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Introduction

The Scuola Normale Superiore (SNS) is a prestigious university institution with special
status that welcomes students into two distinct paths: the undergraduate course (parallel
to undergraduate and master’s degree programs) and the advanced course (PhD).

SNS students in the undergraduate course are required to take some ”internal courses”
during the academic year, in addition to their regular university courses (to which they
are duly enrolled at the University of Pisa). Every year, first-year SNS students in sub-
jects such as Mathematics, Physics, Chemistry, and Biology have followed an annual
internal Mathematics course. This course aims to delve deeper into and expand upon
the traditional concepts included in the curricula of university courses that SNS students
simultaneously attend.

Over the last 15 years, this course has covered several fundamental topics. It begins
with a more thorough treatment of the foundations of Mathematics, including set theory
based on the Zermelo-Fraenkel axioms, the construction of the set of natural numbers,
and the characterization of real numbers as a complete ordered field. It then progresses
to topics such as series and sequences, metric spaces and topology, differential calculus,
and ordinary differential equations.

In these years, professors Giuseppe Da Prato, Fulvio Ricci, Luigi Ambrosio and
Franco Flandoli have held the course. In addition to the author of this volume, Francesco

Bonsante, Carlo Mantegazza, Simone Di Marino, Tommaso Pacini, Luciano Mari, Lorenzo

Mazzieri, Andreas Hochenegger, Andrea Ferraguti, Alessandra Caraceni collaborated
with TA.

The course notes have been published in [2].

The author has collaborated as TA, for more than ten years, accumulating a sig-
nificant amount of theoretical material and exercises, which are now presented in this
volume.

As is the case for text [2], this volume is not entirely self-contained as it is intended
as a supplement to standard university courses in the first year. However, the first part
is an exception because courses covering topics in logic fundamentals are not typically
offered in the first year, and the texts used are often not written in a readily accessible
language for first-year students. Therefore, Chapters 3 and 4 have been expanded to
include the necessary theoretical elements, often disguised as exercises. Starting from
Chapter 5, useful references to tackle the exercises are provided, along with some def-
initions and lemmas.

It should be noted that the numbering system in this volume follows a specific
method: sections (and subsections), footnotes, and figures are numbered independently,
while everything else in the volume follows a unique numbering system, divided by
sections. This includes theorems, propositions, lemmas, equations, and more. The dif-
ferent numberings are made distinguishable by the use of Roman or Arabic numerals
and/or special symbols, such as § for sections and { for notes.

ColDoc

The author has also developed a software package called ColDoc (freely available) that
facilitates the management of complex IKTgXdocuments and allows for online access.
It can be used on both computers and mobile devices such as tablets and smartphones.

The ColDoc version of this text is accessible at https://coldoc.sns.it/CD/
EDB; this platform was initially created to enhance interaction with students during the
Covid pandemic. It has evolved in a featureful document system.
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The ColDoc system divides the text into small elements, each identified by a UUID
code. The UUID code permanently identifies an object; whereas the LaTeX system’s
assigned number could change if additional material were added before that object (e.g.,
in a future edition). Therefore, the UUID code can be used for bibliographic references
and for making notes on an item of interest to share with colleagues or students, as
the UUID code can be used to retrieve the item in the web interface. For example, this
introduction can be found at https://coldoc.sns.it/UUID/EDB/2G1.

The ColDoc system also implements a multilingual LaTeX document management
system: for instance, this text is available in both English and Italian.

Copyright

This textis  Copyright: Andrea C. G. Mennucci, 2012-2024.

The sections comprising the theory (as well as exercises’ statements) are released
under: Creative Commons Attribution-ShareAlike 3.0 Unported License (WP:CC BY-
SA).

All right regarding solutions of exercises (in appendix) are reserved. The author
mantains exclusive rights on the solutions of the exercises, to the extent permitted by
applicable law.
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81 Notations

+ N are the natural numbers, including zero.
* Z are the integers.

 Q are the rational numbers.

* R is the real line.

» C are the complex numbers.

A list of symbols is also available at the start of the index.

Remark 1.1. The symbols A and Vv can be used in two different contexts, where they
assume different meanings.

* Ifx,y € R are real numbers, then x Ay is the minimum of the two numbers, while
XV y is the maximum of the two numbers. This meaning is also appropriate when
x,y are in a totally ordered set. !

 In mathematical logic, A is the conjunction and V is the disjunction. See 2.4.

Remark 1.2. The parentheses symbols () are unfortunately quite overloaded in com-
mon Mathematical language.

* They are used to group algebraic operations, to induce a different order of oper-
ations (wrt the standard rules of precedence). For example, for x,y € R, ? the
expression x(y + 2) is identical to xy + 2x and not to xy + 2.

» They are used to denote arguments of functions. For example the expression
f(x +y) should be read as fx + [y, if f,x,y € R '3; whereas, if f is a function
f ¢ R — B, then f(x + y) is the result f(z) obtained by evaluating f on the
element z = x + y.

To distinguish these two usages, it may be sufficient to add an explicit symbol to
denote “multiplication”, writing f +(x+y) when it should be read as f*x+ f *y.
(Some authors also write f.(x + y) with a ”dot”)

« They are used to define intervals, for example, (1, ) may be shorthand for: «the
set of real numbers larger than 1 and smaller than 7;» in formula

Q,mn={teR:1<t<n};
this extends to ordered sets, see Sect. §2.d.d.

« They are used to represent elements of the Cartesian product; for example, (1, )
is point in R? with 1 as abscissa and 7 as ordinate.

LA and V are also used in partially ordered set, but we will not discuss their definition in this text.

20r, more in general, if X, y are elements of a ring where multiplication is denoted by justaposition of
symbols.

3 Again, more in general, if f, X, y are elements of a ring where multiplication is denoted by justaposition.
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§1 NOTATIONS

While the first and second situations are usually discernable and recognizable, the third
and fourth can cause confusion.

Some care is needed in parsing statements involving Cartesian products of ordered
sets, such as: «a point (x,y) in the rectangle R of the plane that is the product R =
(0,1) X (2,4)». Here (x, y) is a point in R? whereas (0, 1), (2,4) are intervals in R.

To avoid confusion, we may use a different notation for points and/or for intervals:
many symbols that are similar to ”parentheses” are available nowadays in the extended
Unicode codespace, and are available to BIgX users through the unicode-math pack-
age.

For example, in the above statement, we may use this (non-standard) notation: use
barred parentheses (...) to denote the point in R? with x as abscissa and y as ordinate;
use double parentheses (a,b) = {t € R : a <t < b} for intervals; so as to obtain «a
point (x,y) in the rectangle R of the plane that is the product R = (0,1) X (2,4)». In
this case, for typographic consistency, we may use at the same time double brackets for
closed-ended intervals, such as [[2,4].

This may be considered overkill for this example. But the situation can be more
complicated, though!

For example, we may be dealing with intervals of elements of an ordered set X, that
is also a Cartesian product X = X; X X, of ordered sets X;,X, (!) ™ In that case, we
should first label the orders, for example: <; being the order relation on X;, <, being
the order relation on X,, and < being the order relation on X; and use a (non-standard)
notation for intervals, such as

((a,b)l = {t EXl a <yt < b}
for open-ended intervals in the first set (with extremes a,b € X),
(zw)={xeX:w<x < z

for open-ended intervals in the Cartesian product X (with extremes z,w € X), and so
on. Again, for typographic consistency, we may use double brackets for closed-ended
intervals, such as

[a,bly ={xe€eX;:a <; x < b}

and so on.

In the following we will often use the usual parentheses () ; but in certain contexts
we will use the notation proposed in this note (when it could help in understanding the
text).

See also Remarks 2.6 and 5.1.

TABTW, there is a standard method to order a Cartesian product of ordered sets, see Sect. §2.d.b.
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§2 Fundamentals

§2.a Logic

In the next sections we will give some definitions; these are simplified, but sufficient
to cope with the exercises. Readers interested in an in-depth study can consult a book
on Logic such as [12].

§2.a.a Propositions

Definition 2.1. A logical proposition ¢ is an assertion that takes on the value of truth
or falsehood.

Example 2.2. Examples:
* “the snow is white”,
 “the Earth has a diameter of about 12000km”,

 ”a kg of bread costs 3$”.

(One could argue philosophically about what is meant by ”truth”: in many areas
the truth of a proposition is subjective, it can depend on the context, the interpretation,
who does and who answers the question, on when the question is asked, etc etc; in
mathematics the situation is simpler).

A proposition may depend on some variables. Examples:

* ”the person x by trade is a baker”,
 ”the number x is greater than 9”.

We write
P(x) = “the number x is larger than 9’

to say that P(x) is the symbol that summarizes the proposition written on the right.

Remark 2.3. For the proposition to make sense, we will have to narrow down the
scope of the variable to an appropriate set; in the first case, the set of human beings;
in the second case, a numerical set (e.g. integers).

At this level of discussion, the concept of ”set” is intuitive; we will see later that
there is an axiomatic theory of sets, almost universally used in Mathematics; however,
even the intuitive concept of set is widely used (See remark 2.52).

§2.a.b Propositional logic

Definition 2.4. A propositional logic is a language, with associated an alphabet
of variables (which for convenience in the following we will identify with the Italian
alphabet) and a family of connectives ™

negation, NOT -
conjunction, AND A
disjunction, OR \%
implication =>
biconditional, iff =

5In logic texts, the symbol — is often used for the implication and the symbol <> for the double implication
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§2 FUNDAMENTALS

to these symbols we add parentheses, which are used to group parts of the formula
(when there is a risk of ambiguity); the parentheses are omitted when the precedence of
the operators allows; the operators are listed in the previous list in descending order
of precedence. T

Definition 2.5. Well-formed formulas are
* atomic formulas, i.e. composed of a single variable, or
* a formula of the type =(a) where a is a well-formed formula, or

a formula of the type (a) = () , or
a formula of the type (a) < () , or
a formula of the type (a) vV (B8) , or
a formula of the type (a) A (B),
where a, 3 are two well-formed formulas.

You can determine if a formula is well formed by making a finite number of checks
using the previous rules: in fact the rules establish that any well-formed formula must
be decomposable in terms of well-formed formulas that are shorter than it. So the
statement “this formula is well formed” is ”decidable”. "’

Remark 2.6. In the definition 2.5 we speak of atomic formulas, i.e. composed of
a single variable; we want to reflect on this. In programming languages we may use
names composed of several letters to identify objects (variables, functions, etc.): such
as

foo = 3 ;
bar = 7;
foo = foo + bar;

In mathematics this is unusual, since in a formula such as
Xxyz + abc

it would be difficult to understand if zyz is a variable, or the product of three vari-
ables x,y, z. For this reason, usually, in mathematics the identifiers are composed of
a single letter; some notable functions are an exception, such as sin, cos, exp, log.....etc.
However, this creates some problems when you want to express a formula where there
are many variables; for this reason, letters from the Greek alphabet are also used, and
even Hebrew, in particular ”aleph” N and “beth” 2; and the letters are also accompa-
nied by indexes, subscript as x;, x,, X5 or superscript x',x?,x3 (being careful not to
be confused with the exponentiation); then there are variants expressed with the signs
X, X, X, x" (being careful not to get confused with derivatives); and there are choices of
fonts, such as ”calligraphic” A, B, C, D, ..., the *fraktur” a,b,¢,d ... A, B, C, D or the
blackboard bold a, b, c,d ... A, B, C, D.

Definition 2.7. An evaluation assigns to each variable a value of “true” or ”false”.

T6Some scholars use a different order of precedence, some consider *the implication” as preceding the
”disjunction”. For this reason it is always better to use parentheses to group the parts of phrase where these
connectives are used.

7 The precise definition of ”decidable” goes beyond these notes. Think of an algorithm written on the
computer that, given a formula, with a finite number of computations answer *well formed” or ”not well
formed”. Note, however, that the number of checks to be done grows exponentially with the length of the
formula.
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§2.a Logic

Knowing the value of the variables, and using the known truth tables for connectives
8 we can calculate the value of each well-formed formula.

So a well-formed formula is a ”logical proposition” as it takes on the value of truth
or falsehood, depending on the value given to its free variables. We can broaden the
definition by adding that the propositions seen in the previous section they are ”atomic
formulas”; For example,

”x is a number less than 3” A ”y is an even number”

it will also be a *well-formed formula”.

For convenience, in this Section, we also add to the language the constants V and
F which are respectively always true and always false, in every evaluation. ™ In the
construction of well-formed formulas they are treated as variables. Note that we have
not introduced the equality connective ”=". When all variables can only take true/false
values, the equality a = b can be interpreted as a <= b. In more general contexts (as
in the case of set theory) instead, ”equality” needs a precise definition.

Exercises

E2.8 Complete the following truth table [1vY]

-P|PAQ|PVQ|P=Q|P<Q|PsQ

|| < <| o
o <| = <0

Hidden solution: [uniccESSIBLE vuID '1vZ']

E2.9 Tell which formulas are well formed, and add parentheses to highlight the order  roox
of precedence.

aA-bAcAd
avVbAac=>d
a=-bAcvd
aAbvce c=>d
aVvbacvd

Hidden solution: [vnAcCESSIBLE vuID 'o0M']

E2.10 A well-formed formula in propositional logic is a tautelegy if for each eval-  [oon]
uation the formula is always true. Suppose A, B, C are well-formed formulas. Show
that the following properties of connectives are tautologies. ™°

8See 2.8
T9We can get rid of constants V" and F by defining themas V' = AV -A and F = -V,
T10These lists are taken from Section 1.3 in [12], or [29].
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§2 FUNDAMENTALS

A=>A

a(mA) e A

AVAS A, ANASA
(A=> B) & (7B=> 1A)

(A=>B)< (nAVB) < (0(AA-B))

AAB & (mAvVB)
AV B & —(nAA-B)
AABVC)S (AAB)V(AAC)

AV(BAC)© (AVB)AAVO)

AANB&S BAA
AVB&SBVA
AANBAC)© (AAB)AC
AV(BvC)s (AvB)vC

identity law
law of double negation
laws of idempotence

law of opposition,

or of the contrapositive ! (2.11)
equivalence of implication,

conjunction and disjunction (2 12)
first law of De Morgan (213)
second law of De Morgan (2.14)

distributive property of the conjunction
(2.15)

with respect to the disjunction

distributive property of the disjunction

with respect to the conjunction (2. 16)
commutative property of A

commutative property of V

associative property of A

associative property of V (2. 17)

These last two properties allow to omit parentheses in sequences of conjunctions or

disjunctions.

The property (2.12),(2.13),(2.14) they say that we could base all logic on connectives

alone =1 and A, (or on =, V).

1 The clause (—B = —A) is called ”contrapositive” of (A = B).
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§2.a Logic

Other important tautologies, often used in logical reasoning.

AV A

(A AA)

(AN(A=>B)=>B
("BA(A=>B))=> A

A= (A= B)

B= (A= B)
A=>B=>0C)=>({(AAB)=>0)
(A=>BAA=>C)=>A=>BA0)
(A=>0)AB=>0C)=>((AVvB)=>0)
(A=BAB=>0C)=>A=>0)
(AV(AAB) ©AAAVB) <
(AVF) & (AAV)S A

F=B

A= (mA=B)

(FA=>F)s A
(WAA-B)=>F)s (A= B)
(FA>A)=> A

excluded middle

law of non-contradiction

(2.18)
(2.19)

modus ponens

modus tollens

negation of the antecedent
affirmation of the consequent
exporting

proof by parts

proof by cases

hypothetical syllogism, or transitivity of impli-
cation

absorption laws

first law of Pseudo Scotus, or ex falso sequitur
quodlibet

second law of Pseudo Scoto

proof by contradiction
proof by contradiction, with hypothesis and the-
sis

(2.20)

consequentia mirabilis

E2.21 Show the validity of the following tautology

(FAAB)=>(C) < ((nCAB)=> A)

Then use the 2.313 exercise to turn it into a Venn diagram with three sets. Hidden
solution: [UNACCESSIBLE UUID '22D']

E2.22 Show that the implication connective = is neither commutative nor associative.
"2 Hidden solution: [uwaccessisLe vuip '269']
§2.a.c First-order logic

In the first order logic we add the connectives V, which reads ”for each” and 3, which
reads “exists”. We must therefore enlarge the family of well-formed formulas.

Definition 2.23. A formula is well formed if it meets all the rules in the list in 2.5
and this additional rule: ”given a well-formed formula ¢ where the variable x is free,
a formula of the form ”Vx, ¢”, or ”3x, ¢” is a well-formed formula.”

We will say that a variable x is free in a well-formed formula if

* the formula is atomic and the variable x appears in it; or if
* the formula is of the form =« and the variable x is free in «; or even if

* the formula is of the form a A §,a V B,a = B,a < 3 (or other logical
connective introduced later) and the variable x is free in  or .

T12This exercise came about during a discussion with Anton Mennucci.
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§2 FUNDAMENTALS

So in the formulas (Vx, ¢) or (3x, ¢), the variable x is no longer free; we will say
that ”the variable is quantified”.

In every part of a formula where a variable is quantified this variable can be replaced
with every other variable.

Remark 2.24. The variable x , which is quantified in a part of a formula, is again
free if it is reused in another piece of the formula; this is syntactically permissible but
makes the formula less readable, as in this example that uses the language of set theory

ACNAXxeENAx>4A(VXx€eEAXLI0)
which should be written as

ACNAXENAX>4ANy€eEAy<10)
renaming the variable inside the part where it is quantified.

Remark 2.25. It is assumed as an axiom that
—(Vx, $) & (Ix, ) . (2.26)
(In Sec. 2.1 in [12] indeed (Vx, ¢) is presented as short form for =(3x, ~¢)).

Note that, in many examples, quantified variables are assumed to be elements of a
set”.

»

Definition 2.27. Given two variables x,y we will write x € y to say that “x is an
element of the set y”. Equivalent expressions are “x is a member of y”, “x belongs to
y” or just simply “x is in y”.

The formula (x € y) is equivalent to (y S x); the negations are (x ¢ y) = ~(x €
y)and(y 3 x) = (y 3 x).

The formula (x € Yy) (as all other variants) takes value of truth/falsehood and
therefore can be used as atom in the construction of a well-formed formula.

Definition 2.28. We usually write

"Vx € A,P(x)” tosay “forevery xin A P(x) holds”,
or
”Ix € A,P(x)” tosay “thereisa x in A for which P(x)” holds;

(where A is a set); to link these writings to the previous definitions, we decide that the
previous writings are abbreviations for

Vx € A,P(x) =Vx,x € A= P(x) ,
dx € A,P(x) =3x,x € AAP(x)
Note that these RHS are ”well-formed formulas”. See also the exercise 2.35.
We use the term “together” informally here, see footnote 2.52.

Remark 2.29. Note that ”"Vx € A, ¢” is true if A is the empty set; this is consistent
with what was discussed in the exercise 2.35. This has though a striking consequence:
the implication

(VxeA,p)=> (Ax €A p)

is always valid when A is a non-empty set, but is instead false when A = @.

Copyright A. C. G. Mennucci 11
The sections comprising theory and exercises’ statements are released under License WP:CC BY-SA

[1x1]

(Solved on
2022-10-11)

[2DC]

[1X2]

[OOR]

[00s]

(Solved on
2022-10-11)


https://coldoc.sns.it/UUID/EDB/1X1/
https://coldoc.sns.it/UUID/EDB/2DC/
https://coldoc.sns.it/UUID/EDB/1X2/
https://coldoc.sns.it/UUID/EDB/00R/
https://coldoc.sns.it/UUID/EDB/00S/
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License

§2.a Logic

Usually we write [2aV]
vx,y,... € A,P(x,y,z)

instead of
Vx € A,Vy € A,V...,P(x,y,2)

Since an element of a set may not have a truth/falsehood value, we enrich the lan-
guage by adding the ”logical propositions™.

Definition 2.30. A logical proposition ¢ is an assertion that assumes value of truth oot

or falsehood depending on the value given to the its free variables, and only from that. g%t;l;eldooyg)

An example of a logical proposition would be: “n is an even number”. We can use
logical propositions as atoms in the construction of well-formed formulas.

Exercises

E2.31 Let X, Y sets. Let ¢, Y logical propositions be; x, a are free variables in ¢, and  [oov
¥, b are free in 1. We also assume that a, b can only be true or false, whilex € X,y €
Y. Consider the following formulae. Which ones are well formed? What variables
are free in them?

b A (Vx, ¢)

Ay, ) v (Vx, ¢)
Vx,Vb, (¢ A (3 V b))
aVv (Vx,Va, )
(3x,P) A (Vx, ¢)

Hidden solution: [unacCESSIBLE vuID '00W']

E2.32 Consider a proposition P(u, #) dependent on two free variables u (which takes  [oox]
values in the set of people), and ¢ (in the set all the jobs), and which is worded as
follows: ’Person u knows how to do the job €.

Express the following formulas in English

JudéP(u,€) ,YulaéP(u,¢) ,3¢VuP(u,t) ,
Vé3uP(u,€) ,IuveP(u,€) ,YuvéP(u,?) .

Hidden solution: [unAcCESSIBLE vuID '00Y']

E2.33 What implications are there among the previous formulas? [002]
. ; Proposed
Hidden solution: [vwaccessIsLE vUID '010'] 20;"1?‘1’3”;21")”
E2.34 You may prove that [011]

(v, @GN A (VYD) = (Vx (@) AP(x))
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§2 FUNDAMENTALS

E2.35 As already commented in 2.28, given A a set, and P(x) a logical proposition
dependent from a free variable x, we usally write

Vx € A,P(x) , 3Ixe€AP(x)

however
Vx € A, P(x) summarizes Vx,(x € A) = P(x) ,

dx € A, P(x) summarizes 3x,(x € A) A P(x) ;

where the “extended” versions are well-formed formulas.

Using this extended version you can prove that the two propositions
—(Vx € A,P(x)) , Ix € A,(0P(x)) .

are equivalent, in the sense that from one it is possible to prove the other (and vice
versa). In the proof use only tautologies (listed in 2.10) and in particular the equiv-
alence of the formula ”P = Q” with ”(=P) v Q” "% | and finally the equivalence
between ”—3x, Q” and *Vx, =Q” 4.

Replacing P(x) with =P(x) and using the tautology of double negation finally results
in
Vx € A,(-P(x)) , 7(Ix € A, P(x))
are equivalent.
Hidden solution: [unaccEsSSIBLE UuID '017']
E2.36 Given A a set, and P(x) a proposition dependent on a free variable x, we usually

write
dlx € A, P(x)

when there is one and only one element x of A for which P(x) is true. Define this
notation with a well-formed formula. (Note that you will need to use the equality
connective, because you must be able to express the idea of "unique”, which needs
of a method to be able to tell when two objects are distinguishable and when they are
not).

Hidden solution: [vnAcCESSIBLE UuID '015']

§2.b Set theory
§2.b.a Naive set theory

As already explained in Definition 2.27, in set theory, the connective ”€” is added;
given two sets z, y the formula x € y reads ”x belongs to y” or more simply “x is in
y”, and indicates that x is an element of y.

It is customary to indicate the sets using capitalized letters as variables.

Definition 2.37. We also add the connective a = b between sets, which is true when
Vx,x€Ea < x€b.

This is the axiom of extensionality.
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§2.b Set theory

This says that two sets a and b are equal when they have the same elements; that is,
it excludes that a set can have some other property that distinguishes it "°.

Definition 2.38. For convenience, the a C b connective is used to indicate that a is
a subset of b; formally this is defined by

Vx,xEa=>x€EDb.

b D a is equivalent to a C b.
Obviouslya=b < ((a C b)A (b C a)). Note that a C a.

It is usual to write x & y for 7(x € y), x € y for =(x C y) and so on.

Remark 2.39. There are also other symbols used. Some texts use a C b to indicate
that a C b but a # b (as in the notes [2]); others use a more expressive writing such
asa ¢ btosaythata C bbuta # b. (Some even use a C b instead of a C b,
unfortunately — e.g. [13]).

We also define the constant @, also referred to as {}, which is the empty set,”'® that
is uniquely identified by the property

Vx,"x€EQ

Some fundamental concepts are therefore introduced: union, intersection, symmet-
ric difference, power set, Cartesian product, relations, functions etc.

Definition 2.40. Given I a non-empty family of indices and given C; sets (one for
each i € I), then the union
Ue

iel

is a set, which contains all (and only) the elements of all sets C;; in formula’’

Uc=tx:3iernxecy
iel

If only two sets are given Cy, C,, we usually write C; U C, to indicate the union; and
similarly when finite sets are given.

Definition 2.41. Given I a non-empty family of indexes and given C; sets (one for
each i € I), we define the intersection
Ne

iel

which is the set that contains the elements that belong to all sets C; (for all i € I).
Ifonly two sets are given C;, C,, we usually write C; NC, to indicate the intersection,
and you have

def
C10C2={XEC1UC2ZxECl/\xECZ} 5
and similarly when finite sets are given.

The power set is defined as in ZF:5.
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Definition 2.42. Other operators between sets are: [23s]

* the difference
A\B d=ef{xeA X ¢ B} ;

* if the set A is clearly specified by the context, and if B C A, it is common to write
B ZA \ B; B¢ is said to be the complement of B in A;

* the symmetric difference

def

AAB = (AUB)\(ANB) = (A\B)JU(B\A) ={x € AUB : xEA < x ¢ B} ;
where A, B are sets.

Exercises

E2.43 Prove that A = B if and only if ((A C B) A (B C A)). Hidden solution: [1ue]

[UNACCESSIBLE UUID '1W7'] (Proposed on
2021-10-18)
E2.44 Represent operations [1ws]
* U union

* N intersection
+ \ difference

+ A symmetrical difference
between two sets using Venn diagrams.

E2.45 prerequisites:2.44.Use the above Venn diagrams to show that in general (AUB)N  [1ue]
C#AUBNO).

E2.46 Show thatif X C Yand Y C Z then X C Z Hidden solution: [unvAccESSIBLE vurD  [1WB]
"1WD']

E2.47 Explain why the union operation A U B between two sets is commutative, and  [1u2]
show that it is associative; similarly for the intersection; finally show that the union
distributes over the intersection, and also that the intersection distributes over the
union. Hidden solution: [uviccEsSIBLE vuID '1W3']

E2.48 Consider the sets: [1WF]
(Proposed on
+ P all the professors, 2022-12)

« S all scientists,
* F the set of philosophers,

* M the set of mathematicians.

