝑛≥1 be an enumeration of the rationals of (0, 1) and define

𝑓(𝑡) def= ∑
𝑛∶𝑞𝑛<𝑡

2−𝑛

and
𝑔(𝑡) def= ∑

𝑛∶𝑞𝑛≤𝑡
2−𝑛

for 𝑡 ∈ (0, 1).

• Show that 𝑓, 𝑔 are strictly increasing.
• Calculate limits for 𝑡 ↓ 0 and 𝑡 ↑ 1.
• Show that 𝑓 is left continuous, 𝑔 is right continuous, and that

lim
𝜏→𝑡+

𝑓(𝜏) = 𝑔(𝑡) , lim
𝜏→𝑡−

𝑔(𝜏) = 𝑓(𝑡) .

• Also show that 𝑓 is discontinuous in 𝑡 if and only if 𝑡 ∈ ℚ∩(0, 1); and similarly
for 𝑔.

• What changes if we replace 2−𝑛 with the term 𝑎𝑛 of an absolutely convergent
series?

Hidden solution: [UNACCESSIBLE UUID '1TB'][UNACCESSIBLE UUID '1TC']

E24.2 Prerequisites:14.a.9.Note:written exam, June 23th, 2012. [1TD]

Let f be a 𝐶1 class function on ℝ, with 𝑓(0) ≠ 0. Prove that 𝑥 ∈ ℝ exists such that
the two vectors

𝑣 = (𝑥, 𝑓(𝑥)) , 𝑤 = (−𝑓′(𝑥), 1)
are linearly dependent. (Note that the vector 𝑤 is orthogonal to the tangent of the
graph of 𝑓.) Discuss the possibility that this condition is verified for every 𝑥 ∈ ℝ.
Hidden solution: [UNACCESSIBLE UUID '1TF']

E24.3 Note:adapted from the written exam, April 9th, 2011. [1TG]

Let 𝑓 ∶ [0, ∞) → ℝ be a continuous function such that

lim
𝑥→+∞

𝑓(𝑥)/𝑥 = +∞ .

• Fixed 𝑎 < 𝑓(0), let 𝑀𝑎 be the set of 𝑚 ∈ ℝ such that the line 𝑦 = 𝑚𝑥 + 𝑎
intersects the graph 𝑦 = 𝑓(𝑥) of the function 𝑓 at least in one point: show that
𝑀𝑎 admits minimum �̂� = �̂�(𝑎);

• show that �̂� depends continuously on 𝑎, †119

• and that �̂�(𝑎) is monotonic strictly decreasing.
†119Tip: Rethink the exercise 14.a.9.
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§24 WRITTEN EXAMS AND PSEUDO–EXAMS

• If 𝑓 is differentiable, show that the line 𝑦 = �̂�(𝑎)𝑥 + 𝑎 is tangent to the graph
at all points where it encounters it.

• Suppose further that 𝑓 is of class 𝐶2 and that 𝑓″(𝑥) > 0∀𝑥 > 0 †120. Show
that there is only one point 𝑥 where the line 𝑦 = �̂�(𝑎)𝑥 + 𝑎 meets the graph
𝑦 = 𝑓(𝑥); name it ̂𝑥 = ̂𝑥(𝑎);

• and show that the functions 𝑎 ↦ ̂𝑥(𝑎) and 𝑎 ↦ �̂�(𝑎) are differentiable.

Hidden solution: [UNACCESSIBLE UUID '1TH']

E24.4 Topics:osculating circle. Note:adapted from the written exam, April 9th 2011. [1TJ]

Let 𝑓 ∶ ℝ → ℝ be twice differentiable in 0, with 𝑓(0) = 0 and 𝑓″(0) ≠ 0. Prove
that there is an unique point 𝑃 = (𝑎, 𝑏) in the plane and an unique constant 𝑟 > 0,
such that

𝑑( 𝑃, (𝑥, 𝑓(𝑥)) ) = 𝑟 + 𝑜(𝑥2),
determining 𝑎, 𝑏, 𝑟 as a function of 𝑓′(0), 𝑓″(0). Here 𝑑(𝑃, 𝑄) is the Euclidean dis-
tance between two points 𝑃, 𝑄 in the plane.
Hint. First, study the case in which also 𝑓′(0) = 0.
(The graph of the function 𝑓 is a curve in the plane; by hypothesis this curve passes through
the origin. In this exercise we have determined the circle, of radius 𝑟 and center 𝑃, which best
approximates the curve near the origin. This circle is called the ”osculating circle”, and its
radius is called the ”radius of curvature”, and the inverse of the radius is the ”curvature” of
the curve at the origin.)

Hidden solution: [UNACCESSIBLE UUID '1TK'][UNACCESSIBLE UUID '1TM']

E24.5 Note:Exercise 2, written exam 4 April 2009. [1TN]

• Verify that for every 𝑡 > 1 the equation

sin𝑥 = 𝑥𝑡

admits one and only one solution 𝑥 > 0.
• Call 𝑓(𝑡) this solution, determine the image of the function 𝑡 and show that it is
strictly increasing and continuous on (1, +∞).

• Prove that 𝑓 is extended by continuity to 𝑡 = 1 and discuss the existence of the
right derivative of the prolonged function at that point.

Hidden solution: [UNACCESSIBLE UUID '1TP']

E24.6 Suppose that 𝑓 ∶ ℝ → ℝ is a continuous fuction such that cos(𝑓(𝑥)) is differ- [1TS]

entiable: can it be deduced that 𝑓 is differentiable? If it is true, prove it. If it is not
true, produce an example.

E24.7 Suppose that 𝑓 ∶ ℝ → ℝ is a function such that 𝑓 > 0 and log(𝑓(𝑥)) is convex: [1TT]

can it be deduced that 𝑓 is convex? If it is true, prove it. If it is not true, produce an
example.

E24.8 Let 𝑓, 𝑔 ∶ ℝ → ℝ be class 𝐶∞ function, with 𝑔 > 0: show that 𝑓/𝑔 is a class [1TV]

𝐶∞ function.