T3Tautology in eqn. (2.12).

14 Already discussed in eqn.(2.26).

150ne could imagine a set theory in which the parentheses can be ”red” or ”blue”, and the equality between
sets occur when the elements and colors are the same. In the usual theory the parentheses are always black.

161 Zermelo—Fraenkel axiomatic theory, the existence of ¢ is an axiom.

17This is a more manageable version of the official axiom. The official definition is located in ZF:4.
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§2.b Set theory

For each of the following sentences, write a formula that represents it, using the above
sets, the empty set, relations C, =, #, and set operations U, N, \.

+ not all professors are scientists

+ some mathematician is philosopher;

« if a philosopher is not a mathematician then s/he is a professor;

« all philosophers are scientists or professors, but not mathematicians;

« if there is a mathematician who is also a scientist, then s/he is neither a philoso-

pher nor a professor.

Hidden solution: [unAcCESSIBLE UuID '1WG']

E2.49 Let U be the set of human beings, A the set of animals and M the set of mortal
creatures; convert the following syllogism into formulas and prove it:

every man is an animal, every animal is mortal, therefore every man is mortal.

E2.50 Explain the formula UBE?(A)
Then show that A = UBE?(A)B.

B using the definition 2.40 of the axiom of union.

See also 2.61 where the same result is obtained starting from the axiom of union as
defined in ZF:4 in the Zermelo—Fraenkel axiomatic.

Hidden solution: [unicCESSIBLE vuID '1wv']

E2.51 Let I, C; as in 2.40 and let A be a set; prove that
Ucica

if and only if
Viel, C;CA.

Remark 2.52. A distinction is made between an informal set theory and a formal set
theory. ™8

Informal set theory exploits all notions previously listed, but does not investigate
the fundamentals, that is, the axiomatization. For this approach we recommend the
text [9]; or [28] for a brief discussion.

The most widely used formal set theory is the Zermelo—Fraenkel axiomatic, that we
will shortly recall in next Section. See Chap. 6 in [12] (for a brief introduction [30]
can also be fine).

In Zermelo—Fraenkel’s axiomatic set theory, all variables represent sets, so vari-
ables do not have a meaning of truth or falsehood. For this reason, in the definitions
2.5 and 2.23 of well-formed formula changes the concept of ”atom”. A An atom is now
a formula of the form a € b that has truth/falsehood value.

While in formal theory all the elements of language are sets, in practice we tend to
distinguish between the sets, and other objects of Mathematics (numbers, functions, etc
etc); for this in the following we will generally use capital letters to indicate the sets,
and lowercase letters to indicate other objects.
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§2 FUNDAMENTALS

§2.b.b Zermelo—Fraenkel axioms
We now briefly discuss the axioms of Zermelo—Fraenkel set theory.
ZF:1 Axiom of extensionality, already seen above in 2.37.

ZF:2 The empty set @ is a set. The formula for this axiom is
X : VY(Y € X)
and by the preceding axiom, X is unique, so it is denoted by @&.

ZF:3 Axiom of pairing. Given any two sets X and Y there exists a set Z, denoted by
Z = {X, Y}, whose only two elements are X and Y. In formula

VX,YIZ:VW(W €EZ) & (W=X)V(W=Y)

Again, by the axiom of extensionality 2.37, the set Z unique.
ZF:4 The axiom of union' says that for each set A there is a set B that contains all

the elements of the elements of A; in symbols,
VA3IB,Vx,(x €B < (Jy,y€AAXEY)) .

This implies that this set is unique, by the axiom of extensionality 2.37; we indi-
cate this set B with | JA (so as not to confuse it with the symbol already introduced

before).

For example if
A={{1,3,{5,2}},{7,19}}

then
UA =1{1,3,{5,2},7,19}

Given Ay, ... Ay sets, let D = {A;, ... A;} ° we define

AjUA,..UA =D

ZF:5 The axiom of the power set says that for every set A4, there is a set P(A) whose
elements are all and only subsets of A. A shortened definition formula is

def

P(A) ={B: BCA}

P(A) is also called set of parts.

In the formal language of the Zermelo-Fraenkel axioms, the axiom is written:
VA,3ZVy,yeZ < (NVz,zey = z€A) ;

this formula implies that the power set Z is unique, therefore we can denote it
with the symbol P(A) without fear of misunderstandings.

T18See the introduction to Chap. 6 in [12] for a discussion comparing these two approaches.
T19This is the ”official” version of Zermelo—Fraenkel. However, the simplified version 2.40 is often used
T20The existence of this set can be proven, see 2.71
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§2.b Set theory

Note that
(Vz,zey = z€A)

can be shortened with y C A and therefore the axiom can be written as
VA,AZVy,y€EZ < (yCA) ;
then using the extensionality, we obtain that

Z={y:(ycA}

ZF:6 Axiom of infinity (see 2.203)

ZF:7 The axiom of specification, which reads
If A is a set, and P(x) is a logical proposition, then {x € A : P(x)} is a set.
Formally, setting B = {x € A : P(x)},
VX, X €B < X € AAP(X)

This axiom avoids Russell’s paradox: let A be the set of x such that x ¢ x, then
you have neither A € Anor A ¢ A.

ZF:8 Axiom of good foundation, or regularity (see 2.72)
ZF:9 Axiom of replacement

(We have omitted the definitions of ”Axiom of replacement”; you can find it in Chapl
Secl16 in [2] or Chap. 1 in [13]).
A further axiom is the Axiom of Choice; it will be discussed in Sec. §2.b.c.

Remark 2.53. Zermelo—Fraenkel set theory with the axiom of choice included is ab-
breviated ZFC, whereas ZF refers to the axioms of Zermelo—Fraenkel set theory (without
the axiom of choice).

Remark 2.54. This wording is commonly used: ”let I be a non-empty set of indices,

and A; a family of setsCDLeng indexed by i € I”; this, in axiomatic theory, should be
written as ”let I be a non-empty set, let X be a set, and A : I — P(X) a function; we
will write A; instead of A(i)”. (With this writing we have that A; are all subsets of X).

Exercises

E2.55 The notation in ZF:4 differs from the usual one, which is Uiel C;, where I is a
non-empty family of indices and C; are sets; as seen in 2.40.

How can you define Uie ; Ci using the axiom of union presented ZF:4? (Sugg. re-
read the note 2.54)

Eventually you should obtain

vexe|JG e dienxeq . (2.56)

iel

Hidden solution: [unvaccESSIBLE vuID '027']
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E2.57 Prove that the definition 2.41 of intersection is well posed, using the Z-F axioms.
Eventually prove also that

vixe[|C < I+#QAViELxeC) . (2.58)
iel
Hidden solution: [unicCESSIBLE UuID '23v']

E2.59 prerequisites:2.57,7F:4,2F:7,2.29. Let A be a non-empty set; we define B as the set
that contains all the elements that are in all the elements of A. Write a well-formed
formula that defines B, prove that B is indeed a set, and show that it is unique; for
symmetry with the axiom ZF:4 we will indicate it with

B=DA

It is related to the usual notation by the relation

DA:ﬂx

X€EA

Hidden solution: [unAcCESSIBLE UUID '254']

E2.60 prerequisites:2.55,2.57. Now that you have correctly defined the union 2.41 and
the intersection 2.40 using the Z-F axioms, tell what value are assumed by

and

when [ is the empty set. Hidden solution: [uvACCESSIBLE VUID '249']
E2.61 prerequisites:zr:4. Using the definition of | J presented in ZF:4, show that A =
U@@).
E2.62 Given aset X and I, C; as in 2.41 and 2.40, show that
X\ (ﬂ ci> =UJx\o) . (2.63)
iel iel
What happens when I is the empty set?
Hidden solution: [uniccESSIBLE vuID '24B']

E2.64 If Ais a set of n elements (n > 0 natural number) then how many elements are
there in P(A)?

E2.65 Write explicitly PPP(@). How many elements does it have? Hidden solution:
[UNACCESSIBLE UUID '1WX']

E2.66 Let be given a, b, x, y.
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1. Show that in the hypothesis
{a,b} = {x,y}
you have that
(a=b) < (x=y) < a=b=x=y
2. In particular, you deduce that if

{a} ={x,y}

thena = x = y.

3. Then show that if we assume that the four elements a, b, x, y are not all the
same, then we have

{a,b} = {x, y}
ifandonlyifa=xAb=yora=yAb=x.
To show the above be as precise as possible: use the axiom of extensionality 2.37,

the axiom of pairing ZF:3 and the tautulogies shown in the previous section (or other
elementary logical relationships). Hidden solution: [uniccessisLe vvip '1v8']

E2.67 Prerequisites:2.66. The ordered pair is defined as

(6y) = [ (o)) s

(note that the axiom of pairing ZF:3 guarantees us that this is a good definition); show
that

(a,b) =(x,y) < (a=xAb=y) . (2.68)
(First solution that doesn’t use 2.66) Hidden solution: [unaccessisLe vuIp '1wz'] )
(Second solution using 2.66) Hidden solution: [unaccessiBLE vuIp '1vc'] )

E2.69 prerequisites:2.66,2.72. Let’s imagine a different definition for the ordered pair,
defined as

() =l

show that
(a,b) =(x,y) < (a=xAb=y) . (2.70)

To show it you will need 2.72. Hidden solution: [vwaccessIsLE vuIp '1vF']

E2.71 Show that, given ay, ... a; sets, there is a set that contains all and only these
elements. This set is usually denoted by {a;, ... ai}.
Hidden solution: [uNACCESSIBLE UUID '02B']

E2.72 The axiom of good foundation (also called axiom of regularity) of the Zer-

melo—Fraenkel theory says that every non-empty set X contains an element y that is
disjoint from X; in formula

VX, X+22=>Ay@eX)AXny=2))

(remember that every object in the theory is a set, so y is a set). Using this axiom
prove these facts.
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» There is no set x that is an element of itself, that is, for which x € x.

* More generally there is no finite family x;, ... x,, such that x; € x, € ... €
X, € X1.

* There is also no xy, ... X, ... sequence of sets for which x; 3 x, 2 x3 3 x4 ....

Hidden solution: [unaccESSIBLE vuID '01S']

E2.73 Prerequisites:2.72. Show that for every x there is a y such that y ¢ x Hidden
SOIUtiOn.' [UNACCESSIBLE UUID '01X']

E2.74 Show instead that the axiom of infinity, and the consequent construction of the
natural numbers seen in Sec. §2.h, implies that there is a sequence Xy, ... X, ... of
sets for which x; € x, € x5 .... Hidden solution: [viiccessiBLE vuiD '012']

E2.75 prerequisites:2.77. Given A non-empty set show that there is a bijection f :
A — Bbetween A and a set B disjoint from A.

More generally, let I a non-empty set of indexes, and A; a family of non-empty sets
indexed by i € I; ™! show that there are bijections f; : A; — B;, where the sets B;
enjoy Vi € ,Vj € I, BN A; = @ and for j # jalso B;N B = @.

Hidden solution: [unaccESSIBLE vuID '021']

E2.76 Prerequisites:ZF:5.

Show that X C Y if and only if P(X) C P(Y). Hidden solution: [uwaccessieLe vurp
"1WW']

E2.77 Using the definition of pair (a, b) as {{a}, {a, b}} show that, given two sets x, y ,
for each a € x,b € y you have

(a,b) € PP(xUYy) .

Use this fact and the axiom of separation to justify axiomatically the definition of the
Cartesian product x X y.

Hidden solution: [unaccESSIBLE UUID '025']

Remark 2.78. In the exercise 2.71 the elements are identified using variables a,, ... aj
that we may have denoted using other letters such as a,b,c,d, .... If we instead think
of ay, ... ay ... as values of a function a; = a(i), a : I — X then the set {ay, ... aj ...}
always exists (for any choice of I) since it is the image of the function {a, ... i ...} =
{(xeX:3Jielx=aql

§2.b.c Zorn Lemma, Axiom of Choice, Zermelo’s Theorem

There are three fundamental statements in set theory, Zorn’s Lemma, the Axiom of
Choice, and Zermelo’s Theorem. It is proven, within the Zermelo—Fraenkel axiomatics,
that these are equivalent. See in Chap. 1 in [2] for an elementary presentation, based
on the above defined theory. ">

The first exercise presents some fundamental equivalent ways to state the Axiom of
Choice.

T21cf. 2.54
T22This theory can be found in many books on Logic, such as [12, 13, 10], but the statements and proofs
use a language and mathematical tools that may be too advanced for the intended audience of this book.
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§2.b Set theory

Exercises

E2.79 prerequisites:2.54, zF:4,2.75 . LetIbe a non-empty set of indexes, let A; a family
of non-empty sets indexed by i € I. Recall that, by definition, the Cartesian product
I, A is the set of functions f : I — |J,_,A; such that f(i) € A; foreachi € I.

Show that the following are equivalent formulations of the axiom of choice.

+ The Cartesian product of a non-empty family of non-empty sets is non-empty.

+ Given a family A; as above, such that the sets are not-empty and pairwise dis-
joint, there is a subset B of Uie Ai such that, for each i € I, BN A; contains a
single element.

* Let S be a set. Then there is a function g : P(S) — S such that g(A) € A for
each nonempty A € P(S).

Hidden solution: [unaccESSIBLE UUID '02J']

Remark 2.80. Attention! Suppose as above that the sets A; are not empty. This is
formally written as Vi € I, 3x € A;. Intuitively this brings us to say that the element x
depends on i, and therefore that x = x(i). This step, as intuitive as it is, is exactly the
axiom of choice.

Exercises

E2.81 Find a non-empty set of indexes I, and, for each i € I, non-empty sets A;, so
that there does not exists a subset B of Ul.E A; with the property that, for each i € I,
B N A; contains a single element. Hidden solution: [unaccessisLe vuip '26c']

E2.82 prerequisites:2.178.Consider the Zermelo-Fraenkel set theory, and this statement:

Given any A, B non-empty sets such that there exists a surjective function
g : B — A, then there exists an injective function f : A — Bsuch that gof =1Idy4.

Prove that this statement implies the Axiom of Choice. Hidden solution: [vvaccessIBLE
UUID '2C0']

E2.83 Let Vbe areal vector space. Let B C Vbe asubset. A finite linear combination
v of elements of B is equivalently defined as

e V= Zir;l ¢;b; wheren = n(v) €N, ¢4, ..., ¢, € Rand by, ..., b, are elements
of B;

s V= EbeB A(b)b where 4 : B — R but also A(b) # 0 only for a finite number
of b € B.

We call A C R the set of functions 2 as above, which are non-null only for a finite
number of arguments; A is a vector space: so the second definition is less intuitive
but is easier to handle.

We will say that B generates (or, spans) V if every v € V is written as finite linear
combination of elements of B.

We will say that the vectors of B are linearly independent if 0 = ) pep A(D)b implies
A = 0; or equivalently that, given n > 1, ¢;,...,¢, € R and by,...,b, € B all

different, the relation Z?zl ¢;b; = 0 implies Vi < n,¢; = 0.
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§2 FUNDAMENTALS

We will say that B is an algebraic basis (also known as Hamel basis) if both prop-
erties apply.

If Bis a basis then the linear combination that generates v is unique (i.e. there is only
one function 4 € A such thatv = 3, _, A(b)b).

Show that any vector space has an algebraic basis. Show more in general that for
each A, G C V, with A family of linearly independent vectors and G generators, there
is an algebraic basis Bwith A C B C G.

Hidden solution: [unaccessisLe vuip '026']
The proof in general requires Zorn’s Lemma; indeed this statement is equivalent to
the Axiom of Choice; this was proved by A. Blass in [6]; see also Part 1 §6 [21].

E2.84 pifficulty:. 2> Consider the following quotient of the family of all integer val-
ued sequences
X={a:N->N}~
where we define a ~ b iff a; = by eventually in k.

We define the ordering
a<b < dnst. Vk>n,ar < b,
that is, a < b when a; < by eventually. This is a preorder and
a~b < (a<bAb=xa)

so it passes to the quotient were it becomes an ordering, see Prop. 2.191.

Let a¥ be an increasing sequence of sequences, that is, ak < ak*!; we readily see

that it has an upper bound b, by defining
b, = sup a’ﬁ.
h,k<n

We can then apply the Zorn Lemma to assert that in the ordered set (X, <) there exist
maximal elements.

Given a, b we define

avb=(a,Vby,
then it is easily verified that a < a v b. So this a direct ordering, see 2.112.
We conclude that the ordered set (X, <) has an unique maximum, by 2.120.

This is though false, since for any sequence a the sequence (a,, + 1), is larger than
that.

What is the mistake in the above reasoning? What do you conclude about (X, <)?

Many other exercise need Zorn’s Lemma, Axiom of Choice, Zermelo’s Theorem in
their proof; to cite a few: 2.178, 2.261, 2.295, 2.296, 2.297, 2.300.

Remark 2.85. “The Axiom of Choice is obviously true, the well-ordering principle
obviously false, and who can tell about Zorn’s lemma?” — Jerry Bona'**

This is a joke': although the three are all mathematically equivalent, many math-
ematicians find the axiom of choice to be intuitive, the well-ordering principle to be

counterintuitive, and Zorn’s lemma to be too complex for any intuition.

™23(Qriginally published in https://dida.sns.it/dida2/Members/mennucci/curiosa/
24 A5 cited in [15].
25paragraph quoted from [46].

Copyright A. C. G. Mennucci 23
The sections comprising theory and exercises’ statements are released under License WP:CC BY-SA

[02M]

[02c]


https://coldoc.sns.it/UUID/EDB/02G
https://coldoc.sns.it/UUID/EDB/02M/
https://coldoc.sns.it/UUID/EDB/02C/
https://dida.sns.it/dida2/Members/mennucci/curiosa/
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License

§2.c Relations

§2.c Relations

Definition 2.86. A relation between elements of two sets A, B is defined as a subset
R C A X B of the cartesian product. Typically, the infix notation aRb is used instead of
writing (a,b) € R.

Definition 2.87. A relation R between elements of A is said to be:
* reflexive if xRx for any x € A;
* irreflexive or anti-reflexive if = xRx for any x € A;
» symmetric if xRy implies yRx for any x,y € A;
* antisymmetric if aRb and bRa imply a = b, for any a,b € A;

* trichotomous if for all x,y € A one and exactly one of xRy, yRx and x =y
holds;

* transitive if xRy and yRz imply xRz, for any x,y,z € A.
A relation R between elements of A and elements of B is said to be:

* injective (also called left-unique) if xRy and zRy imply x = z, for any x,z €
A,y €B;

* functional (also called right-unique) if xRy and xRz imply y = z, for any
X € A,y,z € B; such a binary relation is called a “partial function” (see also
§2.e,2.182);

* total (also called “left-total”) if for any x € A there is a y € B such that xRy;

* surjective (also called “right-total”) if for any y € B there is a x € A such that
XRy.

Definition 2.88. An equivalence relation is a relation between elements of A that
enjoys the properties: reflective, symmetrical, transitive.

Equivalence relations are typically denoted by symbols ”~” | ”x” | ?~” 7?7 |
71&/ » etC.

Definition 2.89. An order relation (or simply order) is a relation between elements
of A that enjoys the properties: reflective, antisymmetrical, transitive.
An order relation is total if all elements are comparable, i.e. if for every a,b € A
you have aRb V bRa.
(When an order relation is not total, it is said to be partial).
Symbols such as ”<” or ”C” or ”<” or similar are generally used.

Remark 2.90. The above is the definition in [2]; in other texts, a relation between ele-
ments of A that enjoys the properties: reflexive, antisymmetrical, transitive is straight-
forwardly called partial order. (cf Example 2.1.1 in [12] where moreover a total order
is called linear order). For this reason we will sometimes add a “(partial)” to state that
the order being discussed may be partial.

Order relations are discussed in Section §2.d
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Remark 2.91. It is customary to writea > bas asynonymforb < a. Ifa < bAa#b [17]
we will write a < b; similarly if a > b A a # b we write a > b. Beware that if the
relation is not total, it is not true in general that =(a < b) is equivalent to a > b.

See in this regard the exercise 2.100.

Definition 2.92. A total order ° on a set X is said to be a well ordering if every [1x0]
non-empty subset of X has minimum.

Exercises

E2.93 Prerequisites:2.87. For each set A and each relation R between elements of A, [1wx]
explain if it is reflective, symmetric, antisymmetric and/or transitive; if it is a order %f;pgzed on
relation, determine if it is total. "12)

In A = N\ {0}, nRm iff the greatest common divisor between n and m is 1
In A = N\ {0}, nRm if and only if n divides m

In A = N\ {0}, nRm if and only if 2n divides m

In A = P(N), aRb if and only if a C b.

E2.94 Let f : A — Bbe a function, let ~ be an equivalence relation on B: prove that [1uk]
the relation R between elements of A given by

xRy = f(x)~ f(»)
is an equivalence relation.

E2.95 Prerequisites:2.87,2.89. [224]

Given two relations a < b and a < b for a,b € A, show that these are equivalent:

* a < bis a (possibly partial) order relation and we identify
a<b=(@a<bAa#b) ;

* a < bis an irreflexive and transitive relation and Vx,y € A at most one of
X<y, x=Y, Yy <xholds; and we identify

a<b=(a<bva=b)

This latter a < b is called strict (partial) order.

E2.96 Prerequisites:2.87,2.89,2.95. Given two relationsa < banda < bfora,b € A [24x]
show that these are equivalent:

* a < bis a total order relation and
a<b=(a<bAaa#b) ,

* a < b is an irreflexive, trichotomous and transitive relations and
a<b=(a<bva=bh)

This latter a < b is called strict total order.

Copyright A. C. G. Mennucci 25
The sections comprising theory and exercises’ statements are released under License WP:CC BY-SA


https://coldoc.sns.it/UUID/EDB/1Y7/
https://coldoc.sns.it/UUID/EDB/1X0/
https://coldoc.sns.it/UUID/EDB/1WH/
https://coldoc.sns.it/UUID/EDB/1WK/
https://coldoc.sns.it/UUID/EDB/224/
https://coldoc.sns.it/UUID/EDB/24K/
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License

§2.d Order relations

E2.97 Consider A = R2 and consider the relations
) ~(x,y) = (x—x'"€eZAry—-y €2)
between elements of R? :

* show that it is an equivalence relation;
« graphically represent equivalence classes;

* describe the set A/ ~.

§2.d Order relations

Let (X, <) an orderered set, non-empty (cf definition 2.89)

Definition 2.98. Given x,y € X remember that x < y means x <y A X # y.

» When we have that x < y or y < x we will say that the two elements are ”com-
parable”. Conversely if neither x < y nor y < x then we will say that the two
elements are ”incomparable”.

* An element m € X is called maximal if there is no element z € X such that
m<z.

* Anelement m € Xis called minimal if there is no element z € X such that z < m.

» An element m € X is called maximum, or greatest element, if, for any element
zeX z<m.

* Anelement m € Xis called minimum, or least element, if, for any element z € X,
z<m

Note that the definitions of minimum/minimal can be obtained from maximum/max-
imal by reversing the order relation (and vice versa).
Exercises
E2.99 Given an ordered set, show that the maximum, if it exists, is unique.

E2.100 Show that for any two x,y € X one of the following (mutually exclusive)
cases holds

*X=),
*x<),
* X >,
* X,y are incomparable.

Hidden solution: [unAcCESSIBLE UUID '068']

E2.101 Show thatifx < yAy<zorx <yAy<zthenx < z.
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E2.102 Show that m € X is maximal if and only if ”for every z € X you have that
z < mor z, m are incomparable”.

Hidden solution: [unAcCESSIBLE UUID '06B']

E2.103 Let f : A — Bbe a function, let < an order relation on B; consider the relation
R between elements of A given by

xRy = f(x)=f(y) ;
is it an order relation? What if we also assume that f is injective?
E2.104 Show that, if every non-empty subset admits minimum, then the order is total.

E2.105 Consider A = R2 and consider the relation
(xy) (X)) &= x<XAy<Yy)

+ show that it is an order relation; is it partial or total?

* Define B = {(x,y) : x* + y? < 1}, let’s consider it as an ordered set with the
sorting < : are there maxima? minima? maximals? minimals?

E2.106 Let (X, <) be a finite and ordered non-empty set then it has maximals and
minimals. Hidden solution: [uwiccessIBLE vuID '06D']

E2.107 Build an order < on N with this property: for each n € N

« the set {k € N,k # n,k < n} of the elements preceding n has exactly two
maximals,

« the set {k € N,k # n,n < k} of the elements following n has exactly two
minimals.

E2.108 Let X be a non-empty set and R C X? an order relation, then there is a total
order T that extends R (i.e. R C T, considering relations as subsets of X?).

E2.109 prerequisites:3.7,2.79. Let X be ordered (partially). Show that these are equiv-
alent

1. in each non-empty subset A C X there is at least one minimal element;

2. there are no strictly decreasing functions f : N — X.
Hidden solution: [unaccessisLe vuip '07v']

See also Proposition 2.191.

§2.d.a Direct and filtering order

Definition 2.110. Let (X, <) be a (partially) ordered set, we will say that it is filtering
127 if

Vx,yeX3AzeX, x<zAy<z . (2.111)

The sets R, N, Q, Z endowed with their usual order relations, are filtering.
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Definition 2.112. A directed set is an ordered set (X, <) for which

Vx,yeX3AzeX, x<zAy<Lz . (2.113)

Obviously a filtering order is direct.

Remark 2.114. We have added the antisymmetric property to the usual definition of
”Directed Set”, see [14] (or other references in [38]).

This choice simplify the discussion (in particular it eases the use of concepts already
used in the theory of ordered sets, such as maximum and maximal); at the same time,
by 6.57, this choice does not hinder the usufulness and power of the theory developed
in this Section and in Section $§6.d.

Definition 2.115. Given a directed set (X, <x) a subset of it Y C X is called cofinal

if
VxeX3dyeY, y>xx (2.116)

More in general, another directed set (Z, <) is said to be cofinal in X if there exists a
map i : Z — X monotonic weakly increasing and such that i(Z) is is cofinal in X; i.e.

V21,2, € 2,2, <7 2,2 i(21) <x i(z5)) A (Vx€X3Tz€eZ, i(z) >x x) (2.117)

(This second case generalizes the first one, where we may choose i : Y — X to be the
injection map, and <y to be the restriction of <x to Y.)

Definition 2.118. If X is filtering, ”a neighborhood of oo in X” is a subset U C X
such that
dkeXvjeX,j>2k=>j€eU.