Copyright A. C. G. Mennucci
The sections comprising theory and exercises’ statements are released under License WP:CC BY-SA

229

https://coldoc.sns.it/UUID/EDB/1TH
https://coldoc.sns.it/UUID/EDB/1TJ/
https://coldoc.sns.it/UUID/EDB/1TK
https://coldoc.sns.it/UUID/EDB/1TM
https://coldoc.sns.it/UUID/EDB/1TN/
https://coldoc.sns.it/UUID/EDB/1TP
https://coldoc.sns.it/UUID/EDB/1TS/
https://coldoc.sns.it/UUID/EDB/1TT/
https://coldoc.sns.it/UUID/EDB/1TV/
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License


E24.9 Let 𝑓(𝑥) = ∑∞
𝑛=0 𝑎𝑛𝑥𝑛 with radius of convergence 𝜌 > 0, and let 𝑓(0) = [1TW]

𝑓′(0) = … = 𝑓(𝑛)(0) = 0; show that the function 𝑔(𝑥) = 𝑓(𝑥)/𝑥𝑛 is extendable
to 𝑥 = 0; show that (the extension of) 𝑔 coincides with an appropriate power series
𝑔(𝑥) = ∑∞

𝑛=0 𝑏𝑛𝑥𝑛. What can be said about the radius of convergence of 𝑔?

E24.10 Note:Dirichlet criterion for integrals. [1TX]

Let 𝑓, 𝑔 ∶ [0, ∞) → ℝ be continuous, where 𝑓 is positive and monotonic decreasing
with lim𝑥→∞ 𝑓(𝑥) = 0, while

sup
𝑥>0

| ∫
𝑥

0
𝑔(𝑡) 𝕕𝑡| < ∞ .

Then prove that

lim
𝑥→∞

∫
𝑥

0
𝑓(𝑡)𝑔(𝑡) 𝕕𝑡

converges.

E24.11 Note:written exam 12/1/2013. [1TY]

Given a subset 𝐸 of ℕ and an integer 𝑛 ∈ ℕ, the expression

card(𝐸 ∩ {0, 1, ..., 𝑛})
𝑛 + 1

indicates which fraction of the segment {0, 1, ..., 𝑛} is contained in E. The notion of
”density” in ℕ of 𝐸 refers to the behavior of such fractions as n tends to infinity.
Precisely, we define the upper density 𝑑(𝐸) of E and its lower density 𝑑(𝐸) as

𝑑(𝐸) = lim sup
𝑛→∞

card(𝐸 ∩ {0, 1, …, 𝑛})
𝑛 + 1 ,

𝑑(𝐸) = lim inf
𝑛→∞

card(𝐸 ∩ {0, 1, …, 𝑛})
𝑛 + 1 .

If 𝑑(𝐸) = 𝑑(𝐸) = 𝑑 ∈ [0, 1], E is said to have density d. (See also [62].)

1. Prove that, for every 𝛼 ∈ ℝ, 𝛼 ≥ 1, the set 𝐸𝛼 = [𝑛𝛼] ∶ 𝑛 ∈ 𝑁 has density
𝑑 = 1/𝛼 (the symbol [𝑥] indicates the integer part of 𝑥 ∈ 𝑅).

2. Let𝐸 = {𝑚0, 𝑚1, …, 𝑚𝑘, …} be an infinite set, with𝑚0 < 𝑚1 < … < 𝑚𝑘 < ….
Prove that 𝑑(𝐸) = lim sup𝑘→∞

𝑘
𝑚𝑘

and 𝑑(𝐸) = lim inf𝑘→∞
𝑘

𝑚𝑘
.

3. Find a set E with 𝑑(𝐸) = 𝑑(ℕ ⧵ 𝐸) = 1.

E24.12 Note:exercise 6 in the written exam 13/1/2011. [1TZ]

Each integer 𝑛 ≥ 1 decomposes uniquely as 𝑛 = 2𝑘𝑑, with 𝑘 ∈ 𝑁 and 𝑑 odd integer.
Consider the sequence 𝑎𝑛 = 𝑑/2𝑘 and compute

1. its upper and lower limit;
2. the set of limit points.

E24.13 Topics:matrix, determinant. Note:exercise 4 in the pseudo-homework of 14/3/2013. [1V0]

†120Use the previous exercise 24.2!
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§24 WRITTEN EXAMS AND PSEUDO–EXAMS

1. Let 𝐴 ∈ ℝ2×2 be a 2 by 2 matrix. Identifying ℝ2×2 with ℝ4, calculate the
gradient of the determinant, and verify that it is nonzero if and only if the matrix
is nonzero.

2. Let 𝑍 be the set of matricesℝ2×2 with zero determinant. Show that it is a closed
set with an empty interior.

Hidden solution: [UNACCESSIBLE UUID '1V1']

E24.14 Topics:matrix,determinant.Difficulty:*. [1V2]

Prove Jacobi’s formula:
𝑑

𝑑𝑎𝑖,𝑗
det(𝐴) = 𝐶𝑖,𝑗 ,

where 𝑎𝑖,𝑗 is the element of 𝐴 in row 𝑖 and column 𝑗, and 𝐶 is the matrix of co-
factors of 𝐴, which is the transpose of the adjoint matrix adj(𝐴). Consequently, if
𝐹 ∶ ℝ → ℂ𝑛×𝑛 is differentiable, then

𝑑
𝑑𝑡 det𝐹(𝑡) = tr (adj(𝐹(𝑡)) 𝑑𝐹(𝑡)

𝑑𝑡 )

where tr(𝑋) is the trace of 𝑋 .
Hint: use Laplace’s expansion for the determinant.
Hidden solution: [UNACCESSIBLE UUID '1V3']

E24.15 Topics:matrix,determinant.Prerequisites:24.14.Difficulty:*. [1V4]

Wewant to generalize the results of the previous exercise 24.13 to the case ofmatrices
𝑛 × 𝑛.
Recall the following properties of the determinant of matrices 𝐴 ∈ ℝ𝑛×𝑛.

• The rank is the dimension of the image of 𝐴 (considered as a linear applica-
tion from ℝ𝑛 to ℝ𝑛) and is also the maximum number of linearly independent
columns in 𝐴.

• 𝐴 has rank 𝑛 if and only det(𝐴) ≠ 0.
• If you exchange two columns in 𝐴, the determinant changes sign;
• if you add a multiple of another column to a column, the determinant does not
change.