Exercises

E2.119 Let (X, <) be a filtering ordered set, prove that it is an infinite set. Hidden
solution: [UNACCESSIBLE UUID '06R']

E2.120 Let (X, <) be a directed set: show that if there is a maximal element in X then
it is the maximum. Hidden solution: [un4cCESSIBLE UUID '06T']

E2.121 prerequisites:2.110,2.120. Let (X, <) be a directed set. Show that these proper-
ties are equivalent:

* (X, <) satisfies the filtering property (2.111),
* (X, <) has no maximum,
* (X, <) has no maximals.

Hidden solution: [unicCESSIBLE UUID '06W']

E2.122 prerequisites:2.115.Let (X, <) be a directed set, and Y C X cofinal: show that
(Y, S‘Y) is a directed set.

Similarly, if (X, <) is filtering, show that (Y, S\Y) it is filtering.
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E2.123 prerequisites:2.118.Given Uj, U, C J two neighborhoods of co show that the (232
intersection U; N U, is a neighborhood of co. Hidden solution: [unaccessisLE vuip
'236'] .

E2.124 prerequisites:2.115,2.118.1f (X, <) a filtering set, Y C X is cofinal, and U C X [234]
is a neighborhood of oo in X, show that U N Y'is a neighborhood of oo in Y. Hidden
solution: [UNACCESSIBLE UuID '235']

A directed ordered set (X, <) is a framework in which we can generalize the notion
seen in 3.56.

Definition 2.125. Let P(x) be a logical proposition that depends on a free variable  [o6Y]
x € X. We will say that (Solved on

P(x) holds eventually for x € X if | Iy € X,Vx € X,x > y = P(x) holds; 2022:10-27)
P(x) frequently applies forx € X | Vy € X,3x € X,x > y such that
if P(x) holds.
Exercises
E2.126 The 3.60 property reformulates in this way. [070]
Show that «P(x) frequently applies for x € X» if and only if the set oorop (l’ff_g;;"

Y={xeX: Px)}
is cofinal in X.

E2.127 prerequisites:2.125,2.123.Show that «P(x) eventually holds for x € X» if and [233]
only if the set
U={xeX: Px)

is a neighborhood of oo in X.

E2.128 Prove that the properties 3.58, 3.59, 3.61 and 3.62 seen in Sec. §3.g also apply  [06z]
in this more general case 2.125.

E2.129 Suppose that on the set X there is a relation R that is reflexive and transitive [282]
and satisfies
Vx,y € X3z € X, xRz,yRz . (2.130)

(as seen in (2.113))

This pair (X, R) is a ”Directed Set” according to the usual definition (see [ 14] or other
references in [38]).

Show that there exists another relation < such that

+ < is a partial order and it satisfies (2.113);

* R extends < that is;
Vx,yeXx<y= xRy ;

+ moreover (X, <) is cofinal in (X, R).
Hidden solution: [vwAccEsSIBLE vUID '26M']

Further exercises on the subject are 5.12,7.15, and in Section §6.d.

26 Actually the condition of well ordering for an order implies that the order is total; we leave it as an
exercise 2.104.
27 As defined in Definition 4.2.1 of the notes [2]. It is also called strongly directed set.
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§2.d Order relations

§2.d.b Lexicographic order

Definition 2.131. Given two ordered sets (X, <y) and (Y, <y), setting Z = X XY, we
define the lexicographic order < on Z; let z; = (x1,y;) € Zand z, = (x,,),) € Z,
then:

* in the case x; # x, , then z; <z z, if and only if x; <x X;

* inthe case x; = x, , then z; <5 z, ifand only if y; <y ¥>.

This definition is then extended to products of more than two sets: given two vectors,
if the first elements are different then we compare them, if they are equal we compare
the second elements, if they are equal the thirds, etc.

Exercises

E2.132 Verify that < is an order relation.

E2.133 If (X, <x) and (Y, <y) are total orders, show that (Z, <) is a total order.
E2.134 If (X, <x) and (Y, <y) are well ordered, show that (Z, <) is a well ordering.

E2.135 LetX = NV be ordered with lexicographic order. Build a function f : X - R
that is strictly increasing. Hidden solution: [uvaccessIBLE vuip '075']

E2.136 Consider X = R X {0, 1} ordered with lexicographic order. Show that there is
no function f : X — R strictly growing. Hidden solution: [uwaccEssIBLE vuID '077']

§2.d.c Total order, sup and inf
Let < a total order on a non-empty set X.

Definition 2.137. Let A C X. The majorants of A (or upper bounds) are
def
My ={xeX:Va€eAa<x}

A set A is bounded above when there exists an x € X such thatVa € A,a < x, i.e.
exactly when My # @.

If M4 has minimum s, then s is th supremum, a.k.a. least upper bound, of A, and
we write s = sup A.

By reversing the order relation in the above definition, we obtain the definition of
minorants/lower bounds, bounded below, infimum/greatest lower bound.

Lemma 2.138. Let A C X be a not empty set. We recall these properties of the
supremum.

1. If A has maximum m then m = sup A.
2. Lets € X. We have s = sup A if and only if

* for every x € A we have x < s.

* for every x € X with x < s there exists y € A with x < y.

This last property is of very wide use in the analysis!
The proof is left as a (useful) exercise. Hidden solution: [unACCESSIBLE UUTD '22T']

30 Copyright A. C. G. Mennucci
The sections comprising theory and exercises’ statements are released under License WP:CC BY-SA

[2FH]

[071]

[1wP]

[072]

[073]

[074]

[076]

[2FM]

[22R]

[225]


https://coldoc.sns.it/UUID/EDB/2FH/
https://coldoc.sns.it/UUID/EDB/071/
https://coldoc.sns.it/UUID/EDB/1WP/
https://coldoc.sns.it/UUID/EDB/072/
https://coldoc.sns.it/UUID/EDB/073/
https://coldoc.sns.it/UUID/EDB/074/
https://coldoc.sns.it/UUID/EDB/075
https://coldoc.sns.it/UUID/EDB/076/
https://coldoc.sns.it/UUID/EDB/077
https://coldoc.sns.it/UUID/EDB/2FM/
https://coldoc.sns.it/UUID/EDB/22R/
https://coldoc.sns.it/UUID/EDB/22S/
https://coldoc.sns.it/UUID/EDB/22T
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License

§2 FUNDAMENTALS

Exercises

E2.139 Let B be a non-empty set that is bounded from below, let L the set of minorants  [o7s]
of B; we note that L is upper bounded, and suppose that « = sup L exists: then ot € L (Proposed on
. : . 2022-10-13)
and a = inf B. Hidden solution: [vniccessiBLE vuID '079']

E2.140 prerequisites:2.139. Show that if for the total ordering of X all ”suprema” exist [078]

then all ”infima” also exist; and vice versa. Precisely, show that these are equivalent:  (Proposed on

¢
2022-10-13)
 Every non-empty set bounded from below in X admits greatest lower bound;

* every non-empty set bounded from above in X admits least upper bound.

Hidden solution: [unaccessIBLE vuIp '207']

§2.d.d Total ordering, intervals [2DW]

Let < a total order on a non-empty set X.

Definition 2.141. AsetI C X is an interval if for every x,z € I and everyy € X [o7c]
withx <y <zwehavey € L

Note that the empty set is an interval.

Definition 2.142. Given x,z € X the following standard intervals are defined [07D]

(x,z2)= {yeX:x<y<z}
(x,z]= {yeX:x<y<z}
(x,00) = yeX :x<y}
[x,2)= {yeX:x<y<z}
[x,z]= {yeX:x<y<z}

[x,0) = reX:x<y}
(—00,2) = fyeX:y<z}
(—00,z] = rex .y<z}
(—00,00) = X .

Note that there are 9 cases, 3 for the LHS and 3 for the RHS. We concord that r24v3
00, —oo are symbols and not elements of X; if X has a maximum m then the intervals
are preferably written as (x, c0) = (x,m] and [x, o) = [x,m]; similarly if X has a
minimum.

Exercises

E2.143 pPrerequisites:2.141,2.142,2.59. [07F]
Let F be a non-empty family of intervals.
Show that the intersection () of all intervals is an interval.
Suppose the intersection (") is not empty, show that the union | JF is an interval.

Hidden solution: [vnAcCESSIBLE UuID '07G']
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§2.d Order relations

E2.144 prerequisites:2.141,2.142.

Find an example of a set X with total ordering, in which there is an interval I that
does not fall into any of the categories viewed in 2.142.

Hidden solution: [vnAcCESSIBLE vuID '07J']

E2.145 prerequisites:2.141,2.142,2.143.

Let A C Xbe anon-empty set; letl the smallest interval that contains A; this is defined
as the intersection of all intervals that contain A (and the intersection is an interval,
by 2.143). Let M 4 be the family of majorants of A, M; of I; show that M4 = M. In
particular A is bounded from above if and only I is bounded from above; if moreover
A has supremum, then supA = supl. (Similarly for the minorants and infimum).
Hidden solution: [unaccessisLe vuip 'o7m']

E2.146 pPrerequisites:2.141,2.142,2.143,2.145.

Let X be a totally ordered set. Show that the following two are equivalent.

* Every A C X non-empty bounded from above and from below admits supre-
mum and infimum.

+ Each non-empty interval I C X falls in one of the categories seen in 2.142.
Hidden solution: [uvaccEssSIBLE vuID '07P']

E2.147 prerequisites:2.141,2.142,2.143.Difficulty:*.

At the beginning of the section we assumed that the ordering < on X be total. The
definitions of interval in 2.141 and 2.142 however, they can also be given for an
order that is not (necessarily) total. What happens in exercise 2.143 when the order
is not total? Which result is true, which is false, and if so what counterexample can
we give?

§2.d.e Order types

Definition 2.148. Given two ordered non-empty sets (X, <x) and (Y, <y), we will
say that ”they have the same order type”, or ”order-isomorphic”, or more briefly that
they are ”equiordinate” "%, if there is a strictly increasing monotonic bijective function
f : X = Y, whose inverse f~! is strictly increasing. The function f is the “order
isomorphism”.

Remark 2.149. Note that if (X, <x) and (Y, <y) are equiordinate then X and Y are
equipotents; but given an infinite set X, there exist on it orders of different types — even
if we consider only the well orders. (See for example exercise 2.254)

Remark 2.150. Note that if two sets are equiordinate, then they enjoy the same prop-
erties: if one is totally ordered, so is the other; if one is well ordered, so is the other;
etc etc .... See 2.152.

Exercises

E2.151 Show that the relation ”having the same order type” is an equivalence relation.
Given a set X, let’s consider all possible orders on X, the relation therefore defines
equivalence classes, and each class is (precisely) an“order type” on X.

28The wording equiordinate” is not standard.
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§2 FUNDAMENTALS

E2.152 Given two ordered non-empty sets (X, <x) and (Y,<y),and f : X - Yas
defined in 2.148.

* If A C X and m = max A then f(m) = max f(A); similarly for the minimums;
* (X, <x) is totally ordered if and only if (Y, <y) is;
* (X, <x)is well ordered if and only if (Y, <y) is.

* Suppose that (X, <x) and (Y, <y) are well ordered, let Sy and respectively Sy
be the functions ”successor”, 2.241, then we have that x is not the maximum
of X if and only if f(x) is not the maximum of Y, and in this case y = Sx(x) if

and only if f(y) = Sy(f(x)).

E2.153 Given two totally ordered non-empty sets (X, <y) and (Y, <y), suppose there
exists a strictly increasing monotonic bijective function f : X — Y: show that
then its inverse f~! is strictly increasing, and consequently (X, <x) and (Y, <y) are
equiordinate. Hidden solution: [unaccessIBLE vuID '21T']

E2.154 Find a simple example of two non-empty (partially) ordered sets (X, <y) and
(Y, <y), for which there exists a strictly increasing monotonic bijective function f :
X — Y, whose inverse f~! is not strictly increasing. Hidden solution: [unaccessIsLe
UUID '21S']

§2.d.f Concatenation

Definition 2.155. Given two ordered sets (X, <x) and (Y, <y), with X, Y disjoint, the
concatenation of X with Y is obtained defining Z = X U Y and providing it with the
ordering < given by:

* ifzy,2z, € Xthen z; <5 z, ifand only if z; <x z,;
* ifz1,z, € Ythen zy <z z, if and only if z; <y z,;
* Ifz; € X and z, € Y then you always have z; <5 z,.

This operation is sometimes denoted by the notation Z = X + Y.

If the sets are not disjoint, we can replace them with disjoint sets defined by X =
{0} x X and Y = {1} X Y, then we may “copy” the respective orders, and finally we can
perform the concatenation of X and Y.

Exercises

E2.156 Let k € N and let I = {0, ..., k} with the usual ordering of N: show that the
concatenation of I with N has the same type of order as N; while the concatenation
of N with I does not have the same type of order.

E2.157 prerequisites:2.131,2.148.Let (X3, <;), (X5, <,) be two disjoint and partially or-
dered sets and with the same order type. Let I = {1,2} with the usual order; let
Z = I X X; equipped with lexicographical order; Let W be the concatenation of
of X; with X,: show that Z and W have the same type of order. Hidden solution:
[UNACCESSIBLE UUID '221']

E2.158 Let X7, X, be two disjoint and well-ordered sets. Let W be the concatenation
of X; with X,: show that it is well ordered.
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§2.e Functions

§2.e Functions
The definition of function can be obtained from set theory in this way.

Definition 2.159. Given two sets A, B, a function f : A — Bis a triple
A,B,F
(where A is said domain and B codomain) and F is a relation F C A X B such that
Vx € Adly € B,xFy ;

i.e. it enjoys the properties of being functional and total (defined in 2.87).

Being the element y unique, we can write y = f(x) to say that y is the only element
in relation xFy with x.

The set F is also called graph of the function.

Definition 2.160. Given nonempty sets I, A, a sequence with indexes in I and taking
values in A is a function a : I — A; this though is usually written by the notation
(ap)ner - To denote the codomain, the notation (a,),cr C A is also employed. In this
text, in most cases, we will have that I = N, and in this case we will simply write (a,,).

In practice, the definition of function is always written as f : A — B; for this
reason the graph is defined as

F={(a,b) e AXB: b= f(a)}

Remark 2.161. Let A be a non-empty set, let f : A - {0,1}and g : A — {1} both
given by f(x) = g(x) =1 for each x € A.
Let F, G respectively be the graphs: note that F = G (!) Will we say that f = g or
not? We choose “not”, otherwise the concept of ”surjective” would not make sense.
For this reason in the definition we decided that the function is the triple ”domain”,

» »

”codomain”, relation”.

Exercises
E2.162 Show that the composition of two injective functions is an injective function.
E2.163 Show that the composition of two surjective functions is a surjective function.

E2.164 Let f : N — N be an assigned function and I its image, prove that A C N
exists such that f|,4 is injective and f(A) = I. (Hint it may be useful to know that
the usual order of N is a well-order cf 2.235 and 3.28).

Hidden solution: [unaccessIsLe vuip '1wT']
Note: The result is true for any function f : A — B, but the proof requires the axiom

of choice.

E2.165 LetI,J C Randlet f : I — Jbe given by f(x) = sin(x). By choosing I = R
or I = [0,7/2] or I = [—7/2,7/2], and choosing J = R or J = [—1,1], say for
which choices f is surjective, and for which it is injective.

(This exercise is to make you ponder about the difference between *formula” and
”function.”.)
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§2 FUNDAMENTALS

E2.166 LetA,B C Randlet f : A — Bbe defined by the formula f(x) = x?; tell if, (1xa)
for the following choices of A, B, the function f is injective and/or surjective.
1. A=R,B=R
2. A=R,B = [0, )
3. A=[0,0),B=R
4. A=1[0,00),B = [0, )

If the function is bijective, what is its inverse commonly called?

(This exercise is to make you ponder about the difference between “formula” and
”function.”

E2.167 Given f,g : N — N defined by f(n) = n?> — 1 and g(n) = (n + 1), write  [1x4]
explicitly fog and gof, say if they coincide or are different functions.

E2.168 Find an example of f,g : N — N such that fog = gof, but neither f nor g rixs
are bijective.

E2.169 Let f : R — R be bijective, and F C R? its graph; let f~! be the inverse of f  [1xe]
and let G be its graph; show that G is the symmetric of F with respect to the bisector
of the first and third quadrants.

E2.170 Let D, C be non-empty sets and f : D — C a function. Let I a non-empty [091]
family of indexes, B; C C for i € I. Given B C C remember that the counterimage
of Bis
f~Y(B) £ {x €D, f(x) € B} ,

Given B C C we write B¢ = {x € C, x & B} to denote the complement. Show these
counterimage properties.

~Us)=Usr®) (2.171)

iel iel
B =) ') (2.172)

iel iel
£ = fY(B) . (2.173)

E2.174 Let D, C be non-empty sets and f : D — C a function. Let I be a non-empty  [092]
family of indexes, A; C D, fori € I. Given A C D remember that the image of A is
the subset f(A) of D given by

fA) Z{f(x),x €A} .

Show these image properties.

f(UAi)

U f(4)

iel iel
f(ﬂAi) c ﬂf(Ai) .
iel iel

Show that the function is injective if and only if

f(A1nAy) = f(A) N f(A,) (2.175)

is an equality for every choice of A;,A, C D.
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§2.e Functions

E2.176 Let D, C be non-empty sets and f : D — C a function. Given U C C show
that
fH ) cu;
if f is surjective show that they are equal; find an example where they are different.
E2.177 Let D, C be non-empty sets and f : D — C a function. Given A C D show
that

i) 2A4;

if f is injective show that they are equal; find an example where they are different.
E2.178 Let A, B be non-empty sets.

* Suppose that f : A — B is an injective function: there exists a surjective
function g : B — A such that gof = Id,4 (the identity function). (Such g is a
left inverse of g).

* Suppose that g : B — A is a surjective function: there exists a injective func-
tion f : A — Bsuch that gof =1d,. (Such f is a right inverse of g).
The proof of the second statement requires the Axiom of Choice (see 2.82).

Vice versa.

« If f : A — Bhas a left inverse then it is an injective function.

» If g : B — A has aright inverse, then it is a surjective function.
Hidden solution: [unaccessIsLE vuIp '28Y']

E2.179 LetAbeasetandletg : A — A be injective. We define the relation x ~ y
which is true when an n > 0 exists such that x = g"(y) or x = g"(y); where

n

n _ cee
g =8908

is the n-th iterate of the composition. (We decide that g° is identity). Show that x ~ y
is an equivalence relation. Study equivalence classes. Let U = ﬂ:;l g"(A) be the
intersection of repeated images. Show that each class is entirely contained in U or is
external to it.

Hidden solution: [unAccESSIBLE UUID '094']

E2.180 Show that there is a function f : R — R such that f(f(x)) = —x. Is there
a continuous function for which f(f(x)) = —x? (Hint: show that for every such f
you have f=1({0}) = {0}). Hidden solution: [umaccessisLE vuID '096']

E2.181 Show that there exists a function f : [0,1] — [0,1] such that f(f(x)) =
sin(x). Is there a continuous function? Hidden solution: [uNACCESSIBLE vuID '098']

E2.182 Let D, C be non-empty sets. A partial function from D in C is a function
@ : B - C where B C D. (The definition of ”function” is in 2.159).

It can be convenient to think of the partial function as a relation @ C D X C such that,
if (x,a),(x,b) € @ then a = b (see 2.87). The two notions are equivalent in this
sense: given @ we build the domain of ¢, which we will call B, with the projection of
@ on the first factori.e. B={x € D : Ic € C,(x,c) € &}, and we define p(x) = ¢
as the only element ¢ € C such that (x, ¢) € @; vice versa @ is the graph of ¢.
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§2 FUNDAMENTALS

Partial functions, seen as relations @, are of course sorted by inclusion; equivalently
p<ypifp:B—->Candy : E—>CandBCEC Dand g = 9.

Let now U be a chain, i.e. family of partial functions that is totally ordered according
to the order previously given; seeing each partial function as a relation, let ¥ be the
union of all relations in U; show that ¥ is the graph of a partial function¢ : E - C,
whose domain E is the union of all the domains of the functions in U, and whose
image I is the union of all images of functions in U

If moreover all functions in U are injective, show that % is injective.

Hidden solution: [uniccESSIBLE vuID '01Q']

§2.f Elementary functions

Exercises

E2.183 Let n, m, k be positive integers. Prove that the number (n+ ﬁ)k +(n— ﬁ)k
is integer.

Hidden solution: [unAcCESSIBLE UUID '09H']

E2.184 Let K be a positive integer, N an integer, and I = {N,N + 1, ..., N + K} be the
sequence of integers from N to N + K. For each n € I we set an integer values a,,.
Let p be the only one polynomial of degree K such that p(n) = a,, for every n € L.

+ Show that p has rational coefficients.
+ Show that p(x) is integer for every x integer.

* Find an example of a polynomial p which takes integer values for x integer, but
not all coefficients of p are integers.

» What happens if I contains K + 1 integers, but not consecutive? Is it still true
that, defining p(x) as above, p only assumes integer values on integers?

E2.185 Let p(x) be a polynomial with real coefficients of degree n, show that exists ¢ >
0 such that for every x we have |p(x)| < ¢(1 + |x|"). Hidden solution: [uniccEssSIBLE
UUID '09M']

E2.186 Prove that, forn > 2,
> log(n)

=

n—1
k=1
Hidden solution: [unsccESSIBLE vuID '212']

§2.g Projecting to the quotient

Definition 2.187. Let A be a set and ~ an equivalence relation. We denote by
Af .

the quotient space, that is, the set of all equivalence classes; the canonical projection
is the map = : A — A/~ that associates each x € A with the class [x] € A/ ~.
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§2.g Projecting to the quotient

* Suppose we have a function f : A — C; we will say that this is invariant (or
”compatible with ~”) if

Vx,yeA, x~y= f(x)=f(>y) . (2.188)

This implies that f is constant on each equivalence class; so f passes to the
quotient, that is, there is a well-defined function f : 4/~ — Bsuch that f([x]) =
f(x) for each x € A; i.e. for = f.

Similarly we will proceed if f is a multi-argument function f : A;XA,X... A, —
C, and on one or more of these sets A; there are equivalence relations: in this case
we can pass the associated variables to the quotients. For example when there is
an equivalence relation ~ on A;, we will require that

Vx,y € A,Va, €A,..Va, €A, ... x~Yy=> f(x,a...a,)=f,a,,...a,)

and then we can switch to the quotient and define the function f : 41/~ X A, X
...A, = Csothat

f(n(x), ay, ... ay) = f(x,0a,,...a,)

+ Similar reasoning can be made for relation R € A X B; formally we can go back
to the previous case, thinking of R as a function that has domain A X B and the
set {"true”,” false”} as image; more explicitly, we will say that R is invariant with
respect to the relation ~ on A if

Vx,y€e A,YNb€B x~y= (xRb< yRb) ;

and in this case we can define the relation R ”projected to quotient” between 4/ ~
and B.

AxA Ly A
In some cases a function can be projected to the quotient Jdaxn N
in domain and codomain; we present a simple case, with 4/ _ x4/, ? Al
two variables, that will be used in the following. Consider
a function f : A X A — A; it is invariant if

Vo, %y, 7 €A (x~XAy~F)= fxy)~ (X)) (2.189)
then f can be projected to the quotient, that is, the function
fiAlwXAl~— Al

is well defined when abiding to the rule

v, yeA f(lx][yD) = [f(x )]
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§2 FUNDAMENTALS

Proposition 2.190.

* Suppose that the function f : AXA — A is invariant for the equivalence relation
~ in all its variables, in the sense defined in (2.189) let f be the projection to the
quotient

f AU XA/ > AL
If f is commutative (resp. associative) then fis commutative (resp. associative).

* IfRis a relation in A X A invariant for ~, and R is reflexive (resp symmetrical,
antisymmetric, transitive) then R is reflexive (resp symmetrical, antisymmetric,
transitive).

* Consider the ordered sets (A, <,) and (B,<g), let f : A — B be a monotonic
function; suppose moreover that <, is invariant with respect to an equivalence
relation ~ on A, e and let f : A/~ — B be its projection to the quotient: then f
is monotonic.

Proposition 2.191. (Replaces 06G) (Replaces 06H) Consider R a transitive and reflexive
relation in A X A; such a relation is called a preorder [43]; we define x ~ y <<
(xRy A yRx) then ~ is an equivalence relation, R is invariant for ~, and R (defined as
in 2.190) is an order relation.

Proof. 1. ~is clearly reflexive and symmetrical; is transitive because if x ~ y,y ~
z then xRy A YRx A YRz A zRy but being R transitive you get xRz A zRx i.e.
X~z

2. Letx,y,%,¥ € Xbesuchthat x ~ X,y ~ Jthen we have XRX AXRx AYyRJAJRYy
if we add xRy, by transitivity we get XRy; and symmetrically.

3. Finally, we see that R is an order relation on Y. Using the (well posed) definition
*[x]R[y] < xRy” we deduce that R is reflexive and transitive (as indeed stated
in the previous proposition). R is also antisymmetric because if for z,w € A/ ~
you have zRw A wRz then taken x € z,y € w we have xRy A yRx which means
Xx ~ y and therefore z = w.

O

Exercises

E2.192 Z are the relative integers with the usual operations. Let p > 1 a fixed integer.
Consider the equivalence relation

n~m < p|(n—m)

that is, they are equivalent when n — m is divisible by p.

Show that there are p equivalence classes [0],[1], ... [p— 1] We indicate the quotient
space with Z/(pZ) or more briefly Zp,.

Show that the usual operations of sum and product in Z are invariant (in the sense
defined in (2.189)), hence they pass to the quotient.
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§2.h Natural numbers in ZF

§2.h Natural numbers in ZF

In this section we will build a model of the natural numbers inside the ZF set theory;
this model satisfies Peano’s axioms 3.3 and has an order relation that satisfies 3.25, so
this model enjoys all properties described in Sec. §3; for this reason in this section we
will mostly discuss properties that are specific of this model.

§2.h.a Successor

Definition 2.193. Given x the successor is defined as

SG) Zxufx} . (2.194)

We will often write Sx instead S(x) to ease notations.