• The characterization of rank through minors, ”The rank of A is equal to the
highest order of an invertible minor of A”.

• Laplace’s expansion of the determinant, and Jacobi’s formula (cf 24.14).
• The determinant of 𝐴 is equal to the determinant of the transpose; So every
previous result holds, if you read ”row” instead of ”column”.

See also in [65, 53].
Show the following results.

1. Show that the gradient of the function det(𝐴) is not zero, if and only if the rank
of 𝐴 is at least 𝑛 − 1.

2. Let 𝑍 be the set of matricesℝ𝑛×𝑛 with null determinant. Show that it is a closed
set with an empty interior.
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§24.a Functional equations

3. Fix 𝐵 a matrix with rank at most 𝑛 − 2, show that the thesis of the theorem is
false in the neighborhoods 𝑈𝐵 of the matrix 𝐵, in the sense that 𝑍 ∩ 𝑈𝐵 is not
contained in a surface†121.

Hidden solution: [UNACCESSIBLE UUID '1V6']

E24.16 Prove Young’s inequality: fixed 𝑎, 𝑏 > 0, 𝑝, 𝑞 > 1 such that 1/𝑝 + 1/𝑞 = 1 [1V7]

then
𝑎𝑏 ≤ 𝑎𝑝

𝑝 + 𝑏𝑞

𝑞 (24.17)

with equality if and only if 𝑎𝑝 = 𝑏𝑞; prove this using an appropriate function study.
Hidden solution: [UNACCESSIBLE UUID '1V8']

See also 15.d.3.

E24.18 Determine, among the triangles inscribed in the unit circle, the one ofmaximum [1Q6]

area.

§24.a Functional equations
Exercises

E24.a.1 Note:exercise 1, June 7th 2010. [1V9]

Prove that there exists one and only one continuous function 𝑓 on the interval [−1, 1]
such that

𝑓(𝑥) = 1 + 𝑥
2 𝑓(𝑥2) ∀𝑥 ∈ [−1, 1] .

Prove that 𝑓 is representable as a power series centered at zero; and that the radius
of convergence is one.
Hidden solution: [UNACCESSIBLE UUID '1VB']

E24.a.2 Difficulty:*.Note:exercise 3, written exam, June 30th, 2017. [1VC]

Consider the problem

{𝑦′(𝑥) = 𝑦(𝑥2)
𝑦(0) = 1

(this is not a Cauchy problem).

• Show that, for every 𝑟 < 1, there is only one solution defined on 𝐼 = (−𝑟, 𝑟),
and deduce that the same is true for 𝑟 = 1.

• Show that the solution is representable as the sum of a power series centered in
0 and converging on the interval [−1, 1].

Hidden solution: [UNACCESSIBLE UUID '1VD']

E24.a.3 Note:exercise 3, written exam, June 23th 2012. [1VF]

Prove that there is one and only one continuous function 𝑓 on interval [0, 1] that
satisfies the condition

𝑓(𝑥) = sin(𝑥) + ∫
1

0

𝑓(𝑡)
𝑥2 + 𝑡2 + 1 𝕕𝑡 ∀𝑥 ∈ [0, 1] .
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§24 WRITTEN EXAMS AND PSEUDO–EXAMS

E24.a.4 Note:exercise 4, written exam, June 23th, 2012. [1VG]

A function 𝑓(𝑥) = ∑∞
𝑛=0 𝑎𝑛𝑥𝑛, analytic in a neighborhood of 0, satisfies on its

domain the conditions

{𝑓′(𝑥) = 1 + 𝑓(−𝑥)
𝑓(0) = 𝑐 ;

(note that this is not a Cauchy problem!).

• Determine 𝑓.
• Prove that the function found is the only solution, in the set of all functions that
can be derived in a neighborhood of 0.

E24.a.5 [1VH]

• Show that there is an unique continuous function𝑓 ∶ (−1, 1) → ℝ that satisfies

𝑓(𝑥) = 𝑥 cos(𝑓(𝑥)) .

• Fixed 𝑎, 𝑏, show that there exist a finite number of continuous 𝑓 ∶ (−𝑎, 𝑏) → ℝ
satisfying

𝑓(𝑥) = 𝑥 cos(𝑓(𝑥)) ∀𝑥 ∈ (𝑎, 𝑏).

Hidden solution: [UNACCESSIBLE UUID '1VJ']

§24.b Vector Fields [1PW]

Exercises

E24.b.1 Note:exercise 4, written exam 20 June 2017. [1PX]

Let 𝐹 be a continuous vector field on ℝ𝑛 ⧵ {0}, such that, for every 𝑥 ≠ 0, 𝐹(𝑥) is a
scalar multiple of 𝑥. For 𝑟 > 0, we denote with 𝑆𝑟 the sphere of radius 𝑟 centered in
0.

• Prove that, for each regular arc 𝛾 with support contained in a sphere 𝑆𝑟 , we
have ∫𝛾 𝐹 = 0.

• Prove that, if such a field 𝐹 is conservative, then |𝐹(𝑥)| is constant on every
sphere 𝑆𝑟, and therefore that 𝐹(𝑥) = 𝑥𝜌(|𝑥|)with 𝜌 ∶ ℝ𝑛 ⧵{0} → ℝ continuous.

Hidden solution: [UNACCESSIBLE UUID '1PY']

†121This problem is simpler than you think... There are too many matrices with zero determinant close to
𝐵...
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1K2, 201
1K4, 201
1K6, 202
1K7, 202
1K9, 202
1KD, 202
1KG, 202
1KJ, 202
1KM, 202
1KQ, 203
1KS, 203

1KV, 203
1KZ, 203
1M1, 204
1M3, 204
1M5, 204
1M7, 204
1M9, 204
1MB, 205
1MD, 205
1MF, 205
1MG, 205
1MJ, 206
1MK, 206
1MN, 206
1MQ, 206
1MS, 206
1MT, 206
1MW, 206
1MY, 207
1N0, 207
1N2, 208
1N4, 209
1N5, 209
1N7, 209
1NC, 209
1NG, 209
1NJ, 209
1NN, 210
1NQ, 210
1NT, 211
1NV, 211
1NW, 211
1NX, 211
1NY, 211
1P0, 211
1P1, 211
1P3, 212
1P5, 212
1P7, 212
1PB, 212
1PC, 213
1PF, 213
1PG, 213
1PH, 213
1PK, 213
1PN, 213
1PQ, 214
1PR, 214
1PT, 214
1PW, 233
1PX, 233
1PZ, 215
1Q0, 215
1Q2, 215