We say that a set A is S-saturated if @ € A and if for every x € A you have
S(x) e A. ™
Exercises

E2.195 Note that z € S(x) ifand only if z € x vV z = x;

E2.196 Prerequisites:2.72,2.195. Prove that x € S(x) and x & S(x). Hidden solution:
[UNACCESSIBLE UUID '24N']

E2.197 prerequisites:2.72,(2.194),2.195.Let X, ¥ be elements (generic, not necessarily nat-
ural numbers), such that
xCyCS(x) (2.198)

prove that
x=yVy=5(x) ;

where the above two are mutually exclusive, and (in the hypothesis (2.198) above)
the second one holds if and only if x € y; summarizing

(2198) =2 (x=y <= y#5(X) = x¢y)

Note the analogy with 2.243.
E2.199 Prove that the intersection of S-saturated sets provides an S-saturated set.

E2.200 prerequisites:2.72,(2.194),2.195. 0 Prove that

x=y < S(x)=50)

In particular this shows that, if A is an S-saturated set, then the function S : A - A
is well defined, and its graph is the relation

{(x,y) e A 1 y=S(x)} ;

moreover S is injective.

Hidden solution: [unAcCESSIBLE vuID '1Yn']
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E2.201 Find an example of x, y such that x € y A x C y but S(x) ¢ S(3)

Hidden solution: [unAcCESSIBLE UUID '24R']

E2.202 Show that when x € y A x C y then S(x) C y. Hidden solution: [uvaccessIBLE
UUID ’24T’]

§2.h.b Natural numbers in ZF

Definition 2.203. The axiom of infinity guarantees that there is a set A that is S-
saturated.

Using the axiom of infinity 2.203 we can prove the existence of the set of natural
numbers.

Theorem 2.204. N is the smallest S-saturated set.

Proof. Given a set A that is S-saturated, N, is defined as the intersection of all S-
saturated subsets of A. By 2.199, N4 is S-saturated. Given two sets A, B that are S-
saturated, it is proven that N4 = Np: we denote then by N this set. In particular, given
a set A that is S-saturated, we have N C A. O

Example 2.205. In this model, the first natural number 0 is identified with @. Then
1=0u{o}={o} = {{}},
2=1u{1}={0,1} = {1 {0}

3=20(2=(0.1.2) = {0 {0} 0. o

Remark 2.206. This fact holds true:
VyeN,y#@=>3IxeN,S(x)=y

this can be proven by induction, as in 3.2, or by proving that, if
eN,y#DAVXEN,S(X)#y

then N\ {y} would be an S-saturated set smaller than N, a contradiction. In particular
by 2.200 we get that the successor function

S :N-N\{o0}
is bijective.
If n # 0, we will call S~1(n) the predecessor of n.
We can also prove directly the induction principle.

Theorem 2.207 (Induction Principle). Let A 2 N and P(n) be a logical proposition
that can be evaluated for n € A. Suppose the following two assumptions are satisfied:

 P(n) is true for n = 0 and

291 [13] such set is called inductive.
TL30Proposition 1.7.4 point 5 in [2].
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§2.h Natural numbers in ZF

« Vn € N, P(n) = P(S(n)) ;

then P is true for every n € N.
The first hypothesis is known as ”the basis of induction” and the second as ”inductive
step”

Proof. LetU ={n € N : P(n)}, we know that 0 € Uand thatVx,x € U = S(x) € U,
so U is S-saturated and U C N we conclude that U = N. O

Theorem 2.208. Consider the order relation C on N; then
Vx,yeN,(x CSYyAx#Sy) < (xCy) . (2.209)
This will be proven in Exercise 2.218.

To prove the above theorem, the exercises in the following section can be used.

Remark 2.210. Peano’s Axioms are provable in this model; moreover the order rela-
tion satisfies the requirements of Hypothesis 3.25; therefore this model of N enjoys all
properties discussed in Sec. §3: all different versions of the induction principle; (N, C)
is well-ordered; definitions by recursion; arithmetic, etc.

When we will want to compare this model with other models, we will denote it by

NZF-
The ordered set N, C then enjoys these properties.

Propeosition 2.211. This model of N is a well-ordered set with the ordering
n<m << nCm
Moreover in this model we have
VvnmeNnem << (mCmAn#m) . (2.212)

so, defining (as usual)
n<m=m<mAn#m)

we can write
NEmM < n<m

This is proven in the following exercises, see in particular 2.220.

More details are in the course notes (Chap. 1 Sec. 7 in [2]); or [13],[12].

§2.h.c Transitive sets

Definition 2.213. A set A is said to be transitive if these equivalent conditions hold:

Vx, xEA=>xCA ,

i.e. every element of A is also a subset of A;

Vx,Vy,x eEyAyeA=>x€A

42 Copyright A. C. G. Mennucci
The sections comprising theory and exercises’ statements are released under License WP:CC BY-SA

[24D]

[26K]

[26J]

[247]


https://coldoc.sns.it/UUID/EDB/24D/
https://coldoc.sns.it/UUID/EDB/26K/
https://coldoc.sns.it/UUID/EDB/26J/
https://coldoc.sns.it/UUID/EDB/24Z/
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License

§2 FUNDAMENTALS

Example 2.214. Examples of transitive sets are:

}=0

1,
() =2
to.fon fron}

}
%Lﬂﬁ{ﬂn}ﬁﬂnﬂ}

FLHH{HJBH}zg
to.fon fron fo-1o)

Comparing with 2.205 note that there are transitive sets that are not natural numbers.

Exercises

E2.215 If every element of A is a transitive set then the relation x € y is a transitive
relation in A . (Note that this holds also if A is not a transitive set.) Hidden solution:
[UNACCESSIBLE UUID '25K']

E2.216 Prove that for each m € N, m is a transitive set.

Hidden solution: [unAcCESSIBLE UUID '258']

E2.217 prerequisites:2.213,2.202,2.216.
Vn,k € Nif n € k then Sn C k.

(Hint: you do not need induction, use that each n € N is a transitive set).

E2.218 prerequisites:2.217,2.72.T0 assert the Theorem 2.208 we have to prove (2.209),
that is
Vx,yeEN,(x CSyAx#Sy) < (xCy) . (2.209)

Prove that if X is a set where each element is transitive
Vx,yeX,(x CSyAx#8Sy) < (xCy) . (2.219)
Hidden solution: [unicCESSIBLE UUID '26Q']

The previous exercises prove Theorem 2.208, then by results of Sec. §3 we obtain
that (N, <) is well ordered.
Here following are other interesting exercises.
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§2.h Natural numbers in ZF

Exercises

E2.220 We know from 2.210 that the relation n C m is total in N. Prove that
VnmeNnem << (nCmAn#m) . (2.212)
By 2.96 this implies
VnmeN,nCm < (nemvn=m)
Hidden solution: [unACCESSIBLE UUID '26B']
E2.221 Prove this assertion
VkeNk+#0=>0€k

Hidden solution: [unicCESSIBLE UUID '266']

E2.222 prerequisites:2.208,2.211.Prove that
Vx,yEN, XxXCyAXx#y=>SxCy

Hidden solution: [unaccESSIBLE vuID '279']

E2.223 Having fixed N € N, consider the ordering n C m for n,m € N. Since
N C N is well ordered, then Proposition 2.211 implies that (N, C) is well ordered;
nonetheless prove directly by induction that n C m is a well ordering in N.

Hidden solution: [vnacCESSIBLE UuID '25X']

QN:N

Hidden solution: [uniccESSIBLE vuID '260']

E2.224 Prove that

§2.h.d Ordinals

Perusing the above results we can give some elements of the theory of ordinals.
Definition 2.225. An ordinal (according to Von Neumann) is a transitive set A such
that any element in A is a transitive set.

Exercises

E2.226 pPrerequisites:2.72,2.95.1f A is a set where € is transitive, we define
X<y=xe€eyvx=y

prove that x < y is a (possibly partial) order relation in A.
Hidden solution: [unaccessisLe vuip '255']

E2.227 Prove that the intersection of transitive sets is a transitive set.

E2.228 Prove that the intersection of ordinals is an ordinal.
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E2.229 Prove that if X is an ordinal and A € X then A is an ordinal. [25M]
Hidden solution: [vnAcCESSIBLE UuID '25P']

E2.230 Use the axiom of foundation 2.72 to prove that if A is transitive and A # @  [25¢]
then @ € A.
Hidden solution: [unicCESSIBLE UUID '25H']

E2.231 Prove that N is a transitive set. (Hint: use induction.) [255]
Hidden solution: [uniccESSIBLE UuID '256']

This and 2.216 say that N is an ordinal.
E2.232 Let X be an ordinal and [265]
B ={zeX,zex}
show that
Vx,y€X,B=B>x=y
Hidden solution: [uNACCESSIBLE UUID '26T']
(Note the similarity with 3.30).

E2.233 prerequisites:2.226,2.72,2.109,2.240,2.232. [26V]

Let X be an ordinal, we define
XS{Yy=X€Eyvx=y

we know from 2.226 that x < y is a (possibly partial) order relation in X. Prove that
x < yis a well order.

Hidden solution: [vnAcCESSIBLE UUID '26W']

Remark 2.234. Consider again Proposition 2.211 that states that N, is well ordered  [275]

by the relation C.
We know by 2.231 and 2.216 that N is an ordinal; we may be tempted to see

Proposition 2.211 as a corollary of the previous result 2.233.
This is unfortunately not a well posed way of proving this result, because of this

cascade of dependencies:
* the proof of 2.233 relies on the result 2.109

* the result 2.109 in turn needs a definition by recurrence of a function: this is
Theorem 3.7

* the proof of Theorem 3.7 uses the fact that the induction principle holds on N.

So we need to first prove the properties of N, independently of the theory of ordi-
nals, and then prove the results in Sec. §3, and then eventually we can prove the result
2.233, that states that any ordinal is well ordered by the relation C.
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§2.i  Well ordering

§2.i Well ordering [1vq]

Definition 2.235. [07R]
A total order < on a set X is a well ordering if every nonempty subset of X has a
minimum.
In particular X has a minimum that we will indicate with Ox.

The theory of well orderings is very much linked to the theory of ordinals, of which (222
we have given a few hints in Sec. §2.h.d. We just say that every ordinal is the standard
representative of a type of well ordering. Using standard ordinal theory (due to Von
Neumann) many of the subsequent exercises can be reformulated and simplified.

Remark 2.236. Recall that the supremum supA of A C X is (by definition) the [07s]

minimum of the majorants (when it exists). (Solved on
If X is well ordered we have the existence of the supremum sup A for any A C X 2023-01-17)

that is upper bounded. ™' (If A is not upper bounded, we can conventionally decide

that sup A = ).

Exercises

E2.237 1f (X, <) is a well-ordered setand Y C X is a subset, then Y (with the restriction  [o7u]
of the ordering) < is a well-ordered set.

E2.238 prerequisites:3.7. Let X be totally ordered set. Show that these are equivalent:  [o7x]

(Solved on

1. X is well ordered; 2023-01-17)
. . . Proposed

2. there are no strictly decreasing functions f : N — X. 20205 (1’523 o

(This is a special case of 2.109)

E2.239 pPrerequisites:2.155,2.131,2.148,2.238.Difficulty:*.Note:exercise 2 written examon 29 January ~ [22F]

2021. (Solved on
) . o ) ) 2022-10-13
Let be given (X, <x) where X is an infinite set and <y is a well ordering. in part)

+ If X has no maximum, then there exists (Y, <y) such that setting Z = Y X N
with < the lexicographical order, then (X, <y) and (Z, <) have the same type
of order.

« If instead X has maximum, then there exist (Y, <y) and k € N such that, setting
Z be the concatenation of Y X N and {0, ... k} (where Y X N has the lexicograph-
ical order, as above), then (X, <x) and (Z, <) have the same type of order.

» Show that, in the previous cases, Y is well ordered.

Hidden solution: [unicCESSIBLE UUID '22G']

E2.240 pifficuity:+. Let the ordered set (X, <) be given; we define [opq]
(Proposed on
def 2022-12)

B={weX:w<ux}

Suppose (X, <) meets these two requirements:

T31»Upper bounded” means that there exists w € X such that x < w for every x € A. This is equivalent
to saying that the set of majorants of A is not empty!
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§2 FUNDAMENTALS

Vx,yeX, BC=Py=>x=y
+ every non-empty set A C X contains at least one minimal element, i.e.

daeAvVbeA(b<a) ;

then (X, <) is well ordered.

Hidden solution: [unicCESSIBLE UUID '26R']

§2.i.a Successor

Definition 2.241. Let X be a well-ordered non-empty set. Suppose x € X is not the
maximum, then the set of majorants {y € X : y > x} is not empty, so we define the
successor element S(x) of x as

S(x)=min{ly e X : y > x}

Exercises

E2.242 Prerequisites:2.241.

Suppose X has no maximum; let S be defined as in 2.241; show that is an injective
function
S: X-X ,

and that S(x) # Oy, for every x (that is, Ox is not successor of any element).
Hidden solution: [vwAccEsSSIBLE vUID '223']

We note that in general S will not be surjective, as a function S : X — X\ {0x}: there
may be elements y € S,y # Ox that are not successors of an element. If, however,
for a given y € X, there exists x € X such that y = S(x), we will say that x is the
predecessor of y.

E2.243 prerequisites:2.241,2.242.If x <y < S(x) theny = x vy = S(x).
Hidden solution: [unAccESSIBLE UUID '227']

(The meaning of this result is that S(x) is the immediate successor of x, there is
nothing in between...).

§2.i.b Segments and well orderings

In the following (X, <x) will be a well-ordered set.

Definition 2.244. A nonempty subset S C X is an initial segment if Vx € S,Vy €
X, y<x=>yes
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§2.i  Well ordering

Exercises
E2.245 Show that the initial segment union is an initial segment.

E2.246 If S C Xis an initial segment and S # X, show that s € X \ S exists and is
unique (s is called the next item to S) which extends S, i.e. such that SU{s} is an initial
segment. Hidden solution: [uwaccessisre vurp 'os1'] (Note that there are similarities
with the concept of ”successor” seen in 2.241... We could say that s is the successor
of the segment S).

E2.247 prerequisites: 2.141, 2.142, 2.146. Let X be a well-ordered set. Show that if
I C Xis an interval then I = [a,b) or I = [a,b] or I = [a, o) with a,b € X. (The
reverse is obviously true).

[072]

[080]

(Solved on
2023-01-17)

[082]

(Solved on
2023-01-17)

In particular, an initial segment is [Ox, b) or [Ox, b] or all X. Hidden solution: [unaccessisLe

UUID '083']

E2.248 Let (X, <x), (Y, <y) be totally ordered non-empty sets. Let f : X — Ybea
strictly increasing bijective function. Then for each S C X initial segment we have
that f(S) is an initial segment of Y; and vice versa. Hidden solution: [uniccEssisLE
UUID '085']

E2.249 Prerequisites:2.238,3.7,2.148.

Let (X, <x) be a well-ordered non-empty set. Show thatif S C Xis an initial segment
and (X, <x) and (S, <x) are equiordinate from the map f : S — X then X = S and
f is the identity.

Hidden solution: [unACCESSIBLE UUID '087'] [UNACCESSIBLE UUID '088']

(Note the difference with cardinality theory: An infinite set is in one-to-one corre-
spondence with some of its proper subsets, cf 2.292 and 2.295. Moreover, if two sets
have the same cardinality then there are many bijections between them.)

E2.250 Give an example of a totally ordered set (X, <x) which has minimum, and of
an initial segment S such that (X, <x) and (S, <x) are equiordinate. Hidden solution:
[UNACCESSIBLE UUID '0O8B']

E2.251 prerequisites:2.249. Let (X, <x) and (Y, <y) be well ordered; suppose there
exists a bijective function f : X — T strictly increasing where T an initial segment
of Y; then f is unique (and unique is T). Hidden solution: [unaccessisLe vuip 08p']

E2.252 prerequisites:2.182, 2.245, 2.248, 2.246, 2.251.

Let be given two well-ordered non-empty sets (X, <x) and (Y, <y). Show that
1. there is an initial segment S of X and a strictly increasing monotonic bijective
functiong : S — Y; or 1%
2. there is an initial segment T of Y and a bijective strictly increasing monotonic

functiong : X — T.

In the first case we will write that (Y, <y) < (X, <x), in the second that (X, <x) <
(Y, <y). (Note that in the first case you have |Y| < |X| and in the second |X| < |Y]).
By the previous exercise, the map g and its segment are unique.

Hidden solution: [unaccESSIBLE UuID '08G']
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§2 FUNDAMENTALS

E2.253 Prerequisites:2.252. Show that if (X, Sx) < (Y, Sy) and also (Y, Sy) < (X, SX
), then they are equiordinate.

Hidden solution: [uniccESSIBLE UuID '08J']

The relation < is therefore a total order between types of well-orderings.

§2.i.c Examples
Exercises

E2.254 prerequisites:2.134.The type of well ordering of N is called w. Given k > 2
natural, N¥ endowed with the lexicographical order is a well-ordered set (for 2.134),
and the type of ordering is called w*. Show that w* < " for h > k, and that w¥, »"
do not have the same type of order.

E2.255 pisficulty:+.Build a well ordering on a countable set X such that X = U:Lozl Sy
where S,, are initial segments, each with order type w”. The order so built on X is
indicated by w®. Hidden solution: [uvaccessisLe vuip osn']

E2.256 pifficuity:+.Build a strictly increasing map between w® and R. Hidden solu-
tion: [UNACCESSIBLE UUID '08Q']

§2.j Cardinality

For convenience we will use the symbol |A| to indicate cardinality of the set A. This
symbol is used as follows. Given two sets A, B, we will write |A| = |B| if these sets are
equipotents (or sometimes equinumerous), i.e. if there is a bijective function between
A and B; we will write |A| < |B| if there is an injective function from A to B. We will
also write |A| < |B| if there is an injective function from A to B, but not a bijection.If
we assume the axiom of choice to be true, then for every pair of sets we always have
|A| < |B| or |B| < |A] (see 2.276).

Proposition 2.257. If we now fix a family F of sets of interest, we first define the
relation A ~ B <= |A| = |B| in it; it is easily shown that this is an equivalence
relation; so we get that |A| < |B| is a total order in ¥/ ~.

Proof. This derives from the Proposition 2.191, since the relation
ARB < |A| < |B|
is reflexive and transitive, and by Cantor—Bernstein’s Theorem

|A| < |B|A|B|L|A| < A~B

In the following, let Ey = @, and let E,, = {1, ... n} otherwise if n > 1.

Lemma 2.258. Ifn,m € N,n < mthen |E,| < |Ey,|. This is proven in Lemma 1.12.1
of the notes [2].
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§2.j Cardinality

Definition 2.259. By definition > “a set A is finite and has cardinality n” if it is
equipotent to a set E,, (for a choice of n € N; note that there is at most one n for which
this may hold, by the above Lemma).So when the set is finite, |A| is identified with the
natural number of its elements; we will write |A| = n. If a set isn’t finite, then it is
infinite.

Note that the null map f : @ — @ is a bigection; and |A| = 0 © A = @. The

following exercise is a fundamental result.

Exercise 2.260. Prove that N is infinite, and that |N| > n,Vn € N. Hidden solution:
[UNACCESSIBLE UUID '2GJ']

We recall Theorem 1.12.2 of the notes [2], for convenience.
Theorem 2.261. If A is infinite then |A| > |N|. In particular, |A| > n for any n € N.
Definition 2.262. A set A equipotent to N is called countably infinite; ™>* such a set
is infinite (by the result 2.260 above).
§2.j.a Finite sets
Exercises

E2.263 1If A is a finite set and B C A, prove that B is finite.

Hidden solution: [vniccESSIBLE vuID '02v']

E2.264 Suppose we have a finite number m >1 of sets Ay, ..., A,, all finite. Show
that U;n:l Aj is a finite set. Hidden solution:  [unAccEssIELE vuID '02x']

E2.265 Recall that AB is the set of all functions f : B — A. If A, B are finite non-
empty sets show that |[AB| = |A|/Bl. What happens if one set, or both sets, are empty?
Hidden solution: [unaccessisLe vuip '02z']

E2.266 If A, B are finite non-empty sets, calculate the cardinality of the set of injective
functions f : B — A ; and the cardinality of the surjective ones. What happens if
one, or both, of the two sets A, B are empty?

§2.j.b Comparison

Exercises

E2.267 prerequisites:2.178.Suppose A is not empty. We have |A| < |B| if and only if
there is a surgective function f : B — A. (The ”if” implication necessitates the
axiom of choice; See also 2.82.)

E2.268 Show that if |A,| < |A,| and |B,| < |B,| then |4, X B,| < |A, X B|.

E2.269 Show that if |A;| < |A,| and |B;| < |B,| then |Ai31 < |A]232| Hidden solution:
[UNACCESSIBLE UUID '033']

E2.270 Show that |(AB)C| = |ABXC)|. Hidden solution: [unaccessiaLe vuip 10357
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§2 FUNDAMENTALS

E2.271 Let I be a family of indices and B;, A; sets, for i € I, such that |4;| < |Bi|;
suppose that the sets B; are pairwise disjoint. Show that

Ua UBi‘ .

iel iel

<

(In your opinion, is it possible to prove this result without using the axiom of choice,
at least in the case in which I is countable?) Hidden solution:  [unaccessisLe vuip
'037']1

E2.272 Let C be a set, I a family of indexes, and then B; sets, for i € I; suppose the
sets B; are pairwise disjoint; define B = Uiel B; for convenience; then show that

Vi,|B| <|C| = |B|<I|IXC]| (2.273)
Vi,|B| > |C| = |B|>|IxC| . (2.274)

Hidden solution: [uniccESSIBLE vuID '039']

E2.275 Let C be a set, I a family of indices, and B sets for i € I with |B;| = |C|; then
show that
3] =|c|
where B = Hi <y Bi- Hidden solution:  [uwaccessisLe vuip '030']

E2.276 prerequisites:2.182. Show that cardinalities are always comparable: given two
sets A, B either |A| < |B| or |B| < |A| holds. (Use Zorn’s lemma and the construction
explained in the exercise 2.182). Hidden solution: [uniccessIsLE vuID '036']

This statement is equivalent to the Axiom of Choice, see [21].

§2.j.c Countable cardinality

Definition 2.277. Recall that a set is ”countably infinite” if it has the same cardinality
of N.

If A is countably infinite, there exists a : N — A bijective. Writing a,, instead of
a(n), we will therefore say that A = {ay, a;,a, ...} is an enumeration.

Exercises

E2.278 Found a polynomial p(x, y) which, seen as a function p : N> — N is bijective.

It follows, iterating, that there is a polynomial gy, in k variables q; : N — N that is

bijective. So N¥ is countable. Hidden solution: [unaccessIBLE UUID 03] [UNACCESSIBLE
UUID '03K']

E2.279 Show that the sets Z, Q are countable. Hidden solution: [unAccESSIBLE vUID
"03N']

E2.280 pPrerequisites: 2.271,2.278.

32The two conditions can also both apply, in which case X, Y have the same type of order.

33This is the definition presented in the course. There are also other definitions of “finite set” [16]. See
for example the exercise 2.295

34 Attention, in English the term countable is used for finite or countable sets. By comparison, in Italian
the term insieme numerabile is used to denote a countably infinite set.
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§2.j Cardinality

Let Ag.A; ... A, ... sets of countable cardinality, for n € N.
Show that B = UZOZOAk is countable.

Note that B is infinite-countable if for example there is at least one » for which A,, is
infinite-countable.

Hidden solution: [unaccESSIBLE UUID '03Q']
E2.281 We indicate with (A) the set of subsets B C A which are finite sets. This is
called colloquially the set of finite parts.
Show that R(N) is countably infinite.
Hidden solution: [unAcCESSIBLE UUID '03S']

This result applies in general, see 2.303.

§2.j.d Cardinality of the continuum

Definition 2.282. We will say that a set has cardinality of the continuum if it has the
same cardinality as R.

Remark 2.283. Cantor proved that [N| < |R|. Cantor then (in 1878) formulated the
continuum hypothesis CH: for any infinite set E C R, either |E| = |R| or |E| = |N|. For
many year mathematicians tried to prove (or disprove) CH. It took decades to understand
that this was not possible. We know know that, if ZF is consistent, then neither CH nor
its negation can be proven as theorems in ZF (even using the Axiom of Choice). The
second part of the statement was proved by Gddel nel 1939. The first part by Cohen in
1963. See Chap. 6in [12].

Exercises

E2.284 Explain how you could explicitly construct a bijection between [0,1) and
[0,1)2.

E2.285 Show with explicit constructions that the following sets have continuum car-
dinalities:
[0,1], [0,1), (0,1), (0,00) .

Hidden solution: [unAccESSIBLE UUID '03Z']
E2.286 prerequisites:2.293, 2.270, 2.269.
Show that the following sets have continuum cardinalities.
R™,  {0,1}Y, NN, RN .
Hidden solution: [unACCESSIBLE UUID '041'] [UNACCESSIBLE UUID '042']

E2.287 prerequisites:2.271,2.286.Let A; be sets with cardinality less than or equal to the
continuum, for t € R. Show that +er Ar has cardinality of the continuum. Hidden
solution: [UNACCESSIBLE vUID '044']

E2.288 Let A be the set of subsets B C R which are countable sets; show that A has
cardinality of the continuum. Hidden solution: [uniccessiBLE vuID '046']
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§2 FUNDAMENTALS

§2.j.e In general

Let’s add some more general exercises.

Exercises
E2.289 Show that |A| < |P(A)|. Hidden solution: [unaccessIsLE vuID '049']

E2.290 Consider the set NN of functions f : N — N; and the subset .4 of f of functions
that can be defined using an algorithm, written in a programming language of your
choice (also assuming that the computer that is running this algorithm has potentially
unlimited memory) and such that for each choice n € N in input the algorithm must
finish and return f(n). Compare the cardinalities of NN and .A.

E2.291 Calculate the cardinality of the set # of weakly decreasing functions f : N —
N. Hidden solution: [unACCESSIBLE vuID '04F']

E2.292 Prerequisites:3.7.

A set A is called Dedekind—infinite if A is in bijection with a proper subset, that is if
thereis B C A,B # Aand h : A — B bijection. Show that a set A is Dedekind—
infinite if and only if there is an injective function g : N — A. (This result does not
require the axiom of choice.)