1Q4, 215
1Q6, 232
1Q8, 215
1QB, 216
1QC, 216
1QH, 216
1QK, 216
1QN, 217
1QR, 217
1QV, 218
1QX, 218
1QZ, 218
1R1, 218
1R4, 218
1R7, 219
1R8, 219
1RD, 219
1RK, 219
1RQ, 221
1RV, 222
1RY, 222
1S1, 222
1S4, 223
1S7, 223
1S9, 223
1SC, 224
1SD, 224
1SF, 224
1SH, 224
1SK, 224
1SN, 225
1SP, 225
1SR, 225
1SS, 225
1SW, 226
1SY, 226
1T1, 226
1T3, 227
1T6, 227
1T8, 228
1T9, 228
1TD, 228
1TG, 228
1TJ, 229
1TN, 229
1TS, 229
1TT, 229
1TV, 229
1TW, 230
1TX, 230
1TY, 230
1TZ, 230
1V0, 230
1V2, 231

1V4, 231
1V7, 232
1V9, 232
1VC, 232
1VF, 232
1VG, 233
1VH, 233
1VW, 6
1VX, 6
1VY, 8
1W0, 14
1W1, 14
1W2, 15
1W4, 19
1W5, 24
1W6, 15
1W8, 15
1W9, 15
1WB, 15
1WC, 16
1WF, 15
1WH, 25
1WJ, 26
1WK, 25
1WM, 27
1WN, 27
1WP, 30
1WQ, 34
1WR, 34
1WS, 34
1WY, 24
1X0, 25
1X1, 11
1X2, 11
1X3, 35
1X4, 35
1X5, 35
1X6, 35
1X7, 61
1X9, 58
1XB, 58
1XC, 59
1XD, 58
1XF, 59
1XG, 59
1XH, 120
1XN, 67
1XP, 67
1XR, 67
1XS, 67
1XT, 67
1XW, 120
1XY, 68
1Y0, 17
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1Y1, 17
1Y2, 14
1Y3, 16
1Y4, 15
1Y5, 24
1Y6, 34
1Y7, 25
1Y8, 13
1Y9, 19
1YD, 20
1YH, 26
1YJ, 27
1YK, 7
1YM, 39
1YP, 58
1YQ, 45
1YR, 34
1YS, 6
1YT, 13
1YV, 24
1YW, 48
1YX, 54
1YY, 26
1Z0, 46
1Z1, 46
1Z2, 56
1Z5, 37
1Z6, 38
1Z7, 38
1Z8, 38
1Z9, 48
1ZD, 70
1ZF, 70
1ZG, 70
1ZH, 70
1ZJ, 71
1ZK, 71
1ZM, 71
1ZP, 71
1ZR, 72
1ZS, 72
1ZT, 72
1ZV, 72
1ZW, 71
1ZX, 73
1ZY, 73
1ZZ, 73
200, 73
202, 73
203, 72
205, 74
206, 32
208, 78
209, 78

20B, 79
20C, 77
20D, 80
20F, 81
20G, 82
20H, 79
20J, 80
20K, 78
20M, 79
20N, 82
20P, 80
20R, 71
20T, 73
20V, 75
20W, 76
20X, 76
20Y, 80
20Z, 97
210, 98
211, 37
214, 95
217, 91
219, 92
21B, 92
21C, 92
21D, 93
21F, 94
21H, 91
21J, 99
21M, 97
21N, 163
21P, 33
21Q, 33
21R, 32
21V, 32
21W, 33
21X, 33
21Y, 33
21Z, 33
220, 32
222, 45
224, 25
225, 112
226, 13
227, 13
228, 7
229, 26
22B, 48
22C, 10
22F, 45
22H, 46
22K, 49
22M, 52
22P, 33

22R, 30
22S, 30
22X, 77
22Y, 100
22Z, 100
230, 99
231, 28
232, 29
233, 29
234, 29
237, 100
238, 94
239, 39
23B, 40
23D, 95
23F, 97
23H, 6
23J, 6
23K, 6
23M, 37
23N, 176
23P, 169
23Q, 68
23R, 21
23S, 14
23T, 18
23W, 18
23X, 24
23Y, 222
23Z, 224
240, 222
241, 16
242, 13
243, 40
244, 40
245, 39
246, 39
247, 19
248, 19
24D, 41
24K, 25
24M, 39
24P, 16
24Q, 40
24S, 40
24V, 39
24W, 24
24X, 39
24Y, 31
24Z, 41
250, 36
251, 36
252, 18
255, 44

257, 42
25B, 43
25C, 40
25D, 43
25G, 44
25J, 42
25M, 44
25N, 43
25Q, 43
25W, 43
25Z, 43
263, 27
265, 43
267, 64
269, 43
26F, 66
26G, 68
26H, 63
26J, 41
26K, 41
26N, 42
26P, 42
26S, 44
26V, 44
26X, 64
26Y, 63
271, 64
273, 67
274, 59
275, 44
276, 64
277, 64
27F, 21
27H, 53
27J, 59
27K, 63
27M, 67
27N, 61
27P, 62
27Q, 62
27R, 63
27S, 63
27V, 63
27W, 63
27X, 63
27Z, 63
280, 63
281, 63
287, 64
288, 64
289, 64
28B, 65
28C, 65
28D, 65

28G, 65
28J, 65
28M, 66
28N, 65
28Q, 66
28R, 66
28T, 63
28V, 62
28Z, 65
290, 42
291, 40
292, 61
294, 61
297, 65
298, 65
29C, 71
29D, 26
29G, 69
29H, 76
29J, 77
29K, 77
29M, 78
29N, 80
29P, 81
29Q, 85
29R, 84
29S, 84
29T, 84
29V, 104
29X, 99
29Z, 120
2B0, 86
2B2, 29
2B3, 99
2B4, 111
2B5, 113
2B6, 111
2B7, 111
2B8, 112
2B9, 112
2BB, 112
2BD, 106
2BF, 108
2BG, 108
2BH, 196
2BJ, 107
2BK, 116
2BM, 117
2BN, 104
2BP, 117
2BR, 108
2BS, 109
2BT, 109
2BW, 110

2BX, 36
2BZ, 22
2C1, 122
2C2, 124
2C3, 130
2C4, 131
2C5, 132
2C6, 133
2C7, 134
2C8, 136
2C9, 136
2CB, 137
2CC, 122
2CD, 119
2CF, 144
2CG, 142
2CH, 152
2CJ, 153
2CK, 151
2CM, 154
2CN, 154
2CP, 155
2CQ, 156
2CR, 162
2CS, 162
2CT, 161
2CV, 159
2CX, 168
2D0, 183
2D1, 185
2D2, 187
2D3, 190
2D4, 191
2D5, 195
2D6, 203
2D7, 204
2D8, 205
2DC, 11
2DD, 49
2DF, 50
2DH, 102
2DJ, 75
2DK, 110
2DM, 4
2DN, 163
2DP, 163
2DQ, 164
2DR, 167
2DS, 168
2DT, 198
2DW, 31
2DX, 18
2DY, 102
2F0, 169
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2F2, 51
2F3, 130
2F5, 115
2F6, 102
2F7, 115

2F9, 116
2FB, 119
2FD, 116
2FG, 4
2FH, 30

2FJ, 27
2FM, 30
2FN, 119
2FP, 120
2FW, 119

2FX, 119
2FY, 109
2FZ, 110
2G2, 2
2G3, 119

2G4, 170
2G6, 119
2G8, 10
2GB, 138
2GF, 22

2GH, 49
2GK, 48
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Index

𝐴, see closure
𝜕𝐴, see boundary
𝐴𝑐, see set, complement of
𝐵(𝑥, 𝑟), see ball, 124
𝐶, see function, continuous
ℂ, see complex numbers, 4
𝐶𝑘, 183
𝐶0, see function, continuous
𝐶𝑘, 194
𝐶𝑏, 148, 162
𝐷(𝑥, 𝑟), see disk
𝛥, see set, symmetric difference, 14
𝐹𝜎, see F-sigma
𝐺𝛿, see G-delta
𝕀, see identity matrix
ℕ, see natural numbers, 4
ℕZF, 41
ℚ, see rational numbers, 4
ℝ, see also real line, see real numbers,

4
ℝ/2𝜋 , 144
ℝ, see extended line
𝑆(𝑥, 𝑟), see sphere
𝑆1 , see circle
𝑇2, see Hausdorff
ℤ, see integer numbers, 4
⟦, 5
⦅, 5
⦗, 5, 30
⟧, 5
⦆, 5
⦘, 5, 30
↘, 198
𝜕𝑓, see subdifferential
𝑒, see Euler’s number
=, see equality
sin(1/x), 133

¬, 7
‖ ⋅ ‖, see also norm
‖ ⋅ ‖𝑝

in ℝ𝑛, 151–152
‖ ⋅ ‖∞

in 𝐶𝑏, 148, 162
in ℝ𝑛, 151–152

⇔, 7
∧, 4, 7
∨, 4, 7
∩, 14
∪, 14, 17
∼, 211, 212, 214
∼𝑓, 213
≈, 211, 212
⊂, 14
⊆, 14
⊊, 14
⋂, 14
⋂, 19, 107
⋃, 14
⋃, 114
⋃, 17, 43, 114
⌊𝑥⌋, see floor
⧵, see set difference
⧺, see concatenation, 33
(partial), 24
𝛤 , see Gamma function

Abel, 202, 227
Abel identity, 227
accumulation point, 105, 107, 129,

130, 159, 161
in a topological space, 104
in metric spaces, 129
in metric spaces, 129–130, 134
in the real line, 77, 77, 81, 134,

200
adherent point, 129

in a topological space, 104
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in metric space, 125
adjugate matrix, 231
algebraic number, 86
alternating series test, see Leibniz test
analytic function, 209–210
anti-discrete topology, see indiscrete

topology
antireflexiv

relation, 24, 25
antisymmetric

relation, 24, 25
arc, 211
archimedean, 71
Arzelà, 201
Ascoli, 201
associative

addition, 62
atom, 7, 8, 16
axiom

first — of countability, 116, 161
of choice, 21, 21, 22
of extensionality, 13, 16
of foundation, 20, 44
of infinity, 20, 40
of power set, 17, 21
of regularity, 18, 20, 44
of replacement, 18
of specification, 17
of union, 14, 17
second — of countability, 116,

117, 127, 135
of empty set, 16
of infinity, 17
of pairing, 16

axioms
Peano’s —, 58
Zermelo–Fraenkel, see formal set

theory
Zermelo—Fraenkel, 16

Babylonian method, 92
Baire, 139
Baire category, 139, 164
Baire’s

theorem, 139
ball, 124, 125, 134, 150

in ultrametric, 141
inclusion, 125

ball packing, 146

Banach, see also theorem,
Hahn–Banach —

space, 148, 153, 162
base

(induction), 59
(topology), 106, 113–116, 127,

128
(vector spaces) , see basis

basis
(induction), 59
(topology), see base
(vector spaces), 22, 53, 151

belonging, 11
Bessel, 202
biconditional, 7
big O, see Landau symbols
binomial, see also theorem, binomial

coefficient, 74, 189
series, 189

Borel, 137
boundary, 102, 105, 106, 170

repeatedly, 105
bounded

totally, 137, 138
bounded above, 30
bounded below, 30
box, 148

C, see function, continuous
cancellation, 63, 65, 66
Cantor

set, 121, 142, 148, 178
intersection theorem, 80, 108,

138
cardinality, 48–54

comparison, 49
continuum —, 51, 123
countable, 50
finite —, 49, 49
of the continuum, 130
of the continuum , 51

Cartan, 205
Cartesian product, 5, 14, 21, 24, 55,

114, 115, 129
and topology, 115
of balls, 129
of groups, 142

category, see also Baire’s theorem, see
also set, first/second —

Baire, 139, 164
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Cauchy, 216
condensation test, 93
product, 98, 203
sequence, see sequence, Cauchy