Hidden solution: [uNACCESSIBLE UUID '04H']

E2.293 Prerequisites:2.261.If A is infinite and B is countable, show that |A| = |A U B|
using the existence of an injective function g : N — A.
Hidden solution: [uNACCESSIBLE UUID '04K']

E2.294 prerequisites:2.264,2.293.Similarly if A is infinite and B is finite show that |A| =

|A \ B| using the fact that for every infinite set X there is an injective g : N —» X
function. Hidden solution: [uniccessisLE vuIp '22n']

E2.295 prerequisites:2.261, 2.292. Show that a set A is Dedekind—infinity if and only
if it is infinite (according to the definition seen at the beginning of the chapter).
Hidden solution: [uNACCESSIBLE UUID '04N']

Note: According to [10], the previous equivalence cannot be proved using only the
axioms of ZF (Zermelo—Fraenkel without the axiom of choice) ; the previous equiv-
alence can be proved using the axioms of ZFC (Zermelo—Fraenkel with the axiom of
choice); but its validity in ZF is weaker than the axiom of choice.

E2.296 Prerequisites:2.293,2.182.Difficulty:*.
Let X an infinite set. Show that X can be partitioned in two sets X;, X, that have the
same cardinality as X. (Hint. consider subsets of X on which the property is valid,
use Zorn) Hidden solution: [uviccESSIBLE UUID '04Q']

E2.297 pPrerequisites:2.296,2.278,2.239.Difficulty:*.
Let A infinite. Show that |D x A| = |A| for every non-empty countable set D . '3
(A possible solution uses 2.296) Hidden solution: [unaccessisLE vuID '04S']

(Another possible solution uses Zermelo’s theorem, 2.239 and 2.278; in this case
2.296 becomes a corollary of this result.) Hidden solution: [unaccessisLe vuip '041']

T35Equivalently, show that there is a partition U of A such that each part B € U has cardinality |B| = |A]|,
and the family U of the parts has cardinality |U| = |D|.
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[04B]

[04D]

(Proposed on
2022-12)

[04G]

[04J]

[22M]

[04M]

[04P]

(Proposed on
2022-12)

[04R]

(Solved on
2022-10-13
in parte)
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§2.j Cardinality

E2.298 Let A, B be infinite. Show that |A U B| = max{|A|, |B|}. Hidden solution:

[UNACCESSIBLE UUID 'O4W']

E2.299 Show that if A is an infinite set, and decomposes into the disjoint union of two
sets A, A, with |A;| < |A,| then |A| = |A,|. Hidden solution: [unaccessisLeE vuip
/04y/]

E2.300 prerequisites:2.182, 2.297.Difficulty:**.
Let A, B be infinite sets. Show that |42| = |A|.

Use this result to show that if A, B are not empty and at least one is infinite then
|A x B| = max{|A|, |B|}.

Hidden solution: [unaccEsSIBLE vuID '050']

See also the note 2.301.

Remark 2.301. Historical notes.

The proposition ”|A%| = |A| holds for every infinite set” is equivalent to the axiom
of choice. This was demonstrated by Tarski [23] in 1928 ; the article is online
and downloadable and contains other surprising equivalences. See also [21]
Part 1 Section 7 page 140 assertion CN6.

Jan Mycielski [18] reports: «Tarski told me the following story. He tried to
publish his theorem (stated above) in the Comptes Rendus Acad. Sci. Paris but
Fréchet and Lebesgue refused to present it. Fréchet wrote that an implication
between two well known propositions is not a new result. Lebesgue wrote that
an implication between two false propositions is of no interest. And Tarski said
that after this misadventure he never tried to publish in the Comptes Rendus».

This anecdote shows how in the past (before the works of Godel and Cohen [5] ),
even the most respected mathematician had a feeble grasp of the importance of
the Axiom of Choice.

Exercises

E2.302 Prerequisites:2.300.Let A be an infinite set. Let n € N with n > 1. Show that
|A"| = |A|. Hidden solution: [uwiccessisLe vuip '052']

E2.303 prerequisites:2.271, 2.302, 2.300. Let A be an infinite set. Show that the set of
finite parts (A) has the same cardinality as A. Hidden solution:  [uvccsstsLe vup
1054']

E2.304 prerequisites: 2.272, 2.300. Let X be an infinite set, let ~ be an equivalence
relation on X, let U = X/ ~ be the equivalence classes.

* Suppose each class is finite, show that |U| = |X|.

* Suppose U is infinite and every class has cardinality at most |U|, then |U| = |X].

Hidden solution: [vnACCESSIBLE UUID '056']

E2.305 Prerequisites:2.83,2.303,2.304.Difficulty:**.

Let V be a real vector space. Let A, B be two Hamel bases (see 2.83). Show that
|A| = |B|. (This result is known as ”Dimension theorem™)
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[04V]
(Solved on
2022-10-27)

[04X]

[04Z]

(Proposed on
2022-10-13)

(Solved on
2022-11-15)

[27H]

[051]

[053]

(Proposed on
2022-12)

(Solved on
2023-01-24)

[055]

(Solved on
2023-01-24)

[057]
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https://coldoc.sns.it/UUID/EDB/055/
https://coldoc.sns.it/UUID/EDB/056
https://coldoc.sns.it/UUID/EDB/057/
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License

§2 FUNDAMENTALS

More in general, let L, G C V, if the vectors in L are linearly independent, and G
generates V, show that |L| < |G]|.

Hidden solution: [unaccESSIBLE UuID '058']

Other interesting exercises are 9.98, 9.7.

§2.j.f Power

Recall that AB is the set of all functions f : B — A. We will write |24 to indicate the
cardinality of the set of parts of A.

Exercises

E2.306 prerequisites:2.300. Let A, B be non-empty sets and such that A is infinite and
2 < |B| < |A| then |[B4| = |24|. Hidden solution: [umaccesstaLe vup 05k’

E2.307 Let A, B be non-empty sets, suppose there is a C such that |B| = |2€| then
1B4| = max{|B|, [24]}.

Hidden solution: [unAcCESSIBLE UUID '05N']

In general in case |B| > |A| the study of the cardinality of |B4| is very complex (even
in seemingly simple cases like A = N).

§2.k Operations on sets

Exercises

E2.308 Let X be a non-empty set, and A C X. We will denote with A = X\ A ={x €
X : x ¢ A} the complement of A in X.

We define the characteristic function 14 : X — Z by

1 ifxeA

“A(X)Z{o ifxgA "

Prove that
Tace=1=-T4, Tanp=Talg , Taup=Ta +1p—T4lp

E2.309 Now consider instead the characteristic function defined as before, but consid-
eredas T, : X — Z, i.e. taking values in the group Z, (more correctly referred to
as Z/27).

In this case the above relations can be written as

HAC =I]A +1 N HAnB =]]A]]B N ]]AUB = ]]AI]B+]]A+]]B .
Recall the definition of the symmetric difference AAB = (A \ B)U (B \ A), and then

HAAB=HA+HB .

With these rules we show that
AAB = BAA , (AAB)° = AA(B®) = (A°)AB , AAB=C < A =BAC
(AAB)NC=ANCABNC), Au(BAC)=(AUuB)AA°NC)
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[05J]

(Proposed on
2022-12)

[05M]

[1YX]

[05R]

[05S]
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§2.k Operations on sets

E2.310 Let A, B, C sets, then

AXBUC)=(AXB)UAXC(C) ,
AXBNC)=(AXB)Nn(AXC) .

Therefore the Cartesian product operation is distributive on the union and intersec-
tion.

E2.311 If A, B, C are non-empty sets and
(AXB)UBXxA)=(CxC)

thenA =B =C.

Hidden solution: [unaccESSIBLE UuID '05W']

E2.312 Given four sets X,Y,A,Bwith A Cc X,B C Y, write
XxY)\(AxB)

as a union of three sets, pairwise disjoint, each a Cartesian product.

Hidden solution: [unacCESSIBLE vuID '05Y']

E2.313 We want to rewrite the tautologies seen in 2.10 in the form of set relations.

Let X be a set and let @, 3,7 C X be subsets. Let x € X. If we define A = (x € «),
B = (x € 8), C = (x € y) in the tautologies, we can then rewrite each tautology as a
formula between sets a, 3, 7, X, @, that use connectives =, N, U and the complement.

Surprisingly, rewriting can be done algorithmically and in a purely syntactic manner.
Pick a tautology seen in 2.10. In the following ¢, indicate subparts of tautology
that are well-formed formulas.

 Replace ((p) = (¥)) with ((=(@)) v (¥)) (you will get another tautology).

+ Then syntactically replace =(¢) with (¢)¢, v with U and A with n; replace A
with a, B with 8, C with y, V with X, and F with @.

* Finally, if the formula contains at least one ” <= ”, transform them all in ”=";
otherwise add ”= X” at the end.

Check that this “algorithm” really works!

E2.314 Let X be a set. Let I,J families not empty of indexes, and for every i € I let
J; € J a family not empty of indexes. For eachi € I, j € Ijlet A; j C X. Show that

=
N U4, =UN4so

i€l jelJ; BEB iel

where B = Hie ;Ji and remember that every 8 € Bis a function 8 : I — J for which
for every i you have (i) € J;. Then formulate a similar rule by exchanging the role
of intersection and union. (use the complements of the sets A; ; and the rules of de
Morgan). Hidden solution: [un4ccESSIBLE vUID '061']
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§2 FUNDAMENTALS

§2.k.a Limsup and liminf of sets

Definition 2.315. Given A}, A, ... sets, for n € N, we define

[s9) o0
limsupA, = () | Ax (2.316)
h=oo n=1k=n
o0 [s9)
o def
liminf A, = U N Ax (2.317)
n=1k=n
(2.318)
We suppose that A,, C X for every n. (We can set X = UnAn).
Exercises
E2.319 Recall that
A=X\A={xeX:x¢A}
is the complement of A in X (as defined in 2.42). Show that
(limsup A,,)¢ = liminf(AS,) .
n—oo n=co
E2.320 Prerequisites:3.56. Show that
limsupA4,, = {x€X:x€A, frequentlyinn} , (2.321)
n—oo
liminfA, = {x€X :x€A,eventuallyinn} . (2.322)
n—>oo

(“Frequently” and ”eventually” are discussed in Sec. §3.g).

E2.323 prerequisites:2.320, 3.61. Givensets Aj, A, ... and By, B, ..., for n € N, say if
there is a relation (of equality or containment) between

(liminfA,) N (liminf B,) liminf(A, N B,) , (2.324)
n—oo n—oo n—oo

(liminfA,) U (liminf B,) liminf(A, UB,) . (2.325)
n—oo n—oo n—oo

If equality does not hold, show an example. Then use 2.319 to establish similar rules
for limsup, , _Aj.

Hidden solution: [unACCESSIBLE UUID '066']

§2.1 Combinatorics

Exercises

E2.326 Let be given n, k natural with k > 1. How many different choices of vectors
(jis --- ji) of natural numbers are there such that j; + --- + j, = n ? How many
different choices of vectors (jy, ... ji) of positive natural numbers are there such that
J1+ -+ + jx = n? Hidden solution: [uwaccessIsLE vuID '09P']

E2.327 Let n, m be positive integers and let I = {1, ..., n},J = {1, ... m}.
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§2.1 Combinatorics

* How many functions f : I — J are there?
* How many functions f : I — J are injective?
» How many functions f : I — J are strictly growing?

* How many functions f : I — J are weakly increasing?
Hidden solution: [unAcCESSIBLE UUID '09R']

See also exercise 2.265.
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§3 NATURAL NUMBERS

83 Natural numbers [1xe]
We want to properly define the set
N=1{0,1,2,..}

of the natural numbers.

A possible model, as shown in Sec. §2.h, is obtained by relying on the theory of
Zermelo—Fraenkel.

Here instead we present Peano’s axioms, expressed using the naive version of set
theory.

Definition 3.1 (Peano’s axioms). [1XB]
(Solved on
(N1) There is a number 0 € N. 2022-11-03)

(N2) There is a function S : N — N (called ”successor”), such that ™

(N3) S(x) # 0 for each x € N and

(N4) S is injective, that is, x # y implies S(x) # S(y).

(N5) If Uis a subset of N such that: 0 € UandVx,x € U = S(x) € U, then U = N.
We will often write Sn instead S(n) to ease notations.

From those two important properties immediately follow. One is the principle of
induction, see 3.4. The other is left for exercise.

Exercise 3.2. Show that every n € N with n # 0 is successor of another k € N,  [1vp]
proving by induction on n this proposition

P(n) £ (n=0)v 3k € N,Sk) = n)
This shows that the successor function
S :N-N\{o0}

is bijective.
If n # 0, we will call S~1(n) the predecessor of n.
Hidden solution: [unaccESSTBLE UUTD '22q']
(Part of this result applies more generally, see 2.242)

The idea is that the successor function encodes the usual numbers according to the
scheme
1=5(0), 2=S51), 3=S(2)..

and (having defined the addition) we will have that S(n) = n + 1.

Exercise 3.3. prerequisites:3.3.Removing one of the axioms (N1)—(N5), describe a set  [1xp]
that satisfies the others but it is not isomorphic to natural numbers.
Hidden solution: [unaccessIBLE uuID '22v']
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§3.a Induction

§3.a Induction [27J]

Proposition 3.4 (Induction Principle). Let A D N and P(n) be a logical proposition  [1xc]
that can be evaluated for n € A. Suppose the following two assumptions are satisfied:

» P(n) is true for n = 0 and
* VneN,P(n)=> P(S(n)) ;
then P is true for every n € N.

Proof. LetU ={n € N : P(n)}, we know that 0 € U and that Vx,x € U = S(x) € U
, then from (N5) we conclude that U = N. O

The verification of P(0) is called the ”basis of induction”, while the verification
of Vn € N, P(n) = P(S(n)) it is called inductive step” (in which P(n) is taken as a
hypothesis, and is called ”inductive hypothesis”).

Exercises
E3.5 Prove that Vn € N,n # S(n). [1XF]
Hidden solution: [unACCESSIBLE UUID '1XJ']
E3.6 Prove " by induction the following assertions: [1xG]
n _ n(n+1)
1. Zk:l k= .
n 2 _ n(n+1)(2n+1)
2. Zk=1k ==
n 3 _ ni(n+1)?
3. Zk=1 k= —
n 1 n
4. Zk:l 4k2-1 ~ 2n+1’
n k n+2
5. Zk:lz_k =2_2_n’
6. nl > 2n-1.
7. If x > —1 is a real number and n € N then (1 + x)" > 1 + nx (Bernoulli
inequality).

Hidden solution: [unAcCESSIBLE UUID '1XK']

§3.b Recursive definitions [274]

Theorem 3.7. [08z]
Let A be a non-empty set; suppose that a € A is fixed, and functions g,, : A - A

are given, one for each n € N. Then there exists an unique function f : N — A such

that

* f(0) = a, and

T36We are using the same word successor used in the definition 2.241 for well ordered sets, and in 2.193 in
Zermelo-Fraenkel theory: we will see how these definition are “compatible”.

371n the following exercises we give for good knowledge of the operations typical of the natural numbers,
and their order relation.
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§3 NATURAL NUMBERS

« for every n € N we have f(S(n)) = g,(f(n)).
We will say that the function f is defined by recurrence by the two previous conditions.

Proof. Trace of proof. Note that the proof only uses Peano’s axioms and induction.
Given m € N,m # 0 we recall that S~!(m) is the predecessor, see 3.2 (using the
arithmetic we may write

ST\ m)y=m—-1, Sk)y=k+1

but this theorem is needed to define the arithmetic...) For any given R C N X A we
define the projection on the first component

n(R)={neN,Ix € A,(n,x) € R}.
Consider the family F of relations R C N X A that satisfy
(0,a) R (*)

Vn>0,Vy € A, (n,y) € R= (S(n),gn(y)) € R )

We show that under these conditions 7(R) = N; we know that 0 € 7(R); if m €
7(R), then there exists x € A for which (m,x) € R from which for ** follows
(S(m), g,,(x)) € R, and we obtain S(m) € m(R).

The family # is not empty because N X A € F. Let then T be the intersection of all
relations in #. T is therefore the least relation in ¥.

It is possible to verify that T satisfies the previous * and ** properties. In particular
7(T) = N.

We must now show that T'is the graph of a function (which is the desired f function),
that is, that for every n there is a single x € A for which (n,x) € T.

Let A, = {x € A,(n,x) € T}; we write |A,| to denote the number of elements in
A,; since 7(T) = N then |[A,| > 1 for every n. We will show that |A,| = 1 for each n.
We will prove it by induction. Let

P(n) = |Ap| =1

Let’s see the induction step.

Suppose by contradiction that |A,,| = 1but |Ag,,| > 2; morally at m the graph of the
function f “forks” and the function becomes "multivalued”. We define for convenience
w = gu(x),k = Sm; we may remove some elements to T (those that do not have a
”predecessor” according to the relation **) defining

T=T\{ky) :y€Ay#w}

it is possible to show that T satisfies * and **, but T would be smaller than T, against
the minimality of T. To prove that P(0) holds, we define k = 0, w = a and proceed in
the same way.

The previous reasoning also shows that the function is unique, because if the graph
G of any function satisfying to * and ** must contain T, then T = G. O

More generally given g,, : A" — A, an unique function f : N — A exists, such
that f(0) = a and for every n € N f(S(n)) = g,(f(0), f(1), ... f(n)).
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§3.c Arithmetic

Exercises

E3.8 prerequisites:3.7.Adapt the exercise 3.7 to define the Fibonacci sequence, which
satisfies the rule

ap=1, ag=1 , a,=a,_1+a,_,

forn > 2.

Hint. You don’t have to rewrite the whole proof of 3.7, rather choose A = N? and
choose g with cunning.

Hidden solution: [unaccESSIBLE vuID '1x8']

E3.9 Define the interval
I, ={0,...n}

of natural numbers using a recursive definition (without using the order relation).

Hidden solution: [uniccESSIBLE vuID '295']

§3.c Arithmetic
We will define the addition operation between natural numbers, formally
c+-:NxXN->N , (hk)y»h+k

Definition 3.10. Having fixed the parameter h € N, we define the operation h + -,
which will be a function f;, : N — N given by f,(n) = h + n, using a recursive
definition: we wish to express the rules

eh+0=h |,
e VneN,h+Sn)=Sth+n)

To this end, set A = N, and g(n, a) = S(a), we rewrite the above as recursive rules for

T
° fh(o) =h ’
* Ve N, f(S(n)) = g(n, fu(n)) = S(fr(n))

This defines recursively f,. Considering then the parameter h as a variable, we have
constructed the addition operation, and we define the operation ”+” between natural
numbers as h + n = f,(n).

This operation is commutative and associative, as shown below.

Note that h + 0 = f,(0) = h (basis of recursion); also 0 + n = fy(n) = n (shows
easily by induction).

To prove that it is commutative, we first show that

Lemma 3.11. Vn,h € N, fg,)(n) = S(fn(n))
Proof. Recall that S(f,(n)) = f,(S(n)) by recursive definition; Consider

P(n) =Vh €N, fsim)(n) = S(fu(m)
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P(0) is the clause
Vh €N, fsn)(0) = S(/,(0)) = S(h)

which is true because it is the initial value of the recursive definition fg(;) and fj. For
the inductive step we assume that P(n) is true and we study P(S(n)), within which we
can say

FsnSm) L Sz ) 2

SS(fu(m) 2 S(fu(S(n))

where in (1) we used the recursive definition of f;, with S(h) instead h, in (2) we used the
inductive hypothesis, and in (3) we used the recursive definition of f;,. This completes
the inductive step.

(Note, in the first step, how important it is that in the definition of P(n) there is
Vh eN,...). O

Proposition 3.12. (Replaces 27v) Addition is commutative.
Proof. By the lemma we can write
Sthy+n=S(h+n)=h+Sn) (3.13)

intuitively the formula is symmetric and therefore also the definition of addition must
def

have a symmetry. Precisely, let f,(h) = f,(n) then £,(0) = n (as already noted) and for
the lemma 3.11 f,(S(h)) = S( fn(h)) but then f satisfies the same recursive relation as

f and therefore they are identical, so f,,(n) = f,,(h). (The idea is that if we had defined
addition. recursively starting from left instead of right, we would have achieved the
same result). O

At this point we can give a name to 1 = S(0) and notice that S(n) = n+ 1. So from
now on we could do without the symbol S.
With similar procedures we show that addition is associative.

Proposition 3.14. Addition is associative.

Proof. Consider
P(hy=VnmeN,mn+m)+h=n+m+h) ;

Obviously P(0) is true, moreover P(Sh) is proven (omitting *Vn, m € N”) like this
(n+m)+Sh=S(n+m)+h:(Sn+m)+hP(=n)
=Sn+(m+h)=n+Sm+h)=n+ (m+ Sh)J

Multiplication is similarly defined.

Definition 3.15. We fix the parameter m, and we define recursively (m X -) through
*mx0=0
eVneNmXxn+1l)=mxXn+m;

then we can prove the known properties (commutativity, associativity, distributiv-
ity).
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Exercises

E3.16 Rewrite some notions seen above, such as the principle of induction, and the
definition of addition, using n + 1 instead of S(n).

E3.17 Show that the function f,,(n) = (h+n) is injective. Hidden solution: [vnaccessisLe
UUID '27T']

E3.18 Prove the cancellation property: if n + h = m + h then n = m.

Hidden solution: [uniccESSIBLE UUID '286']

E3.19 Wehave n+m = 0if and only if n = 0Am = 0. Hidden solution: [vviccessiBLE
UUID '285']

E3.20 Youhave nxm = 0ifand only if n = Ovm = 0. Hidden solution: [vwaccessisLe
UUID '284']

E3.21 Prove that multiplication is commutative. Hint prove by induction in n
VmneN,(m+1)Xn=mxn+n |,
then reason as in Prop. 3.12. Hidden solution: [uwvaccessiBLE vuID '28W']
E3.22 Show that addition distributes over multiplication. Hint prove by induction in i
Vm,nheN, mx(n+h)=mxn+mxh
Hidden solution: [vwAccEsSIBLE vuID '28v']

E3.23 prerequisites:3.22. Show that multiplication is associative. Hint prove by induc-
tion in h
Vm,n,h e N,(mxn)xh=mx(nxh)

Hidden solution: [unaccESSIBLE UuID '28X']

E3.24 Fixn # 0and h € N, write a recursive definition of exponentiation n". Then
prove that n"+* = p"nk and (n")k = n("o,

Hidden solution: [vnAcCESSIBLE UUID '2DG']

In the following we will simply write nm instead of n X m.

§3.d Ordering

Hypothesis 3.25. We will study an order relation < on N (not necessarily total) such
that

VxeN,(0<x) , (3.26)

Vx,yeN,(x<Sy) < (x<y) ; (3.27)

where as usual

x<y=x<yAx#y)
Theorem 3.28. There is an unique order relation < on N such that (3.27),(3.26) in
3.25 hold, and this ordering is well-ordered.

This theorem will be proven in the following: uniqueness in 3.29, well ordering in
3.53. The existence of such ordering is justified by the model in Z-F, as seen before and
summarized in Section §3.e; otherwise the ordering can be defined using arithmetic, as
shown in Section §3.d.a.
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Exercises

E3.29 Suppose that < is a (possibly partial) order relation on N satisfying (3.27),(3.26)
in 3.25 then < is unique. Hidden solution: [unaccEssIBLE vuID '270']

E3.30 Let
B.={zeN,z < x}

show that

Vx,yeEN,B=B=>x=Yy

using the properties in Hypothesis 3.25.
Hidden solution: [unaccessisLe vuip '272']

(Note the similarity with 2.232).
E3.31 By setting n = x = y in (3.27) we obtain that n < Sn.

E3.32 prerequisites:3.31,3.25.Using the properties in 3.25 and assuming that < is a total
order relation (as will be proven), prove that

vn,m e N,(n < m)= (Sn < Sm)

Hidden solution: [unaccessIBLE vuID '278']

E3.33 If < is a total order on N then these are equivalent

Vx,yeN,(x<y<Sx)=(x=yvy=S8x) , (3.34)
Vx,y eN(x <8Sy) < (x=<y) ; (as in (3.27))
Vx,y eN(x<y) < (Sx=<y) . (3.35)

Note the analogy with 2.197

Hidden solution: [unACCESSIBLE UUID '296']

§3.d.a Ordering from arithmetic

Having already defined arithmetic, a convenient definition of ordering is as follows.

Definition 3.36. Given n,m € N, we will say that n < m if there exists k € N such
thatn+k =m

We will show that < it is a total order relation, and is a well ordering. Let’s first see
some elementary but fundamental properties.

Lemma 3.37. Letn,m,k € N.
1. For everynwe have 0 < n

2. n < mifandonly if n < S(m).
Note that these two points satisfy (3.27),(3.26) in 3.25

3. For every n we have n < S(n)

4. n < mifandonly if S(n) < m.
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§3.d Ordering

5. If n < m < S(n) then m = n or m = S(n).

The proofs are left as exercise 3.42. (After we will prove that the relation is total, then
by 3.33 the last two are equivalent.)

Proposition 3.38. < is an order relation.
Proof. Reflexive property: n + 0 = n. Antisymmetric property: if n + k = m and
m + h = n then n + k + h = n therefore by cancellazione 3.18 h + k = 0, and for

3.19 h = k = 0 so n = m. Transitive property: if n + k = m and m + h = p then
n+k+h=np. [

Hence this relation “<” defined in 3.36 satisfies the principle 3.25; we will show
that any such ordering is a well order; here we present though a self contained proof for
this specific case.

Proposition 3.39. < is a total order relation.
Proof. Consider the proposition
Pn)=VmeN,n<mvm<n
then P(0) is true. Let’s assume P(n); let’s fix an m;
« if m < nthen m < S(n), by the lemma (point 2), so P(Sn) holds;

« if ="m < n but P(n) holds, then n < m must hold, but it cannot be n = m, so
n < m holds: but then S(n) < m by the lemma (point 4);

in any case P(S(n)) is proven starting from P(n). O
Proposition 3.40. < is a well ordering.

Proof. Trace of proof. By Lemma 3.37 (point (2)) we know that this relation satisfies
the strong induction principle 3.49; so we can prove that any non empty subset has
a minimal element as in Esercise 3.52; but we know that the ordering is total, so the
minimal element is the minimum. O

Definition 3.41 (Subtraction). Ifm > n, there exists an unique h such thatm = n+h
(uniqueness follows from 3.18); we will indicate this h as m — n.