CH, see continuum hypothesis
chain, 37
characteristic

function, 54, 178
function, 54, 84, 118

circle, 144
closed, see set, closed —
closed curve, see curve, closed
closed simple curve, see curve, closed

simple
closed topologist’s sine curve, 133
closure, 102, 106, 114, 125, 126, 128,

170
and interior, 103, 134
in metric space, 125
repeated, 103

cluster point
in a metric space, 130, 134

codiscrete topology, see indiscrete
topology

cofactor matrix, 231
cofinal, 28, 111
Cohen, 51
commutative

group, 70
ring—, 70

compact
sequentially, 137

compact set, 108, 108, 137, 138
and net, 111
and ultrametric, 142

comparable, 26
complement

of a set, see set, complement of
set, see set,complement

complete, 142
complex numbers, 70, 98, 178, 202,

225
concatenation, 33
concrete topology, see indiscrete

topology
conjunction, 7
connected component, 110
connected set, 108
connection

in metric spaces, 133, 132–133

constant
Euler-Mascheroni, 89

continuity modulus, 165, 165–167,
198–200

continuous function, 112, 112–113,
163–164

continuum
cardinality of the —, 51, 130

continuum hypothesis, 51, 130
contrapositive, 9
convergence

of a sequence, 122
of a series, 92–98
pointwise —, 118, 198, 198–201
uniform —, 198, 198–201
total —, 153, 153, 226

convex combination, 169
convex envelope, 158, 170
convex function, 149, 172, 172–177,

199
convex hull, see convex envelope
convex set, 169, 169

strictly —, 177
countable, 49, 52
countably infinite, 49
counterimage, 35
criterion

total convergence —, 153
curve, 211, 211–214

closed, 212
embedded, 211, 211
Hilbert —, 212
immersed —, 211
Koch , 148
parametric —, 211, 212
Peano —, 212
polygonal —, 119, 119
simple, 211
simple closed, 119, 212
trace, 211

Darboux
example, 184

Darboux property, 183
decreasing, 75
Dedekind, 52
Dedekind-infinite, 52
deleted neighborhood, 76, 77, 81

in a topological space, 104
dense, see set, dense
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in metric space, 125
derivative, 106

partial —, 190–191
total —, 190–191

Descartes
rule of signs, 184

determinant, see matrix, determinant
diffeomorphism, 211
differential, 190–191
differential equation, see ODE
difficult exercises, 23, 32, 45, 48, 52,

53, 67, 68, 76, 77, 84,
87–89, 101, 103, 105, 109,
111, 112, 116–118, 120, 124,
128, 130, 133–138, 140,
143, 146–149, 160,
163–165, 168, 170–173,
179, 181–187, 190, 194,
200, 201, 203, 204,
206–208, 211, 214, 219,
226, 231, 232

dilation, 156
dimension

box —, 148
Minkowski, 146

Dini, 178, 198
directed set, see order, directed, 29
Dirichlet criterion, 94

for integrals, 230
Dirichlet’s approximation theorem, 85
disconnected set, 108
discrete

distance, 122
topology, 122

discrete topology, 102, 116, 128
disjunction, 7
disk, 124, 125, 127, 134, 137, 150

in ultrametric, 141
distance, 122

p-adic —, 142
discrete —, 122

distance function, 131, 131–132
and convex sets, 176

𝑒, see Euler’s number
ear, 120
Edelstein, 136
embedded curve, see curve, embedded

—
empty set, 14, 16

enumeration, 50, 228
epigraph, 159, 172
equality, 8

in set theory, 13
equations

Bessel’s —, 202
equicontinuous family, 198, 200
equicontinuous functions, 199
equinumerous, 48
equipotent, 48
equivalence relation, see relation,

equivalence
equivalent

norms, 150
erosion, 156
Euclidean division, 65
Euler, 204

identity, 204
Euler’s number, 204
Euler-Mascheroni constant, 89
evaluation

of well-formed formula, 7, 8
eventually, 23, 29, 56, 68, 77, 81, 82,

90–94, 111
exchanging limits, 88
expansion

Taylor’s —, see Taylor’s theorem
exponential, 204, 224

matrix —, 205
exponentiation, 7

in a field, 73
of natural numbers, 63

extended line, 75, 106

F-sigma, 128, 168
ℝ ⧵ ℚ, 164

fattened set, 132
Faà Di Bruno, 185
field, 70

ordered —, 73
ℂ, 73

filtering property, see order, with
filtering property

finite, see set, finite
finite linear combination, 22
first axiom of countability, 116, 161
first category set, 139
fixed point, 168
floor, 85, 89
formal set theory, 16, 16–21

242



formula
atomic, 7
exists and is unique, 13
Leibniz’s —, see Leibniz’s

formula
Taylor’s —, see Taylor’s theorem
well-formed —, 7, 7, 8, 11, 13,

18, 55
evaluation, 7, 8
in set theory, 16
with quantifiers, 10, 12

fractional part, 85
Fraenkel, 16
free variable, 10
frequently, 29, 56, 68, 77
Frobenious, 154
function, 34

absolutely homogeneous, 149
analytic, see analytic function
bi–Lipschitz, 143
bounded —, 161, 199
characteristic, 54, 178
continuous, see continuous

function
continuous —, 163
convex, see convex function
discontinuous, 164
Gamma, 180
Hölder —, 167, 167–168, 194,

199
indicator, see characteristic

function
left inverse, 22
liminf of —, see liminf
limsup of —, see limsup
Lipschitz —, 124, 131, 143, 165,

167, 167–168, 172, 174, 194
monotonic, 199
monotonic —, 162
partial, 24, 36
piecewise constant —, 162
piecewise smooth —, 217
positively homogeneous, 149
proper —, 135
regulated, see regulated function
Riemann integrable —, 163,

178–182, 199
right continuous —, 162
semi continuous, see upper/lower

semicontinuous

strictly convex, see strictly
convex function

uniformly continuous
space of —, 201

uniformly continuous —, 164,
164–167, 199, 200

characteristic, 54, 84, 118
functional

relation, 24, 34
functions

equicontinuous, 199
fundamental system of

neighbourhoods, 104, 117,
118

funzione distanza, 131

G-delta, 128
Gamma function, 180
generate, 22, 53
graph, 34
greatest common divisor, 25
greatest element, 26
greatest lower bound, see infimum
Gronwall, 216
group, 70
Gödel, 51

Hadamard, 186
Hahn, see also theorem, Hahn–Banach

—
Hamel basis, 22, 53
Hausdorff, 102, 108, 125
Heine, 137
Hermite, 187
Hilbert, 212
Hoelder, 199
homeomorphism, 108, 112, 121, 130,

137, 163, 211, 213
Hospital, see Hôpital
Hurwitz, 71
hyperplane, 171
Hôpital rule, 183
Hölder, 167
Hölder inequality, 151

𝕀, see identity matrix
identity matrix, 206
image, 35
immersed curve, see curve, immersed
implication, 7
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incomparable, 26
increasing, 75
indicator, see characteristic function
indiscrete topology, 102
induced norm, 154
induction, 59

strong, 67
transfinite —, 68

induction principle, 40, 59
induction principle, strong –, 67
inductive, see S-saturated
inequality

Jensen —, 182
triangle —, 122, see triangle

inequality
Young —, see Young inequality

inf, see infimum
inf-convolution, 160
infimum, 30, in the real line78, 79
infinite, see set, infinite

countably —, 49
informal set theory, 16
initial segment, 46
injective, 24
integer numbers

dense in ultrametric, 143
integer part, see floor, 85, 89
integral domain, 72
interior, 102, 103, 106, 114, 125, 126,

128, 170
and closure, 103, 134
in metric space, 125

interpolation
polynomial —, 37, 187

intersection theorem, see Cantor,
intersection theorem

interval, 31, 31–32
standard —, 31

irrational numbers, 85, 139, 164, 179
approximation, 85

irreflexiv
relation, 24, 25

isolated point, 105, 130, 135, 230
in a topological space, 104

isometry, 136, 137
itersection of sets, 14

Jacobi, 191, 231
formula, 206, 231, 231
matrix, 191, 192

Jensen inequality, 182
Jordan, 119

Karush, 196
Koch, 148
Kuhn, 196

l.s.c., see lower semicontinuous
labeled polygon, 119
Lagrange, 196
Lagrange multiplier, 151, 196
Lagrange’s theorem, 183
Landau symbols, 187, 188, 189
Laplace, 231
Laplace expansion, 231
least element, 26
least upper bound, see supremum, 78
left inverse, 22, 36
Leibniz, 185

test, 94, 94
Leibniz’s formula, 185
lemma

Abel’s —, 202
Dini’s —, 198
Gronwall’s —, 216
Hadamard’s —, 186
Zorn’s —, 21, 171

lexicographic order, see order,
lexicographic

liminf, 81, 91
of function, 81, 81–84
of sequence, 84
of sets, 56, 56, 84

limit inferior, see liminf
limit point

of a net in a topological space,
111

limit superior, see limsup
limsup, 81

of function, 81, 81–84
of sequence, 84
of sets, 56, 56, 84

Lindelöf, 216
line, see also real line

extended, see extended line
linear

order, see order, total
linear isometry, 152
linearly independent, 22, 53
Lipschitz, 167, 216
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locally compact, 137
logarithm, 163
lower bounds, 30
lower semicontinuous, 159–161

majorants, 30
matrix

adjugate —, 231
cofactor —, 231
determinant, 230, 231
exponential, 205
identity —, 206

maximal, 26, 28
maximum, 26, 28, 107
Mazur, 153
mean value theorem , see Lagrange’s

theorem
Mertens, 98
metric space, 122, 122–145, 160

also a group, 131
minimal, 26, 67
minimum, 26

on convex set, 173
Minkowski, 132, 146

dimension, 146
Minkowski sum, 80, 132, 155, 155
minorants, 30
monotonic, 75

Napier, 204
Napier’s constant, see Euler’s number
natural numbers, 58–69
natural numbers, order, 63
negation, 7
neighborhood

deleted, 76, 77, 81
in a topological space, 104

of infinity, 28
punctured, 76

neighbourhood, 104
fundamental system of —, 104,

117, 118
in ℝ, 76

net, 99, 99, 100, 111, 113, 118
and compact set, 111

network, 100
Newton, 74
norm, 149

Frobenious , 154
and dimension, 147

spectral, 154
normed vector space, 149–158

strictly convex —, 149
norms

equivalent, 150
numbers, see also complex numbers,

see also integer numbers,
see also natural numbers,
see also rational numbers,
see also real numbers

numerabile, 49
numero di Nepero, see Euler’s number

ODE, 216–227
one-point compactified line, 106
open

seeset, open —, 102
open-close, 128
order, 26–33

(partial), 24
directed, 28, 27–29, 100, 106,

107, 111
of sets, 103, 113

lexicographic, 30, 30, 116
of natural numbers, 63
partial, 24
total, 24, 25, 116
type, 32
with filtering property, 27,

27–29, 111
and net, 99

strict total —, 25
total, 24
with filtering property, 28, 100

order isomorphism, 32
order relation, 24
order topology, 116, 116
order-isomorphic, 32
ordered field, 73

ℂ, 73
ordered ring, 71, 72
ordered set, see order
ordinal, 43
ordinary differential equation, see

ODE
oscillation, 160, 161
osculating circle, 229
Osgood uniqueness condition, 217

p-adic

245



distance, 142
valuation, 142, 143

parametric curve, see curve,
parametric —

partial
derivative, see derivative, partial

partial function, 24, 36
partial order, see order, partial, 25
path connected set, 132
Peano, 58, 212
perfect, 121, 130, 140
Picard, 216
pointwise, see convergence, pointwise
polygon, 119, 152

ear, 120
polygonal curve, 119, 119
polynomial, 37, 50, 86–87, 178, 187,

224, 225
convergence of —, 199
ring —, 86
sequence of —, 199
Taylor’s —, see Taylor’s theorem

polynomial interpolation, 37, 187
power, see also exponentiation
power series, 202–208
power set, 14, 17
predecessor, 40, 46, 58
preorder, 23, 38
product