Exercises

E3.42 Show properties in 3.37. Hidden solution: [unAccESSIBLE UuID '28F']

E3.43 Show that if n < m then m —n < m. Hidden solution: [unicceEsSIBLE UuID '28H']
E3.44 Show that if n # 0 then n X m > m. Hidden solution: [unvACCESSIBLE uuID '28P']

E3.45 Topics:Euclidean division.
Prove that, given d,n € N,d > 1, two numbers q,r € N,0 < r < d exist and are
unique for which n = q X d 4 r (where n is the ”dividend” d is the ”divisor”, q is the
”quotient” and r is the "remainder”) Hidden solution: [uwvaccEssIBLE vuID '28K']
E3.46 (Replaces 282)
Let h # 0, prove that if n X h = m X h then n = m. (Sugg. use subtraction)
Hidden solution: [vwaiccesSIBLE vuID '285']

In particular the map n — n X h is injective.
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§3.d.b Ordering and arithmetic [28Q]
The ordering is compatible with arithmetic.
Proposition 3.47. [28R]

* (Addition and ordering compatibility) You have n < m if and only if n + k <
m+ k.

* (Multiplication and ordering compatibility) When k # 0 you have n < m if and
onlyifn Xk <mxk.

In particular (remembering 3.46) the map n — n X h is strictly increasing (and hence
injective).

Proof. We will use some properties left for exercise.

 If n < m, by definition m = n+h, thenn+k < m+kbecause m+k = n+h+k
(note that we are using associativity). If n+ k < m + k let then j the only natural
number such that n + k + j = m + k but then n + j = m by cancellation 3.18.

s Ifn<mthenm =n+ htherefore mxk=nXxXk+hXxXksonxk<mxk.
Vice versa let k # 0and n X k < m X kie nXk+ j = mXx k: divide j
by k using the division 3.45, we write j = q X k + r therefore for associativity
(n+ q) X k +r = m X k but for the uniqueness of the division r = 0; eventually
collecting (n + q) X k = m X k and using 3.46 we conclude that (n + q) = m.

O

§3.e Z-F and Peano compatibility [26F]

Let’s go back now to the model N of N built relying on the theory of Zermelo—Fraenkel,
seen in Sec. §2.h. We want to see that this model satisfies Peano’s axioms.
Recall that, given x (any set, not necessarily natural number) the successor is de-
fined as
S(x) = xu{x}

It’s easy to see that N1 and N3 are true. The N5 property follows from the fact that
Np is the smallest set that is S-saturated. N2 and N4, derive from 2.200.

We moreover saw in Theorem 2.208 that the relation C satisfies the requisites of
Hypothesis 3.25.

§3.f Generalized induction, well ordering [27M]

Proposition 3.48 (Generalized induction). Let N € N, and let P(n) a be logical [1xr]
clause, true for n = N and such that

Vn > N, P(n)=> P(S(n)) ,
then P is true for every n > N.

Let us now present the principle of strong induction.
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83.f Generalized induction, well ordering

Proposition 3.49 (Strong Induction). Assume that a (partial) order associated to N
satisfies 3.25. Let P(n) be a logical clause, true for n = 0 and such that

Vn e N, ((Vk < n,P(k)) = P(Sn)) (3.50)

then P is true for every n € N.

This principle is apparently stronger than the usual one; but we’ll see that it is in
fact equivalent.

Even this result can be generalized by requiring that P(N) is true, and writing the
inductive hypothesis in the form *Vk,N < k < n, P(k)”: you will get that P(n) is true
forn > N.

Note that the principle of well ordering is in some sense equivalent to the principle
of induction; see 3.55.

Exercises

E3.51 Prerequisites:3.25,3.4.Difficulty:*.
Use the induction principle 3.4 to demonstrate the strong induction principle 3.49

Warning: use the properties in Hypothesis 3.25, but do not assume that < is a total
order: indeed this result is needed to prove it.

Hidden solution: [uNACCESSIBLE uuID '1xQ']

E3.52 Prerequisites:3.25,3.49.Difficulty:*.

Assume that a (partial) order < associated to N satisfies 3.25. Use the strong induc-
tion principle 3.49 to show that every non-empty A C N contains a minimal element,
ie.

dJa€eA,VbeA, a(b<a)

Hidden solution: [unAccESSIBLE vuID '1xZ']

E3.53 prerequisites:3.30,3.52,2.240. Use the prerequisites to prove that (N, <) is well or-
dered.

E3.54 prerequisites:3.49.Use strong induction to show that every n > 2 factorizes into
the product of prime numbers.

Hidden solution: [uNACCESSIBLE UUID '1xV']

E3.55 pifficulty:+. Let A be a well-ordered set ¢ by the order <; let m = minA;
then for propositions P(a) with a € A you can use a proof method, called transfinite
induction, in which

 P(m) is required to be true, and

« the following ”inductive step” is proven:

Vn e N((Vk < n,P(k)) = P(n))

385 defined in 2.235.
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§3 NATURAL NUMBERS

Show that if the proposition P satisfies the previous two requirements, then Vx €
A, P(x).

Prove also that if A = N then the ”inductive step” is equivalent to the inductive step
of strong induction (defined in 3.49).

Other exercises regarding ”induction” are: 8.9

§3.g Frequently, eventually [266]

Let N be the natural numbers.

Definition 3.56 (frequently, eventually). Let P(n) be a logical clause that depends on  [018]

a free variable n € N. We will say that (Solved on
P(n) holds eventually in n if dm € N,Vn € N with n > m, P(n) holds ; 2022-10-27)
P(n) frequently holds in n if Vm € N,3dn € N with n > m for which

P(n) holds.

This definition is equivalent to definition 5.14 for real variable x — oo; it can be
further generalized, as seen in 2.125.

Remark 3.57. In Italian frequentemente (for frequently) and definitivamente (for r23a]
eventually) are commonly used in text books; whereas in English these terms are not
widely used.™

Exercises

E3.58 Note that «P(n) holds eventually in n» implies «P(n) holds frequently in n». [019]
Hidden solution: [uNACCESSIBLE UUID '01B']

E3.59 Note that «(non P(n)) holds frequently in n» if and only if «non (P(n) holds r[o1c3
eventually in n )».
Hidden solution: [unaccessisLe vuip '01p']

E3.60 Note that «P(n) holds frequently in n» if and only if «P(n) holds for infinitely  [o1r]
many n».

(This equivalence is not true in a generic ordered set. See instead 2.126 for the correct
formulation).

E3.61 Let now P(n), Q(n) be two propositions. [016]
. . . (Solved on
+ Say what implications there are between 2022-10-27//

parte)

— ”(P(n) A Q(n)) is valid eventually” and
— ”P(n) is valid eventually and Q(n) is valid eventually”.
+ Similarly for propositions
— ”(P(n) v Q(n)) is valid eventually” and
— ”P(n) is valid eventually or Q(n) is valid eventually”.
Also formulate similar results for the notion of ”frequently”.
Hidden solution: [uvACCESSIBLE UUID '01H']

E3.62 Let again P(n), Q(n) be two propositions. If ”P(n) is valid eventually and Q(n) 2961
is valid frequently” then ”(P(n) A Q(n)) is valid frequently”.

39With some notable exceptions, such as [14]
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84 Groups, Rings, Fields
We review these definitions.

Definition 4.1. Agroup is a set G equipped with a binary operation *, that associates
an element a % b € G to each pair a,b € G, respecting these properties.

1. Associative property: for any given a,b,c € G we have (a *b) xc = a (b *c).

2. Existence of the neutral element: an element denoted by e such that axe = exa =
a.

3. Existence of the inverse: each element a € G is associated with an inverse
element a', such that a = a’ = a’ * a = e. The inverse of the element a is often
denoted by a™! (or —a if the group is commutative). ™°

A group is said to be commutative (or abelian) if moreover a « b = b * a for each pair
a,b eG.

Definition 4.2. Aring is a set A with two binary operations
* + (called sum or addition) and

* - (called "multiplication”, also indicated by the symbol X or %, and often omit-
ted),

such that
* A + is a commutative group (usually the neutral element is denoted by 0);

* the operation - has neutral element (usually the neutral element is indicated by
1) and is associative;

 multiplication distributes on addition, both on the left
a-(b+c)=(a-b)+(a-c) Va,b,ceA
and on the right

(b+c)-a=(b-a)+(c-a) Va,b,ceA

Aring is called commutative if multiplication is commutative. (In which case the right
or left distributions are equivalent.)

We assume that 0 # 1 (otherwise {0} would be a ring).

Examples of commutative rings are: integer numbers Z, polynomials A[x] with
coefficients in a commutative ring A.

An example of a non-commutative ring is given by matrixes R"*", with the usual
operation of multiplication and addition.

Definition 4.3. A field F is a ring in which multiplication is commutative, and every
element x € F with x # 0 has an inverse x~! for multiplication.
(So F \ {0} is a commutative group for multiplication, see 4.13).

Some field examples are: rational numbers @, the real numbers R and the complex
numbers C.
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Remark 4.4. Typically™' you use the notations on the left instead of the writings on

the right (where x, y, z are in the field and n is positive integer)

x—y x+(=y)
)_C x.y_l
y

xX+y+z| (x+y)+x
xyz (x-y)-z
nx X+ ..+X
n times
x" X+t X
|
n times
x N (x—l)n

Precisely, nx means ”add x to itself n times”; the operation n — n - x can be defined
recursively setting 0 - x = 0and (n + 1) - x = n - x + x. Similarly x™ means ”multiply
X by itself n times”: see the exercise 4.21.

Remark 4.5. Hurwitz’s theorem [39] asserts that if V is a field and is also a real
vector space with a scalar product, then V =R or V = C.

Definition 4.6. An ordered ring F is a ring with a total order relation < for which,
for every x,y,z € F,

e xLy=>x+z<y+z
*xX,y=20=>x-y2>0.

Due to 4.13, if F is a field, in the second hypothesis we may equivalently write x,y >
0= x -y > 0. (Regarding the second hypothesis, see also 4.14) For further informa-
tions see the references in [32]. We will assume that in an ordered ring the multiplica-
tion is commutative.

Examples of ordered field are: rational numbers Q the real numbers R. The complex
numbers C do not allow an ordering satisfying the above properties (see exercise 4.19).

Definition 4.7. An ordered field F is archimedean if Vx,y € F withx > 0,y > 0
there is a n € N for which nx > y. (See 4.4 for the definition of nx).

42

Exercises

E4.8 The neutral element of a group is unique. Hidden solution:
'1ZN']

[UNACCESSIBLE UUID

E4.9 In a group, the inverse of an element is unique. Hidden solution: [unvaccessisLE

UvID '1ZQ']

E4.10 Having fixed an element g € G in a group, the left and right multiplications

T40The notation @~ is justified by the fact that the inverse element is unique: cf 4.9.
T41Taken from 1.13 in [22]
T42parts of the following exercises are from Chap. 2 Sec. 2 in [2], or Chap. 1 in [22].
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Ly:G—GandRgy: G — G
Lg(h)=g*h, Rg(h)=hx*g
are bijections.
E4.11 Prove' that in a group: [1ZR]

1. fx+y=x+ztheny =z.
2. Ifx+y=xtheny =0.

3. Ifx+y=0theny = —x.
4

. —(=x) = x.
E4.12 Prove™ that in a ring: [12s]
1.0-x=0
2. (=x)y = —(xy) = x(=y).
3. (=x)(=y) = xy.
4. (-)x = —x.

Hidden solution: [unicCESSIBLE UUID '299']

E4.13 Consider the property [203]
Vx,y€EA,x-y=0=>x=0vy=0
this property may be false in a ring A; if it holds in a specific ring, then this ring is
said to be an integral domain [41].
Show that a field F is always an integral domain. Consequently F \ {0} is a commu-

tative group for multiplication. Hidden solution: [uvwaccessiBLE vuip '204']

E4.14 Suppose that in aring A there is a total ordering < such that forevery x,y,z € A  [1z71]
you have x < y = x + z < y + z; then show that these are equivalent
*x<yA0Lz => x-zZy-z
*+x>20Ay>0 = x-y2>0.

E4.15 prerequisites:2.101,4.12,4.14. Prove '* than in an ordered ring F: [1zv]

. for each x € F,x? > 0, in particular 1 = 1°> > 0;
. x>0=>—-x<0
LY>Xx=>-y<—Xx;

.X2aANy2b=>x+y>a+b;
.X>aAy>2b=>x+y>a+b;

1

2

3

4. x<yna0=>a-x2a-y;

5

6
7.Xx2a20Ay>2b>0=>x-y>a-b;

43[20] Prop. 1.14
7L““[ ] Prop. 1.16
T45From Cap. 2 Sec. 7 in [2], or [22] Prop. 1.18
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Prove than in an ordered field F:

1. x>a>0Ay>b>0=>x-y>a-b;

2.x>0=>x71>0;

3.y>x>0=>x1>y1>0;

4. x -y > 0if and only if x and y agree on sign (i.e. either both > 0 or both < 0);

Hidden solution: [unicCESSIBLE UUID '29B']

E4.16 In an ordered field F we call P = {x € F . x > 0} the set of positive (or zero)
numbers; it satisfies the following properties: ™6

* X, yEP=>Xx+y,x-y€P,
e Pn(—P)={0}and
« PU(-P)=F.

vice versa if in a field F we can find a set P C F that satisfies them, then F is an
ordered field by definingx <y < y—x € P.

E4.17 Not all fields are infinite sets. Consider X = {0,1} and operations 0 + 0 =
1+41=0,0+1=14+40=1,0:0=0-1=1-0=0and1-1 = 1. Check that it is
a field. Show that it cannot be an ordered field.

E4.18 Consider the ring of matrixes R?*? let’s define
01 0 1
=) - emoo)

0 0 1 0
as=(o ) . ma=(y o)

you conclude that the ring of matrixes is not commutative.

then check that

E4.19 Show that there is no ordering < on C such that (C, <) is an ordered field.
Hidden solution: [unAccEsSIBLE UuID '20S']

E4.20 Let’s fix an integer N > 2 that it is not a perfect square. Consider the subset F
of R given by the numbers x that can be written as x = a + b\/ﬁ, with a,b € Q; we
associate the operations of R: show that F is a field. Hidden solution: [vvaccessiBLE
UUID '201']

E4.21 Let F be a field; given a # 0 and h € N consider the recursive definition
of exponentiation a” defined from a® = 1 and a("*?) = a” . a; then prove that
altk = ghak and (a)k = a"b for every k, h € N.

E4.22 prerequisites:4.21.Given a # 0 in a field, define that «® = 1 and let " be the
multiplicative inverse of " when n > 1 natural. (Use 4.21). For n,m € Z show

that
g™ = ttm (ah)k — a(hk)

if the field is ordered and a > 1 show that n — «" is strictly monotonic increasing.

Copyright A. C. G. Mennucci 73
The sections comprising theory and exercises’ statements are released under License WP:CC BY-SA

[1ZX]

[1ZY]

[1ZZ]

[osv]

[200]
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E4.23 Let F be a commutative ring, a,b € F, n € N then [205]

(a+b)* = Z (Z)a”‘kbk

k=0

N\ n!
(k) ~ kli(n—k)!

is called the ”binomial coefficient”. (This result is known as the binomial theorem,
Newton’s formula, Newton’s binomial). To prove it by induction, check that

)= () )

where the factor

foro<k,k+1<n.

T46From Chap. 2 Sect. 7 in [2]
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§5 REAL LINE

85 Real line

We will indicate in the following with R the real line, and with R = R U {+c0, —oo} its
extension. ™
We will use intervals (see definition in 2.141).

Remark 5.1. Given a set I C R there are various ways of saying that a function
f : I - R is monotonic. Let’ first list the different types of monotonicity

Vx,y € Lx <y = f(x) < f(y) (5.2)
Vx,y € Lx <y => f(x) < f(y) (5.3)
Vx,y e Lx <y = f(x) > f(y) (5.4)
Vx,yelLx<y= f(x)> f(y) (5.5)

Unfortunately in common use there are different and incompatible conventions used
when naming the previous definitions. Here is a table, in which every convention is a
column.

(5.2) | non-decreasing | increasing weakly increasing
(5.3) | increasing strictly increasing | strictly increasing
(5.4) | non-increasing | decreasing weakly decreasing
(5.5) | decreasing strictly decreasing | strictly decreasing

In this text, the convention in the last column is used.

(The first column is, in my opinion, problematic. It often leads to the use, unfor-
tunately common, of phrases such as ”f is a non-decreasing function” or "we take a
function f not decreasing”; this can give rise to confusion: seems to say that f does
not meet the requirement to be ”decreasing”, but it does not specify whether it is mono-
tonic. People who follow the convention in the first column (in my opinion) should
always say “monotonic”).

Exercises

E5.6 Prerequisites:2.146.

Show that any interval I in R falls in one of the categories seen in 2.142. Hidden
solution: [UNACCESSIBLE UUID '09Z']

E5.7 prerequisites:4.22.Let & > 0, € R be fixed. We know that, for every natural
n > 1, there exists an unique 8 > 0 such that 8" = «, and f is denoted by the
notation '{/&. (See e.g. Proposition 2.6.6 Chap. 2 Sec. 6 of the course notes [2] or
Theorem 1.21 in [22]). Given q € Q, we write ¢ = n/m withn,m € Z,m > 1, we

define
ad = Rfan
Show that this definition does not depend on the choice of representation q = n/m;

that "
«=(Ya)"

that for p,q € Q
adaP = aP*tl | (aP)? = alPD

show that when a > 1 then p — aP is strictly monotonic increasing.
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§5.a Neighbourhoods

E5.8 Prerequisites:5.7.Difficu1‘cy:*.HaVil’lg fixed o > 1, we define, for x € R,
o =supfa? : peQ,p<x} ;
show that:

+ this is a good definition (i.e. that the set on the right is bounded above and not
empty).

« Iff x is rational then a* (as above defined) coincides with the definition in the
previous exercise 5.7.

* show that x — o is strictly increasing.

» Show that
axay = ax+y s (ax)y — a(xy)

See also the exercise 13.5.

E5.9 Leta,b € R be such that
VLER,L>b=>L>a

Prove that b > a.

E5.10 FixI ={1,... n}. Let n distinct points y;, ... y, € Rbe given; letc : I — Ibea
permutation for which triangle inequalities between successive points are equalities
ie.

Yoi+2) = Yol + Vati+1) = Yoyl = Vati+2) = Yo

fori =1, ... n—2. Show that there are only two, we call them o3, 0,. Tip: Show that
any such permutation necessarily puts the points ”in order”, i.e. you have

Vi, Yo ii41) > Vor(i) Vi Yoy(iv1) < Voy(i)

(up to deciding which is o; and which is ;).

Hidden solution: [unaccESSIBLE vuID '0B1']

§5.a Neighbourhoods

Neighbourhoods are a family of sets associated with a point x, € R, or Xy = *o0. The
neighbourhoods are sets that contain an “example” set. Let’s see here some definitions.

Definition 5.11 (Neighbourhoods).  The deleted neighbourhoods (sometimes called
punctured neighbourhoods) of points x, € R are divided into three classes.

* Neighborhoods of xq € R, which contain a set of the type (x¢—&, Xo)U(xq, X¢+6)
foraéd > 0;

* right neighborhoods of x, € R , which contain a set of the type (xq, Xo + 6) for
ad>o;

* left neighborhoods of x, € R , which contain a set of the type (x, — &, x,) for a
d>0;

T47The topological structure of R will be discussed further in 7.31.
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In any case, the deleted neighborhoods must not contain the point x,. The ”full” neigh-
borhoods are obtained by adding x,. The ”full neighborhoods” are the base for the
standard topology on R.

To the previous ones we then add the neighborhoods of +oo:

* neighborhoods of oo , which contain a set of the type (y, o) as y € R varies;

* neighborhoods of —co , which contain a set of the type (—0,y) as y € R varies;
In this case we do not distinguish ”deleted” neighborhoods and ”full” neighborhoods.

Exercise 5.12. Prerequisites:2.110.Difficulty:+. Let Xy € R and F all the neighbour-
hoods of x,. We associate the ordering

LIEF I<] & I2J

show that this is a filtering ordering.

(This holds both for “deleted” and for “full” neighbourhoods; for ‘left”, “right”,
or “bilateral” neighbourhoods).

(See also 7.15 for the similar statement in topological spaces).

§5.b Frequently, eventually
We will write R for R U {£o0}.

Definition 5.13 (accumulation point). Given A C R, a point x € R is called
accumulation point for A if every deleted neighborhood of x intersects A.

Definition 5.14 (frequently, eventually). LetI C R beaset, X, € R an accumulation
point for I. Let P(x) be a logical proposition that we can evaluate for x € 1. We define
that

”P(x) holds eventually for x tending to | there is a neighborhood U of x, Vx €
Xo” if UnI, P(x)istrue ;

”P(x) frequently holds for x tending to | for every neighborhood U of x, 3x €
Xo” if U NI for which P(x) ;

where it is meant that the neighbourhoods are ”deleted”.

Remark 5.15. As already seen in 3.59, again in this case the following two proposi-
tions are equivalent.

* ”not ( P(x) definitely applies, for x tending to X, )”,
o ” ( not P(x) ) frequently applies, for x tending to x;”.

Remark 5.16. Ifx, € R is not an accumulation point for I, then we always have that
”P(x) definitely is true, for x tending to x,” .

Proposition 5.17. Suppose for simplicity that I = R. Putting together the previous
ideas, we can write equivalently:

s ifxy €ER,
36 > 0,Vx # xg,|x — x| < | P(x) definitely applies for x tending to x,
d=> P(x)
V6 > 0,3x # Xxg,|x — xo| < | P(x) frequently applies for x tending to x,
8 AP(x)
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85.c  Supremum and infimum

* whereas in case xy = ©

Jy e R,Vx,x >y = P(x) P(x) definitely applies for x tending to co

Vy € R,3x,x >y A P(x) P(x) frequently applies for x tending to oo
* and similarly x, = —o0

Jy e R, Vx,x < y= P(x) P(x) definitely applies for x tending to —co

Vy € R,3x,x <y A P(x) P(x) frequently applies for x tending to —oco

§5.c Supremum and infimum

Let’s first review the characterizations of the supremum and infimum in R, as seen in
Sec. §2.d.c (or in Chap. 1 Sect. 5 in the notes [2]). Let A C R be a non empty set.

Definition 5.18. Let A C R be not be empty. Recall that the supremum, or least
upper bound, of a set A is the minimum of majorants; We will indicate it with the
usual writing sup A. If A is bounded above then sup A is a real number; otherwise, by
convention, it is set to sup A = +oo.

Proposition 5.19. Let therefore A C R be not empty, let | € R U {+o0}; you can
easily demonstrate the following properties:

supA <1 VxeAx<lI

supA > 1 IxeA,x>1

supA < 1 dh<lLlVxeAx<h

supA > 1 Vi<l dxe€eAx>h

the first and third derive from the definition of supremum, "® the second and fourth by
negation; in the third we can conclude equivalently that x < h, and in the fourth that
x> h
If 1 # +o0 then also we can also write (replacing h =1 —¢)
supA < 1 Je>0,VxeA x<l—c¢
supA > 1 Ve>0,dxeA,x>1—¢

Combining the previous results, we get the result already seen in 2.138

Corollary 5.20. Having fixed a set A C R not empty, then sup A is the only number
a € R U {+oo} which satisfies these two properties

VxeAx<a
Vh<a,dxe€eA,x>h

as already seen in 2.138 for the more general case of totally ordered sets.

Definition 5.21. Similarly, given A C R not empty, the greatest lower boundary, or
infimum, of A is the maximum of minorants; we will indicate it with the usual writing
inf A. If A is bounded below then inf A is a real number; otherwise, by convention, we
setinfA = —o0.

Remark 5.22. Note that if we replace A with
—A={-x:x €A}

and | with —1, we switch from the definitions of sup to those of inf (and vice versa).
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Proposition 5.23. Let A C R not empty, let | € R U {—o0}; the following properties

apply:
infA >1 VxeAx>1
infA <1 dxeA,x<l
infA > 1 dh>1L,VxeAx>h
infA<I Vh>lL3AxeA x<h

If | # —oo then also we write (substituting h = 1 + ¢)
infA > 1 de>0,VxeA,x>1+¢
infA <1 Ve>0,dxe€e A, x<l+¢

Corollary 5.24. Having fixed A C R not empty, then inf A is the only number a €
R U {—oo} which satisfies these two properties

VxeAx>a
Vhi>adxeA x<h

Often the above definitions and properties are used in this form.

Definition 5.25. Given J an index set (not empty), let a,, € R for n € J. The
supremum and infimum are defined as

supa, =supA , infa, =infA
nel neJ

where A = {a,, : n € J}is the image of the sequence.
Given D not empty, let f : D — R be a function. The supremum and infimum are
defined as
sup f(x) =supA ig}fj f(x) =infA
X

x€D
where A = {f(x) : x € D} is the image of the function.

§5.c.a Exercises

Let I, J be generic non-empty sets. See definitions in Sec. §5.c

Exercises

E5.26 Let a, be a real-valued sequence, for n € I a set of indexes; let r > 0,t €
R, p < 0; show that

sup(a, +t) =t +supa, , sup(ra,) =rsupa, , sup(pa,)=pinfa, .
nel nel nel nel nel nel

Hidden solution: [unaccESSIBLE vuID '22i']

E5.27 Let a,,, be a real sequence with two indices n € I, m € J, show that

sup Qapm, = sup( sup an,m) .
nel,meJ nel *meJ

Hidden solution: [unvaccESSIBLE vuID '0B8']
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§5.d Limits

E5.28 prerequisites:5.27,5.26. Let a,, b, be real sequences, for n € I, show that [0B9]

(Solved on

sup (a, + by,) = (supa,) + (supb,) , 2022-11-24)
el

n.mel nel n

but

sup(ay, + by) < (supay,) + (supby) ;
nel nel nel

find a case where inequality is strict. Hidden solution: [unaccessiBLE vuID '0BB']
E5.29 Prerequisites:5.27. Let A, BCR and let [0BC]

AD®B={x+y:x€A,y€EB}

49

the Minkowski sum of the two sets: show that

sup(A @ B) = (supA) + (supB) .
Hidden solution: [vnAcCESSIBLE UUID '0BD']

E5.30 Let I, C R (for n € N) be closed and bounded non-empty intervals, such that [osr]
I41 C I;: show that ﬂ:lo I,, is not empty.

This result is known as Cantor’s intersection theorem [36]. It is valid in more
general contexts, see 9.120 and 7.41.

If we replace R with Q and assume that I,, C Q, is the result still valid?