Cartesian —, see Cartesian
product

product topology, 115, 129
product topology (of infinitely many

spaces), 115, 116
projection

theorem, 170
proper

function, 135
property, cancellation, see cancellation
proposition (logic), 12
punctured neighborhood, 76

quantified variable, 11

Raabe, 94
radius of curvature, 229
ratio test, 92
rational numbers, 70, 73, 85, 179, 228

and ultrametric, 142, 143, 143
real line, see also real numbers

one-point compactified —, 106
real number

approximation of —, 85
real numbers, 70, 75–87, see also real

line
recursive, 92

definition, 59
reflexiv

relation, 24
regular curve, see curve, immersed
regulated function, 161, 161–162,

179, 199
relation, 24

antireflexiv, 25
antisymmetric, 25
equivalence —, 24, 36, 122, 123,

130, 144
between curves, 211, 213
for 𝑆1, 144
in group, 131

irreflexiv, 25
order —, see order
transitive, 25

Ricci, 117
Riemann, 96, see also Riemann

integrable function, see also
Riemann integral

Riemann integral, 163, 178–182, 190
right inverse, 36
rigidity property, 199
ring, 70

of polynomials, 86
ordered —, 71, 72

root test, 92
rule of signs, 184

S-saturated, 39
second axiom of countability, 116,

117, 127, 135
second category set, 139
semicontinuous

lower, see lower semicontinuous
upper, see upper semicontinuous

separable space, 117, 127
separation, 171, 172
sequence, 34

Cauchy —, 122, 122, 123, 138
Cauchy —, and subsequence, 123
convergence of —, see

convergence of a sequence
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recursive, 59, 92
sequentially compact, 137
series

binomial —, 189
set

Cantor –, see Cantor set
closed —
in metric space, 125
in topology, 102

complement of a —, 14, 54, 56,
102, 105, 125

countable —, 52
Dedekind—infinite, 52
derived —, 104, 129, 134, 135
empty —, 14, 16
fattened —, 132
finite —, 49
first category —, 139
infinite
Dedekind —, 52

infinite —, 49
of finite subsets, 51, 53, 96, 100
open —
in metric space, 124
in topology, 102

path connected, 132
perfect —, 121, 130, 140
power –, see power set
power —, 14
second category —, 139
strongly directed, see order, with

filtering property
boundary, see boundary, 105
closure, see closure
dense, 102
difference, 14
interior, see interior
sublevel —, 173
symmetric difference, 14
using characteristics, 54

set theory, see also axioms ...
formal, 16
informal, 16

simple closed curve, see curve, closed
simple

simple curve, see curve, simple —
simplex, 169
sin(1/x), 133
sine curve, 133
small o, see Landau symbols

snowflake, see Koch curve
space

Hausdorff —, see Hausdorff
of uniformly continuous

functions, 201
separable, 117
totally disconnected —, 110, 128
topological, 102, 102–118
totally disconnected —, 141

span, 22, 53
sphere, 127, 134, 150, 153, 212, 233
star, see Koch curve
strict partial order, 25
strict total order, 25
strictly convex

normed vector space, 149
strictly convex function, 172
strong induction, 67
strongly directed set, see order, with

filtering property
subadditive function, 123, 166, 175
subadditive function and ultrametric,

141
subdifferential, 173, 176
sublevel set, 173
subnet, 99, 100
subscript, 7
subsequence, 89, 99

converging, 118, 137
successor

in Peano’s natural numbers, 58
in well ordered sets, 46
in Zermelo—Fraenkel set theory,

39, 66
sum

Minkowski —, 132
sup, see supremum, 78
superscript, 7
support, 172

of a curve, 211
supporting hyperplane, 171
supremum, 30, 78
surjective, 24
symmetric

relation, 24

𝑇2, see Hausdorff
tautology, 8, 13, 55
Taylor, 183

series, 181, 203, 209
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Taylor’s theorem, 183, 187–190
in ℝ𝑛, 191
with integral remainder, 180, 190

tessellation, 148
test

alternating series —, see Leibniz
test

Cauchy condensation —, 93
Leibniz —, 94, 94
ratio —, 92
root —, 92

theorem
Ascoli–Arzelà’s —, 201
Baire’s —, 139
binomial —, 74
Cauchy–Lipschitz —, 216
dimension —, 53
Dirichlet’s approximation, 85
Edelstein’s —, 136
existence and uniqueness —, 216
Hahn–Banach —, 171
Hurwitz’s —, 71
Hôpital, see Hôpital rule
intersection —, see Cantor,

intersection theorem
Jordan —, 119
Lagrange’s — , see Lagrange’s

theorem
Mazur–Ulam, 153
mean value — , see Lagrange’s

theorem
Mertens’ —, 98
Monotone convergence —, 101
of uniqueness of the limit, 122
Picard–Lindelöf —, 216
projection —, 170
Taylor’s —, see Taylor’s theorem
with Lagrange remainder, see
Lagrange remainder

two ears —, 120
Tychonoff —, 118
Zermelo, 21
implicit function —, 191

topological group, 142
topological space, 102, 102–118
topology, 102

discrete, 102, 116, 128
indiscrete, 102
induced —, 109, 110
order —, 116, 116

product —, 115, 129
product — (of infinitely many

spaces), 115, 116
discrete —, 122
in metric spaces, 124–129

total
derivative, see derivative, total
relation, 24, 34

total convergence, see convergence,
total

total convergence criterion, 153
total order, see order, total
totally bounded, 137, 138
totally disconnected, see space, totally

disconnected
trace

of a curve, 211
transcendental number, 86
transfinite

induction, 68
transitive

relation, 24, 25
set, 41

triangle inequality, 76, 122, 141, 149,
149

triangulated, 120
trichotomous

relation, 24, 25
trivial topology, see indiscrete

topology
Tucker, 196
Tychonoff, 118

u.s.c., see lower semicontinuous
UC, see function, uniformly

continuous
Ulam, 153
ultrametric, 141

of sequences, dimension, 148
of sequences, 141

uniform, see convergence, uniform
union of sets, 14, 17
unlabeled polygon, 119
upper bounds, 30
upper semicontinuous, 159–161

valuation
p-adic —, 142, 143

variable
free, 10
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quantified, 11
vector space, 117, 225

normed —, see normed ...
Von Neumann, 43

well-formed formula, see formula,
well-formed

Young inequality, 151, 176, 232

Zermelo, 16, 21
ZF, see formal set theory, 18, 51, 52
ZFC, 18, 51, 52
Zorn, 21, 171
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