E5.31 Study the equivalences in proposition 5.19 for the case in which supA = +o00:  [20p]

What do the formulas on the right say? (Solved on
2022-11-24)
E5.32 Rewrite the properties of the clause 5.23 for the cases seen in 5.25. [20]

E5.33 Calculate supremum and infimum of the following sets (where n, m are inte-  [20v]

ers). (Proposed on
gers) 2022-12)
mn mn
{—:n,le} , { :n,le}
m2 + n2 m+n
2"+2m :nmeN} , {2"+2" :nmeZ}

2
me—2 m+1
in, Z, , : Z,
{ - n,me nséo} { 5 me m;éo}

§5.d Limits [29N]
We will write R for R U {+o0}.

Definition 5.34. Let I C R, x, € R accumulation point of I, f : I — R function,  (20p]

leR.
The idea of limit (right or left or bilateral) is thus expressed.
lim,_, ., f(x) =1 for every ”full” neighbourhood V of I, there exists a

“deleted” neighbourhood U of x, such that for every x €
U NI, you have f(x) € V
where the neighborhood U will be “right” or “left’if the limit is “right” or “left”; it

481n particular in the third you can think that i = sup A.
T49The Minkowski sum will return in the section §11.1.
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§5 REAL LINE

can also be said that

eventually for x tending to X,

lim, . f(x) =1 for every ”full” neighbourhood V of 1, you have f(x) € V

adding that x > x, if the limit is “right”, or x < x if the limit is “left”.
Let us now write these ideas explicitly.

Proposition 5.35. Let I be a set, x, € R accumulation point for I, f : I - R
function, | € R.

Putting together all the definitions seen above, we get these definitions of limit.

In the case x, € Randl € R:

[OBH]

lim, . f(x) =1 Ve > 0,36 > 0,Vx, |x — Xg| < 8,x # xp,x € I = |f(x) —
l|<e

lim,_, ot f(x) =1 Ve > 0,38 > 0,Vx, |x —xo| < 8, x > xg, x €I => |f(x) —
l|<e

limy i f(x) =1 Ve > 0,38 > 0,Vx, |x — xo| < 6, x < xg,x €I => |f(x) —
l|<e

Bexy €R,l = *o0.

lim,,  f(x) = o0 Vz,38 > 0,Vx,|x — xo| < 6, X # Xg, x EI[=> f(x) >z

lim,,  f(x) = —o0 Vz,38 > 0,Vx,|x —xo| < 8, X #Xg, X EI=> f(x) <z

lim, f(x) =00 Vz,36 > 0,Vx, |x — xp| < 8, x > xg, x €= f(x) >z

lim, .+ f(x) = —o0 Vz,38 > 0,Vx,|x —xo| < 6,x > Xxg,x €EI=> f(x) <z

limy 5z f(x) = o Vz,36 > 0,Vx, |x — xo| < 8, x < Xxg,x €= f(x) >z

limy .- f(x) = —o0 Vz,38 > 0,Vx,|x —xo| < 6, X <Xg,x €EI=> f(x) <z

Let]l € R, x5 = *o0.

lim,_, o f(x) =1 Ve > 0,3y, Vx, x>y, x€l=>|f(x)—1 <¢

lim,_o, f(x)=1 Ve> 0,3y, Vx,x <y, xe€l=|f(x)-I <e

lim, o f(x) = Vz,y,Vx,x >y, x€l=> f(x)>z

lim,,_o f(x) = o0 Vz, Ay, Vx,x <y,x€l= f(x)>z

lim,_ o f(x) = —c0 Vz,y,Vx,x >y, x€l=> f(x)<z

lim,,_o f(x) = —0 Vz,y,Vx,x <y, x€l=> f(x)<z

Remark 5.36. Note that if you replace f — —f, you switch from definitions with
| = oo to those of | = —oo (and vice versa). Another symmetry is achieved by switching
Xo — —X¢ and the right and left neighbourhoods.

§5.e Upper and lower limits

From the previous definition we move on to the definitions of “limit superior” lim sup
and “limit inferior” liminf. The idea is so expressed.

Definition 5.37. LetI C R, x, € R accumulation point of I, f I - R function.
We define

t = inf 5.38
l)l;lliclip f(x) Uneighbc}l?'hood ofxg leiljpnl f(x) ( )
lim inf j?()C) = sup inf jP(JC) (5‘535))

X=Xo Uneighbourhood ofxq X€UNI

where the first ”inf” (resp. the ”sup”) is performed with respect to the family of all the
deleted neighbourhoods U of x,; and the neighbourhoods will be right or left neigh-
bourhoods if the limit is from right or left.
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§5.e  Upper and lower limits

Remark 5.40. Using the properties of inf, sup, we obtain for example these charac-  [20c]

terizations (Solved on
2022-11-29)

limsup f(x) <1 < Vz > I, eventually for x - x,, f(x) < z ;

X—>Xo

limsup f(x) > 1 < Vz < I, frequently for x — x, f(x) > z ;

X—=Xo

and so on. (In this simplified writing, we assume that x € I).

In particular, defining [ = lim Sup, _, . f(x), the previous formulas characterize

exactly the “limsup”.

Corollary 5.41. You have a = lim sup, _, .. f(x) if and only if

Vz > a, eventually for x — x¢, f(x) < z ;

Vz < a, frequently for x — xq, f(x) > z .

‘We make them explicit further in what follows. (It is recommended to try to rewrite
autonomously some items, by way of exercise).

Proposition 5.42. In the case xy € R and | € R, we divide the definition into two

conditions: ™0

lim SUp, .o fx) <l
lim SUP, 1o flx)>1

Ve > 0,38 > 0,Vx, |[x—Xxo| < 8, x # xp,x €= f(x) <
l+¢
Ve > 0,¥6 > 0,3x, |x — xo| < 8,x # xg,x € I, f(x) >
l—¢

lim SUD,_, yt fx) <l
lim SUP_, it f)>1

Ve > 0,38 > 0,Vx, |[x—Xxo| < 8,x > xp,x €= f(x) <
l+¢
Ve > 0,V6 > 0,3x,|x — xo| < 8,x > xp,x € I, f(x) >
l—¢

lim SUP,_, = fx) <l
lim SUPy, = fx)>1

Ve > 0,38 > 0,Vx, [x—Xxo| < 8,x < xp,x €= f(x) <
l+¢
Ve > 0,V6 > 0,3x,|x — xo| < 6,x < xp,x € I, f(x) >
l—c¢

liminf, . f(x) > 1
liminf, . f(x) <1

Ve > 0,36 > 0,Vx, |x—Xg| < 5,x # xg, x €EI=> f(x) >
l—c¢
Ve > 0,¥6 > 0,3x, |x — xy| < 8,x # xg9,x € I, f(x) <
l+¢

liminf, s+ f(x) > 1
lim infx_,xar fx) <1

Ve > 0,38 > 0,Vx, |[x—Xxo| < 8, x > xg,x €= f(x) >
l—c¢
Ve > 0,¥6 > 0,3x,|x — xo| < 8,x > xg9,x € I, f(x) <
l+¢

liminf, s f(x) > 1
liminf, o f(x) <1

Ve > 0,38 > 0,Vx, |[x—Xxo| <8, x < xp,x €= f(x) >
l—c¢
Ve > 0,¥6 > 0,3x, |x — x9] < 8,x < xg,x € I, f(x) <
l+¢

501n the following tables all commas *,” after the last quantifier should be interpreted as conjunctions ”A”,
but were written as ”,” for lighten the notation.
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In the case x, € Rand | = +o0:

lim SUP, Ly f(x) =00

Vz,¥8 > 0,3x,|x —xo| < 8, x # Xxg, X EL, f(x) > z

lim SUP_, it f(x) =00

Vz,¥6 > 0,3x, |x — xo| < 8, x> xp, x €L f(x) >z

lim SUP, 5~ f(x)=00

Vz,¥8 > 0,3x,|x —xo| < 8, x < xg, X EL, f(x) >z

lirnsupx_)xO f(x)=—00 | Vz,36 >0,Vx,|x — x| <, x # X9, x EI=> f(x) <z

limsupx_)xar f(x)=—00 | V2,36 >0,Vx,|x — x| <8, x> xp,xEI=> f(X) <z

limsup, . f(x) =—0co | Vz,36 > 0,Vx,|x — xo| <8, x <xp,x EI=> f(x) <z
Q

liminf,_,, f(x) = o0

Vz,36 > 0,Vx, |x — xo| < 8, x # xp, x EI= f(x) >z

liminf, .+ f(x) = o0

Vz,38 > 0,Vx,|x — xo| < 8,x > Xxg, x €= f(x) >z

liminf, - f(x) = o0

Vz,38 > 0,Vx,|x —xo| < 8, X < Xg,x €EI=> f(x) >z

liminf,_,, f(x) = - Vz,¥6 > 0,3x, |x — xo| <8, x # xg,x €L f(x) <z
liminfx_,xar f(x)=—- Vz,V8 > 0,3x,|x —xo| <8, x > xg,x EL f(Xx) <z
liminfy .- f(x) = —0c0 | V2,V8 > 0,3x, |x — xo| <8, x <X, x €L f(x) <z

In the case xy = oo and |l = +o0:

limsup __  f(x) =0

Vz,Vy,Ix, x>y, x €L, f(x) > z

limsup _,__ f(x) = oo

Vz,Vy,ax,x <y, x €L, f(x) > z

limsup, ,  f(x) =—o0

Vz, Ay, Vx, x>y, x€l=> f(x)<z

limsup _,_  f(x)=—o0

Vz,3y,Vx,x <y, x €l=> f(x) <z

liminf,_, . f(x) = o

Vz,3y,Vx, x>y, x €l => f(x) >z

liminf,__o f(x) = o

Vz, Ay, Vx,x <y,x€l=> f(x)>z

liminf,_ o f(x) = —c0

Vz,Vy,Ix, x>y, x €L, f(x) < z

liminf,__o f(x) = —o0

Vz,Vy,Ix,x <y, x €L, f(x) <z

In the case xy = oo and l €

R.

limsup _  f(x) <1
limsup _, _ f(x)>1

Ve > 0,3y, Vx, x>y, x€l=> f(x)<l+¢
Ve > 0,Vy,Ix, x>y, x €L f(x)>1—¢

limsup ___ f(x) <1
limsup ___ f(x)>1

Ve> 0,3y, Vx,x <y, x€l=> f(x)<l+e¢
Ve>0,Vy,Ix,x<y,x €L f(x)>1l—¢

liminf,_ o f(x) <1
liminf,_, o f(x) >1

Ve>0,Vy,Ix, x>y, x €L f(x)<l+¢
Ve > 0,3y, Vx, x>y, x€l=> f(x)>1—¢

liminf,__o f(x) <1
liminf,__o f(x) >1

Ve>0,Vy,Ix,x<y,x€L f(x)<l+¢
Ve> 0,3y, Vx,x <y, x€l=> f(x)>1—¢

Remark 5.43. Note that

liminf f(x) = 00 < lim f(x) = o0
X—Xo

X—=Xq

and

limsup f(x) = —oc0 < lim f(x) = —c0
X—Xq

X—=Xq

Remark 5.44. Note that if you replace f — —f, 1 —» —I, you pass from the defini-
tions of lim sup to those of liminf (and vice versa). Another symmetry is achieved by
switching x, — —x, and right and left neighbourhoods/limits.

Exercises

E5.45 LetA;,A,...besets, forn € N;letX = UnAn. We define the characteristic
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§5.e  Upper and lower limits

functionT, : X - Ras
1 ifxeA
T4(x) = ) .
0 ifxgA

We will use the definitions limsup, A, and liminf, A, seen in eqn. (2.316) and
(2.317). You have

limsup, 4,) = limsuply (5.46)
n
liminf, 4,) = lirglinfﬂAn. (5.47)

E5.48 We fix a real valued sequence a,. Now consider the definition of 5.37 setting  [0Bq]
I = N and x, = oo, so that neighborhoods of x, are sets containing [n, c0) = {m €
N : m > n}; with these assumptions show that you have

lim sup a,, =inf sup a,, = lim sup q, ,

n— oo n m>n =0 m>n
liminf @, =sup inf a, = lim inf q, ., (5.49)
n—oo n m2n n—oco mn
E5.50 Prerequisites:5.37,5.12,2.110,6.58,6.63.Difficulty:*. [29R]

LetI C R, x, € R accumulation point of I, f : I — R function. As in 5.12 Fall ‘1’;?‘214‘3"

the neighbourhoods of x with associated the filtering ordering
Uvedy ULV < U2V

Let

ss$i:F->R, s(U)= sup f(x), i(U)= inf f(x)
xeUnl xeunl

note that these are monotonic functions, and show that ™!

def
li = inf s(U) = lim s(U 5.51
1)rff:f,pf(x) Jnf s(U) = lim s(U) (5.51)
liminf f(x) = sup i(U) = lim i(U) (5.52)
X—Xg UeF Uer

where the limits are defined in 6.58.

ES5.53 Prerequisites:5.50. [295]

LetI C R, x, € R accumulation point of I, and f,g : I — R functions. Prove that g%;l;_eﬂ?;@

lim sup (f(x) + g(x)) < limsup f(x) + lim sup g(x)

X—=Xo X—Xq X—Xg

E5.54 LetI C R, x, € R accumulation pointof I, f : I — R function. Letr > 0,t € [291]
R, p < 0; show that

limsup(f(x)+t) =t + limsup f(x) , limsup(rf(x)) = rlimsup f(x) ,

X—Xo X—Xg X—Xo X=X
limsup(pf(x)) = pliminf f(x) .
X—=Xg X=Xo

Other exercises on limits of sequences can be found in Sec. §6.a.
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§5.f Approximation of irrational numbers
In the next exercises we will use the following definitions.

Definition 5.55. For x € R we define | x| to be the floor function defined as the
greatest integer less than or equal to x, as in

[xjgmax{nez:nSX}

Definition 5.56. x — |x] is the fractional part of x.

(We define ¢(x) = x — | x|, note that (3, 1415) = 0, 1415 but p(—4,222) = 0,778
because | —4,222| = —5).

Exercises

E5.57 Note that k = |x] is the only integer for which you have k < x < k+ 1 or
equivalently 0 < (x — k) < 1 or equivalently x — 1 < k < x.

E5.58 prerequisites:5.55.Given x € R and N € N,N > 2, prove that at least one
element of the set {x, 2x, ..., (N — 1)x} is at most distance 1/N from an integer, that
is, there exist n,m € Z with1 < n < N — 1 such that |nx — m| < 1/N.

Hidden solution: [unACCESSIBLE UUID '0BX']
E5.59 prerequisites:5.55,5.58.Given x,b € R with x # 0 irrational, and € > 0, prove
that there is a natural M such that Mx — b is at most € from an integer.

Let ¢(x) = x — | x| be the fractional part of x, we have ¢(x) € [0,1). The above
result implies that the sequence ¢(nx) is dense in the interval [0, 1].

Note that instead if x # 0 is rational i.e. x = n/d with n, d coprime integers and d >
0, then the sequence g(nx) assumes all and only the values {0,1/d, 2/d, ... (d—1)/d}.

(This is demonstrated by the Bézout’s lemma [35]).
Hidden solution: [unaccESSIBLE vuID '0BZ']
ES5.60 prerequisites:s.58.  (Dirichlet’s approximation theorem) Given an irrational

number x, show that there are infinitely many rationals « such that we can represent
a = m/n in order to satisfy the relation

m 1
=<
n n2
Some comments.

+ Note for every fixed n > 2 there is at most an m for which the previous relation
holds; but there may not be one.

* Note that if the relation holds for a rational «, there are only finite choices of
representations for which it holds,

« and certainly it holds for the ”canonical” representation with rn, m coprimes.
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§5.g Algebraic

Hidden solution: [unvaccesSIBLE vuID 'oc2']

Note that Hurwitz’s theorem [40] states that for every irrational number £ there are
infinitely many coprime integers m, n € Z such that

1

Vsnz

m
-—|<
63

E5.61 Fixed k > 0, ¢ > 0 and a rational number x, prove that there exist only finitely
many rationals « that can be represented as o = m/n in order to satisfy the relation

k

m
-2 ke
nl— nl+e

Hidden solution: [vnicCESSIBLE UUID '0C4']

E5.62 Prove that for every rational m/n you have
m 1
V231> g

. 1 1.
We obtain that the set A = UmEZ neNF (ﬂ T =+ 4—2) is an open set that con-
] n n n n

tains every rational number, but A # R.

Hidden solution: [unvaccESSIBLE UUID '0C6']

§5.g Algebraic

Definition 5.63. A number a € R is said algebraic if there exists a polynomial p(x) =
ag + a;x + --- + a,x" with rational coefficients such that p(c) = 0. Otherwise a is
said transcendental.

We note that every rational o = n/m is algebraic, as the root of p(x) = mx — n.

Definition 5.64. Given a commutative ring A, the set of polynomials p(x) = ay +
a;x + -+ + a,x" with coefficients a; € A is usually denoted by A[x]; this set, endowed
with the usual operations of sum and product of polynomials, is a commutative ring.

We want to show that algebraic numbers are a field.

Exercises

E5.65 Given p(x) = ap + a;x + - + a,x", p € Q[z] such that p(a) = 0, build a
polynomial q € Z[z] such that () = 0.
So the definition of algebraic can be given equivalently with polynomials with inte-
ger coefficients.

E5.66 Given a # 0 and p(x) = ay + a;x + -+ + a,x", p € Q[z] such that p(a) = 0,
build a polynomial g € Q[z] such that g(1/c) = 0.
So if a # 0 is algebraic then 1/a is algebraic.

Hidden solution: [unAcCESSIBLE UUID '0BR']
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E5.67 Given p(x) = ag+a;x+---+a,x", p € Q[z] such that p(a) = 0, given b € Q
build a g € Q[z] such that q(ba) = 0.

So if a is algebraic then b« is algebraic.

E5.68 Given p(x) = ag+a;x+---+a,x", p € Q[z] such that p(a) = 0, given b € Q
build a g € Q[z] such that q(b + a) = 0.
So if a is algebraic then b + « is algebraic.

E5.69 pifficuity:+.More generally, given p(x) = ag + a;x + -+ + a,x", p € Q|z]

q(x) = by +byx+ - + b, x™, q € Q[z], and given a, § such that p(a) = 0 = q(B3),
construct a polynomial » € Q[z] such that r(a + ) = 0.

(Hint: use the theory of the resultant [44]).
So if a, 3 are algebraic then a + f3 is algebraic.

Hidden solution: [unAccESSIBLE vuID '0cG']

E5.70 Show that if « is algebraic then o is algebraic. Hidden solution: [uvaccesstsre
UvID 'oCcJ']

E5.71 If a, 8 are algebraic, prove that o3 is algebraic. Hidden solution: [uvaccessIBLE
UUID 'ocM']

The above shows that algebraic numbers are a field.

5lef 5.38, (5.39).
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86 Sequences and series focn

§6.a Sequences

Let (a,,)nen € R be a real-valued sequence (as defined in 2.160).
Given N € Nwe will write sup, . \; a,, in the following, instead of sup{ay, an1 ---},
and similarly for the infimum. (This is in accordance with 5.25)

Exercises

E6.1 Prerequisites:5.24. _ [oCP]
We have thatsup, .y a, =0 € R if and only if

Vn>N,a, <o e (6.2)
VL<o,dn>N,a, > L (6.3)

(note that if o = oo the first is trivially true, while if 0 = — oo the latter is true because

there are no L).

Solution. 6.4. It follows from the characterization 5.20. focal

def
E6.5 Let (a,),en be a sequence with a,, ~ n" . Prove that, setting s,, = ZZ:O a, we  [0CR]
have s, ~ a,, .

that limsup, e, = liminf,d, = b (possibly infinite): then show that lim, e, =
lim,, d,, = b. Hidden solution: [uwaccEssIBLE vuID '0CT']

E6.6 Let e,,d, be two real sequences such that d,, < e, for each n, and suppose [ocs]

E6.7 prerequisites:5.28,5.48. Let a,, b, real valued sequences, show that focv]
(Solved on
limsup(a,, + b,) < (limsup a,,) + (limsup b,) ; 2022-11-24)
n—oo n—>oo n—oo
find a case where inequality is strict. Hidden solution: [uwaccessisLe vuip ocw']
E6.8 pifficulty:x. [0CX]

Let a,, , be a real valued sequence 52 with two indexes n, m € N. Suppose that

» for every m the limit lim,,_, , a,, ,,, exists, and that

+ the limit lim,,_, o, a,, », = b, exists uniformly in n and is finite, i.e.
Ve>0,dmeNVneN, Vh>m |a,, —by| <€ .

then

lim lim a,, = lim lim a,, (6.9)
n—->o0 m—oo m—00 n—>o0

in the sense that if one of the two limits exists (possibly infinite), then the other also
exists, and they are equal.

Find a simple example where the two limits in (6.9) are infinite.

Find an example where lim,,_, ., @, , = b, but the limit is not uniform and the
previous equality (6.9) does not apply.

Hidden solution: [unaccESSIBLE vuID '0cz']
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§6 SEQUENCES AND SERIES

1 2 3 4 5 6 7 8 9 10 11 12

Figure 1: Representation of Euler-Mascheroni constant
Image by William Demchick, Creative Commons Attribution 3.0 Unported License, taken from wikipedia.

E6.10 Prerequisites:6.8,6.6.Let again a, ,, be a real valued sequence with two indices
n, m € N; suppose that, for every n, the limit lim,,_, o, a,, , = b,, exists, is finite and
is uniform in n; suppose that the limit lim,, b, exists and is finite. Can it be concluded
that the limits lim,,_, o, @, , exist for each fixed m? Can we write an equality as in
eqn. (6.9) in which, however, on the RHS we use the upper or lower limits of a,, ,
for n — oo, instead of the limits lim,,_, ,, a;, ,,?

Hidden solution: [unvaccESSIBLE vuID '0D1']

E6.11 pifficuity:x. Show that from any sequence (a,), we can extract a monotonic
subsequence. Hidden solution: [uvAccESSIBLE vuID '0D3']

E6.12 pifficuity:+. Show that from any sequence (a,),, € R we can extract a mono-
tonic subsequence such that

lim a, = limsupa,
k— o0

n—-oo

Hidden solution: [uniccESSIBLE UUID '0D5']

E6.13 Topics:Euler-Mascheroni constant.Prerequisites:2.186.

Show that the limit

51
y = lim ( - = log(n)>
n k

70 \k=1

exists and is finite. This y is called Costante di Eulero - Mascheroni. It can be defined
in many different ways (see the previous link) including

SRR

where the parentheses |- | indicate the floor function | x| = max{n € Z : n < x}. In
the image 1 the constant y is the blue area.

Hidden solution: [uniccESSIBLE UUID '0D8']

E6.14

52This result applies more generally when Qp,m are elements of a metric space; moreover a similar result
occurs when the limits # = oo and/or m — oo are replaced with limits x — X and/or y —  where the
above variables move in metric spaces. See for example 17.12.
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§6.a Sequences

Letay = VK3 + k — k. Prove that

c 1
2 i~ 3 log(n)
k=1

that is, the ratio between the two above sequences tends to 1 when n — oo. Hidden
SOIUtiOn: [UNACCESSIBLE UUID 'ODB'] [UNACCESSIBLE UUID 'ODC']

E6.15 Note:Exercise 1 from the written exam 9 April 2011.Let (a,,) be a sequence of real numbers,
with a,, > 0.

1. Show that if Z:O:l a,, converges then also
(9] [s9) (69
2
Yo e Nfm % o)
n=1 n=1 m=n+1

converge.

2. Assuming moreover that Z:;l a, is convergent, let’s define

[00] oo (¢ (6]
a=2an,b=z<an Z am),c=2a$1
n=1 n=1 m=n+1 n=1

then show that a®> = 2b + c.

Exercise 6.16. Let a,, b,, be real sequences (which can have variable signs, take value
zero, and are not necessarily infinitesimal).
Recall that the notation a,, = o(b,,) means:

Ve>0,IneN, VneN,n>n= |a,| <¢|b,|.
Shown that these two clauses are equivalent.

* Eventually in n we have that a, = 0 <= b, = 0; having specified this,
we have lim,, ‘;—” = 1, where it is decided that 0/0 = 1 (in particular a,, b,

eventually have the same sign, when they are not both null);
* we have that a,, = b,, + o(b,,).

The second condition appears in Definition 3.2.7 in [2] where it is indicated by the
notation a,, ~ b,.

Deduct that a,, ~ b, is an equivalence relation.

Hidden solution: [unaccessIBLE uvuip '29v']

Exercise 6.17. prerequisites:2.191.Let a,, b, be real sequences (which can have vari-
able signs, take value zero, and are not necessarily infinitesimal); let X = RN the space
of all sequences.

Recall that the notation a,, = O(b,) means:

AM >0, dneN, VneN,n > n= |a,| < M|b,|.

Show these results:
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§6 SEQUENCES AND SERIES

s fora,b € X,a = (a,),, b = (b,), consider the relation
aRb < a, = 0(b,)
prove that R is a preorder;

 define x <y < (xRy A YRX) then < is an equivalence relation, R is in-
variant for <, and the projection < is an order relation on X/ < (hint: use the
Prop. 2.191).

* Define (as usually done)
G<b < (@G<bra+b)

for 4,b € X/ =, (a,), € a,(b,), € b representatives; assuming b, # 0
(eventually in n), prove that

o N ... a . a
G<b < 0=liminf -2 <limsup 2 < o0
n bn n n

The above discussion is related to Definition 3.2.3 (and following) in [2].

See also exercises 5.28 and 5.27.

§6.a.a Summation by parts
Exercises

E6.18 Suppose (a,),, (b,), are sequences of real numbers and c,, is defined by 6.50;
let then

n n n
Anzzah’anth’cn:ZCh
h=0 h=0 h=0
the partial sums of the three series; suppose that Z:;o b,, = B is convergent: show
that

n n
Cn= Z an_iB; = Z a,—i(B;—B) +A,B
i=0 i=0

Hidden solution: [uniccESSIBLE UUID '216']

E6.19 Note:Taken from Rudin [22] Prop. 3.41.

Let (a,),(b,),, be sequences, let A,, = ZZ:O arand A_; = 0,0 < p < g, then
q q-1
D apby = ) Ap(by — bpy1) + Agbg — Ap_1by
n=p =p

§6.b Recursive sequences
Exercises

E6.20 Let f(x) = x — x> and x, € R, and (x,,),en a sequence defined by recurrence
by x,.1 = f(xy). Prove that there is a 4 > 0 such that if |xy| < A then x,, — 0,
while if |xy| > A then |x,| — oo; and possibly calculate this A.

Hidden solution: [unvaccESSIBLE vuID 'oDM']
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§6.c Series

E6.21 wote:Babylonian method for square root. Let S > 0 and consider the sequence defined by

recurrence as
1 Sy
Xp+1 = 5 Xp + . ;

n

show that x,, — /S and that, for S € [1/4,1] and x, = 1, convergence is su-
perquadratic, i.e.
[ — V5] < 212"

Find a function f(x) (dependent on S ) such that the previous iteration can be seen
as a Newton’s method, i.e.

-3

T 2Tk

Generalize the Babylonian method to find a root ’VE

Hidden solution: [unicCESSIBLE UUID '0DP']

§6.c Series
§6.c.a Tests
Theorem 6.22 (Root test). Let a = limsup, | '{/la_n| then
* ifa < 1 the series 220:1 a, converges absolutely;
* if a = 1 nothing can be concluded;
* ifa > 1 the series Z:’:l a, does not converge, and also 220:1 |a,| diverges.
Proof.

* If a < 1, having fixed L € («, 1) you have eventually /|a,| < L so there isa N
for which |a,,| < IN~" for each n > N and we conclude by comparison with the
geometric series.

» For the two series 1/n and 1/n? you have a = 1.

s If « > 1 you have frequently %/|a,| > 1 So |a,| > 1, contrary to the necessary

criterion.
O
Theorem 6.23 (Ratio test). Assume that a, # 0. Let = limsup, _ % then
an
* ifa < 1 the series 220:1 a, converges absolutely;
* ifa > 1 nothing can be concluded.
Proof. « If a < 1, taken L € (&, 1) you have eventually % < L so there is a
an
N for which @ < L for each n > N, by induction it is shown that |a,| <
an
L"N]ay| and ends by comparison with the geometric series.
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§6 SEQUENCES AND SERIES

+ Let’s see some examples. For the two series 1/n and 1/n? you have a = 1.

Defining
0 = 27"  neven (6.24)
" 22" nodd '
we obtain a convergent series but for which a = 2.
O

Remark 6.25. Ifthe ratio test 6.23 can be applied, we have seen in the demonstration
that, for a L < 1, there is a N for which |a,| < I"Nay for every n > N, and therefore
limsup,  3/la,| < L <1, that is the root test 6.26 holds.

Theorem 6.26. If(a,), C R has positive terms and is monotonic (weakly) decreas-
ing, the series converges if and only if the series

oo
Z 2”0.271
n=1

converges.

Proof. Since the sequence (ay),, is decreasing, then for 1 € N

2(h+1)
ayn < D) a <2Map . (6.27)
k=2h+1
We note now that
N 2(h+1) oN+1
2 D w= ) an
h=0 k=2h+1 n=2
and therefore
0 2(h+1) N 2(h+1) 2(N+1) oo
Z Z ai = lim Z Z ai = lim Z an=2an
N-oo N-oo
h=0 k=2h+1 h=0 k=2h+1 n=2 n=2

so we can add the terms in (6.27) to get

(o] [So] [oe]
Z 2ha2(h+1) < Z a, < Z 2ha,p,
h=0 n=2 h=0

where the term on the right is finite if and only if the one on the left is finite, because
[oe] [So]
> 2hagn = a; +2 )] 2Mayma
h=0 h=0
the proof ends by the comparison theorem O
The Dirichlet criteria implies the Liebniz “alternating series test” criteria.

Theorem 6.28 (Dirichlet criterion). Let {a,} and {b,;} be two sequences. If b,, tends
monotonically to 0 and if the series of partial sums of a,, is bounded, i.e. if

N
bp2bpy1 >0 , limb,=0 , IM>0,VNEN,|Y a,|<M ,
n—oo oy
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§6.c Series

then the series
+c0
2, @nbn
n=1

is convergent.

The proof is left as an exercise (Hint: use 6.19)
Hidden solution: [uNACCESSTBLE UUTD '21G']

In particular, if we set a,, = (—1)" we prove the existence of the limit in Leibniz
test.

Theorem 6.29 (Alternating series test, or Leibniz test).  Let b, be a sequence for [238]
which

b,>b,;7>0 , limb,=0 ,
n—oo
then the series
+0o0
> (=1,
n=0

is convergent; also, called € the value of the series, letting

N
By = Z (=1)"b,

n=0

the partial sums, we have that the sequence B,y is decreasing , the sequence By 1 is
increasing, and both converge to €.

Theorem 6.30. Consider the series Z:;l a, where the terms are positive: a, > 0.  [0DR]
Deﬁne (Solved on

a 2022-12-13)
n
Zy = n( - 1)

Apt1

for convenience.
* If z, < 1 eventually in n, then the series does not converge.

* If there exists L > 1 such that z,, > L eventually in n, i.e. equivalently if

liminfz, >1 ,
n—oo

then the series converges.

In addition, fixed h € Z, we can define

2, = (n+h)(aa" —1>

n+1
a
Zn = n<n—+h — 1)
Ant+h+1

An-1
=n|l— -1
Zn ( a}’l >

and the criterion applies in the same way. Hidden solution: [unaccESSIBLE UUID 'o0DS']

or

such as
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§6.c.b Exercises
Exercises

E6.31 Let a > 0; use Raabe’s criterion 6.30 to study the convergence of the series
i 1
(e 4
n=1 n
Hidden solution: [vwAccESSIBLE vuID '215']

E6.32 Let a > 0; use the condensation criterion 6.26 to study the convergence of the
series o
Z 1
(o4
n=1 n

E6.33 Given a series Z:o a,, tell if the following conditions are necessary and/or suf-
ficient for convergence.

n+k
2
J=n
n+k
2
Jj=n

n+k
Ve>0ImeNVn>mVkeN ) ol <e (6.36)

=n

iz+k
Ve>0VkeNImeNR>m D) |a| <e (6.37)

j=n

Ve>0dmeNVn>mVkeN <e€ (6.34)

Ve>0VkeNImeNVn>m <e€ (6.35)

Hidden solution: [unaccESSIBLE vuID '0DX']

E6.38 Find two sequences (a,),, (b,), with a,,b,, > 0 such that Z:ZO(—l)"an is
convergent, Zf;o(—l)"bn is non-convergent, and lim,,_, , a,,/b,, = 1. Hidden so-
IUtiOn.' [UNACCESSIBLE UUID 'ODZ']

E6.39 note:Exam of 9th APr 2011.Let (a,) be a sequence of real numbers (not necessarily
positive) such that the series Zf_l a, converges to a € R; let b,, = Q9 show
- n
. . [se]
that if the series anl b,, converges then a = 0.
E6.40 Find two examples of g; j : N XN — R
« such that, for each i, Zj a; j = 0, while for each j, Zi a;j = co;
» such that, for each i, Z]. a;,j = 0, while for each j, Zi a;j=1.

Can you find examples where moreover we have that |q; ;| < 1 for every i, j?

E6.41 Note:Written exam of 4th Apr 2009, exee 1. Given a sequence (a,,),, of strictly positive num-
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§6.c Series

bers, it is said that the infinite product H:’:O a, converges if there exists finite and
strictly positive the limit of partial products, i.e.

N
lim H a, € (0,+00)

N-+o00 =0
Prove that
L if [T @, converges then limy,_, ;o a, = 1;
. . [s9) . (o)
2. if the series ano |a,, — 1| converges, then it also converges ano ay;
. . oo (o]
3. find an example where the series ano(an — 1) converges but ano a, =0.

E6.42 We indicate with B(N) the set of subsets B C N which are finite sets. This is  [ors]
said the set of finite parts.
We abbreviate = R(N) in the following.

Given a sequence (a,), of real numbers and a B € P we indicate with s(B) =
2 nep @n the finite sum with indices in B.

Suppose the series Z:;O a,, converge but not converge at all. Then:
e {s(F) : F € P}itis dense in R.
* There is a reordering o of N, that is, a bijective function ¢ : N — N, such that
all partial sums ij: o do(n) (at the variation of N) is dense in R.
E6.43 Note:This result is attributed to Riemann, see 3.54 in [22].. [OF7]

. [S.e]
Let be given a seqlice)nce (ay,), of real numbers such that ano a, converges (to a
finite value) but ano |a,| = oo; for each [, L with —oco <1 < L < +oo there is a

permutation 77 : N — N such that, defining Sy = Egzo Qz(k), we have that

limsupSy =L , liminfSy =1
N-oo N-o

E6.44 A sequence is given (a,),en Of positive real numbers such that lim,,_,, a,, =0  [oFs]
and Z:::o a, = oo: prove that for every [ € R there is a sequence (g,),en With
¢, € {1, —1} for each n, such that

i (enan) =1
n=0

If instead Z:;o a, = S < oo, what can be said about the set E of the sums Z::’:O(snan) =
I, for all possible choices of (g,),en With €, € {1, —1} for every n?

« Analyze cases where a, =2 ora, =3™"

» Show that E is always closed.

« Under what assumptions do you have that E = [—S, S]?

Hint. Let E be the set of sums Zn(snan) = I, to vary by (&,,),en With €, € {0, 1} for
each n; note that E = {(S + x)/2 : x € E}.

96 Copyright A. C. G. Mennucci
The sections comprising theory and exercises’ statements are released under License WP:CC BY-SA


https://coldoc.sns.it/UUID/EDB/0F5/
https://coldoc.sns.it/UUID/EDB/0F7/
https://coldoc.sns.it/UUID/EDB/0F8/
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License

§6 SEQUENCES AND SERIES

E6.45 Note:Written exam of 12th Jan 2019. [OF9]

Show that the following series converges

& (1-4:7-10--(3n—=2)\°
Zfl( 3-6-9-12--(3n) )

Hidden solution: [unicCESSIBLE UUID 'OFB']

E6.46 Say for which a > 0, > 0,y > 0 you have that [21M]

(Proposed on
1 2022-12)

;::4 n* (log n)? (log(log n))r

converges.

E6.47 Note:Written exam 29¢th January 2021.Let it be o > 0. Say (justifying) for which o the [23r)

following series converge or diverge (Proposed on
2022-12-13)
: [Se]
Vs a 2
Z (\/ nd +n% —n )
n=1
i ( 1 1 )
n® np%+1
n=2
. o 1

n=2 (logz n)alogz(n)
where the logarithms are in base 2.

Hidden solution: [unAcCESSIBLE UUID '23G']

E6.48 Note:Task of 26 Jan 2016. [20Z]
(Solved on
Let 2022-01-20)

, - 1:3:5:7--@n-1)
"7 2.-4-6-8- (2n)

Show that lim,,_, ., z,, = 0 but

>

<)
DR
n=1

Hidden solution: [uniccESSIBLE vuID '213']

E6.49  Note:exercise 2, written exam 15 January 2014. Let (a,,),>0 be a sequence of positive real  [210]
. . n -
numbers. Having defined s,, = Zi—o a; prove that:

. [s] . . . [s+]
* the series Zn—O a,, converges if and only if the series Zn—o a,/s, converges;
* the series Zflo_o a,/(s,)?* converges.
Hidden solution: [unAcCESSIBLE UUID '21K']

See also exercise 23.1.

Copyright A. C. G. Mennucci 97
The sections comprising theory and exercises’ statements are released under License WP:CC BY-SA


https://coldoc.sns.it/UUID/EDB/0F9/
https://coldoc.sns.it/UUID/EDB/0FB
https://coldoc.sns.it/UUID/EDB/21M/
https://coldoc.sns.it/UUID/EDB/23F/
https://coldoc.sns.it/UUID/EDB/23G
https://coldoc.sns.it/UUID/EDB/20Z/
https://coldoc.sns.it/UUID/EDB/213
https://coldoc.sns.it/UUID/EDB/210/
https://coldoc.sns.it/UUID/EDB/21K
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License

§6.d Generalized sequences, or “nets’

§6.c.c Cauchy product

Definition 6.50. Give two sequences (a,), and (b,),, to real or complex values, their
Cauchy product is the sequence (c,),, given by

n
def
Cn = Z acbp_i
k=0

Exercises
E6.51 If Vn € N, a,, b,, > 0 show that
[ee] [s+] (o]
=2, by
n=0 n=0 n=0
with the convention that 0 - co = 0.

E6.52 If the series Zm a, and Zm o bn converge absolutely, show that the series
Zn o Cn CONVerges absolutely and

o] [oo] [Se]
2= @n 2 b
n=0 n=0 n=0

E6.53 Prerequisites:6.18.Note:Known as: Mertens’theorem..

. [6e] [6e]
If the seroloes ano a, converges absolutely and En:O b,, converges, show that the
series >, _ ¢, converges and

D, =D, an 2, bn
n=0

n=0

||M8

Hidden solution: [unACCESSIBLE vUID '0FN']

E6.54 Discuss the Cauchy product of the series Z o \/_

tion: [UNACCESSIBLE UUID 'OFQ']

See also exercise 18.7.

§6.d Generalized sequences, or “nets’

Definition 6.55. Let in the following (J, <) be an ordered set with the filtering property
Vx,yeJazel, x<zAy<z (6.56)

(See section §2.d.a).

A function f : J - Xis called net.

This f is a generalization of the concept of sequence; indeed the set J = N with its
usual ordering has the filtering property

In this Section we will concentrate on the case X = R.
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§6 SEQUENCES AND SERIES

Remark 6.57. Note that this definition differs from the one generally used; see [42]
or [14]; but it is equivalent for all practical purposes, as explained in 2.129, 6.66, 7.15.

Definition 6.58. Prerequisites:2.121, 2.125, Sec. §2.d.a.
Given J a (possibly partially) ordered and filtering set, and given f : J — R, we
want to define the concept of limit of f(j) *for j — oo ”. 73,

» We will say that
limf(j)=1leR
jeJ
if
Ve>03kelIVjel, j>k=>|l-f(j)l<e

Similarly limits are defined | = oo (imitating the definitions used when J = N.)
(This is the definition in the course notes, chap. 4 sect. 2 in [2])

» Equivalently we can say that
limf(j)=leR
jel

if for every neighborhood U of | we have that f(j) € U eventually for j € J;
where eventually has been defined in 2.125.

» We recall from 2.118 that ”a neighborhood of oo in J” is a subset U C J such that
dk eJVje,j>k= je U Then we can imitate the definition 5.34.

Fixed | € R we have limje; f(j) = [ when for every ”full” neighborhood V of |
in R, there exists a neighborhood U of oo in J such that f(U) C V.

In particular, this last definition can be used to define the limits of f : J — E where E
is a topological space.

Definition 6.59. Having fixed (a,)nen a real sequence, (ay, ke is a subsequence
when ny, is a strictly increasing sequence of natural numbers.

Similarly having fixed f : J — R, let H C J be a cofinal subset (as defined in
2.115): We know from 2.122 that H is filtering. Then the restriction h = f b7 is a net
h : H — R, and is called ”a subnet of f”.

More in general, suppose that (H, <) is cofinal in (J, <) by means of a map i :
H — J; this means (adapting (2.117)) that

(Vhy, hy € Hohy <g hy = i(h) < i(hy)) A (Vj€T3heH, i(h)>]) ; (6.60)

then h = f oi is a subnet.

Exercises
E6.61 Prove that the assertions in 6.58 are equivalent.

E6.62  Prerequisites:6.58,6.55,2.123. Show that if the limit lim ey f(j) exists, then it is
unique.
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§6.e  Generalized series

E6.63 Suppose f is monotonic, show that lim;c; f(j) exists (possibly infinite) and
coincides with sup, f (if it is increasing) or with inf; f (if it is decreasing).

Infer that
limsup f(j) = limsup f(k)
jey JET k>j
def
liminf f(j) = lim inf f(k
imin G ;g},ig,ﬂ )
are always well defined.

E6.64 Show that the limit exists lim;¢; f(j) = € € R if and only if

limsup f(j) = liminf f(j)=¢.
ie] jeJ

JE

E6.65  Prerequisites:2.110,2.122,6.58,6.55,2.124.Suppose H C J is cofinal and let h =
f " be the subnet (as defined in 6.59);

Suppose that lim;e; f(j) =1 € R show that limjeq h(j) = L
Similarly if (H, <g) is cofinal in (J, <) by means of amapi : H — J,and h = foi.

Remark 6.66. Suppose that the set J is directed but not filtering; then by 2.121 it
admits a maximum element that we call co; the above definitions and properties can
also be stated in this case, but they are trivial, since

lim f(j) = lim inf f(j) = lim sup f(j) = f(0)
JjeJ JjeJ jer

§6.e Generalized series
§6.e.a Generalized series with positive terms

Definition 6.67. Let I be an infinite family of indices and let a; : I — [0, c0] be a

generalized sequence, we define the sum Zie] a; as
Zai = sup{z a; . Ke 5}(1)}
iel ieK

where R(I) is the set of finite subsets K C I.

Exercises

E6.68 Prerequisites:2.326.Note:From the written exam of March 27, 2010..Say for which a € R the

series
1

(m.en? (n+m+1)x

converges. Then discuss, for N > 3, the convergence of

1
NN A+m+ ... +my)~

(myq,...mpN)E

Hidden solution: [unAcCESSIBLE UUID 'OFY']
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§6 SEQUENCES AND SERIES

E6.69 Let I be a family of indices, let a; be a sequence with a; > 0; let moreover F be
a partition of I (not necessarily of finite cardinality); then prove that

% Ya=-Ta

FeFieF iel

E6.70 pitficuty:. LetIbe a family of indices; let a; ; : I XN — [0, co] a generalised
succession, such that j — a; j is weakly increasing for every fixed i; prove that

Z llHl ai,j = hm Zai,j .
ier”® J7®ber
(This is a version of the well-known Monotone convergence theorem).

Hidden solution: [unicCESSIBLE UUID '0G2']

E6.71 Extend the previous 6.70, replacing N with a set of indexes J endowed with
filtering ordering <.

53Note that oo is a symbol but it is not an element of J : if it were it should be the maximum, but a filtering
set cannot have maximum, cf 2.121
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§7 Topology

Let X be a fixed and non-empty set. We will use this notation. For each set A C X we
define that A = X \ A is the complement to A.

Definition 7.1. A topological space is a pair (X, t) where X is a non-empty set with
associated the family t of the open sets, which is called topology.

Definition 7.2. A topology © C P(X) is a family of subsets of X that are called open
sets. This family enjoys three properties: @, X are open; the intersection of a finite
number of open sets is an open sets; the union of an arbitrary number of open sets is
an open set.

A set A is closed if A is open.

Definition 7.3. Let A, B C X be two subsets.

1. The interior of A, denoted by A°, is the union of all the open sets contained in A,
and therefore is the biggest open set contained in A;

2. the closure of B, denoted by B, is the intersection of all the closed sets that contain
B, i.e. is the smallest closed that contains B.

3. We say that A is dense in B if A 2 B."™*
4. The boundary 0A of A is 0A = A \ A°.

Definition 7.4. A topological space (X, 1) is said to be T,, or "Hausdorff space”, if
Vx,y € Xexist U,V € 1 open disjoint withx € U,y € V.

Definition 7.5. Any set X can be endowed with many different topologies. Here are
two simple examples:

» When a set X is endowed with the discrete topology, then all sets are open, and
therefore closed. Equivalently, the discrete topology is caracterized by: every
singleton is an open set.

» When a set X is endowed with the indiscrete topology, then the only open (and,
closed) sets are X, @.

Further informations on these subjects may be found in Chap. 2 of [22] or in [14].

Remark 7.6. A metric space is a special case of topological space, because the open
subsets of the metric space satisfy the Definition 7.2; the associated topology is always
Hausdorff. The following results therefore also apply to metric spaces.

Exercises

E7.7 Show that if the space is T, then every singleton {x} is closed.

E7.8 Show thatif A C Bthen A C Band A° C B°
E7.9 Show that if A = B then (B)¢ = A°, using the definitions 7.2 and 7.3.

E7.10 Note that A D A° and B C B, generally. Show that A is open if and only if
A = A°; and that B is closed if and only if B = B, using definitions 7.2 and 7.3.
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§7 TOPOLOGY

E7.11 rtopics:interior. Given X, a topological space, and A C X, show that
A° = (A°)° .

using the definition of A° given above.
(For the case of X metric space, see also 9.34)

Hidden solution: [vnACCESSIBLE UUID '0GG']

E7.12 Topics:closing. Given X topological space and A C X, show that
i=(A)

or by switching to complement with respect to 7.11, and using the definition of A
like ”intersection of all the locks they contain A”.

(For the case of X metric space, see also 9.37)

E7.13 Topics:closure, interior. LetX be atopological space and A C X open.

1. Show that A C (Z)o (the interior of the closure of A).

2. Find an example of an open set A C R for which A # (Z)o.

3. Then formulate a similar statement for A closed, transitioning on to the com-
plement.

Hidden solution: [unAcCESSIBLE UUID '0GK']

E7.14 Given the sets A, B C R, determine the relations between the following pairs of
sets

AUB and AU E,
ANB and AN E,
(AuB)’ and A°UB°,
(AnB)’ and A°NB°.

Hidden solution: [unAcCESSIBLE UUID '0GP']

E7.15 Prerequisites:2.112,2.110,2.121.Difficulty:*.(Replaces 29w) Let (X, T) be a topologi-
cal space. Consider the descending ordering between sets ™, with this ordering 7 is
a directed set; we note that it has minimum, given by @&.

Now suppose the topology is Hausdorff. Thentakenx € A,letU ={A € 7 : x € A}
be the family of the open sets that contain x: show that U is a directed set; show that
it has minimum if and only if the singleton {x} is open (and in this case the minimum
is {x}). 6

Hidden solution: [unACCESSIBLE UUID '0GR']

By the exercise 2.121, when {x} is not open then U is a filtering set, and therefore
can be used as a family of indices to define a nontrivial *limit” (see Remark 6.66).
We will see applications in section §7.g.
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§7.a Neighbourhood; adherent, isolated and accumulation point

E7.16 Note:Written exam of 25 March 2017.Let (X, T), (Y, 6) be two topological spaces with non-
empty intersection and assume that the topologies restricted to C = X N Y coincide
(i.e. 7ic = ;c) ™7 and that C is open in both topologies (i.e. C € 7,C € 6). Prove
that there is only one topology o on Z = X U Y such that ojx = 7 and oy = 6 and
that X, Y € o. Hidden solution: [unAccESSIBLE UUID '0GT'] [UNACCESSIBLE UUID '0GV']

§7.a Neighbourhood, adherent point, isolated point, accumulation
point

Definition 7.17 (Neighbourhoods). ™ Let (X, 7) be a topological space and let x, €

X.

» We denote as neighbourhood of x, any superset of an open set containing X .

* We call fundamental system of neighbourhoods of x, a family {U;};c; of neigh-
borhoods x, with the property that each neighborhood of x, contains at least one
of the U; .

We will say that U is an open neighborhood of x simply to say that U is an open set
that contains x,.

Definition 7.18. Let E,F C X be sets:

* a point xo € X is an adherent point of E if every neighborhood U of x, has
non-empty intersection with E;

* a point x, € E is isolated in E if there exists a neighborhood U of x such that
EnU = {x};

(Note that, in some cases, sets can have at most a countable number of isolated
points: see 9.95 and 7.98, and also 9.96).

We also define this concept (already seen in 5.13 for the case X = R).
Definition 7.19 (accumulation point). Given A C X, a point x € X is an accu-
mulation point for A if, for every neighborhood U of x, U N A \ {x} is not empty. ™°
The set of all accumulation points of A is called derived set and will be indicated
with D(A).

In the literature accumulation point is also called ”limit point” (which can be con-
fused with the definition 9.57); for this reason we will not use this wording. "

Exercises

E7.20 Check that in the definitions 7.18 and 7.19 you can equivalently use, instead of
the neighborhoods U of x, the open neighborhoods U of x,.

540ften when you say A is dense in B” it happens that B is closed and A C B: in this case “dense” is
justZ =B.

55To formally reconnect to the definition seen in 2.112 we define A < B <= A D B and associate the
ordering < with 7.

56Note that, the singleton {x} is open iff x is an isolated point.

>’Remember that 7jc ={BNC : B € 1}.

58 Definition 5.6.4 in the notes [2]

59We could call U \ {x} a *deleted neighborhood”; so we are asking that the deleted neighborhood U \ {x}
has non-empty intersection with A; as we already did in 5.13.

T60See in this regard [34].

104 Copyright A. C. G. Mennucci
The sections comprising theory and exercises’ statements are released under License WP:CC BY-SA

[0Gs]

[29V]

[oGw]

[0GX]

[0GY]

[2BN]

[0GZ]


https://coldoc.sns.it/UUID/EDB/0GS/
https://coldoc.sns.it/UUID/EDB/0GT
https://coldoc.sns.it/UUID/EDB/0GV
https://coldoc.sns.it/UUID/EDB/29V/
https://coldoc.sns.it/UUID/EDB/0GW/
https://coldoc.sns.it/UUID/EDB/0GX/
https://coldoc.sns.it/UUID/EDB/0GY/
https://coldoc.sns.it/UUID/EDB/2BN/
https://coldoc.sns.it/UUID/EDB/0GZ/
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License

§7 TOPOLOGY

E7.21 Check that in the definitions 7.18 and 7.19 you can equivalently use neighbor-
hoods U of x; chosen from a fixed fundamental system of neighborhoods.

E7.22 Check that the set of points adhering to A coincides with the closure of A.
Hidden solution:  [vnaccessIBLE vuIp '0H2']

E7.23 Prerequisites:7.22.Check that A = A U D(A). Hidden solution: [unaccessisie
UUID 'OH4']

E7.24 Apoint x € X is an accumulation point for X ®' if and only if the singleton {x}
is not open. Hidden solution: [unAcCESSIBLE UUID '0H6']

E7.25 Topics:boundary. Let A C X. Let’s remember the definition of boundary dA =
A\ A°.Note that A is closed: indeed setting B = A° to be the complement, it is
easily verified that JA = A N B. In particular we showed that A = JB.

Show that the three sets A, A°, B° are disjoint, and that their union is X; in particular,
show that the three sets are characterized by these three properties:

+ Each neighborhood of x intersects both A and B;
* there exists a neighborhood x contained in A;

+ there exists a neighborhood x contained in B.

(See also 9.44 for the case of metric spaces). Hidden solution:  [unaccessIBLE UUID
'OH8']

E7.26 Topics:boundary.Difficulty:*.

Given X topological space and A C X; if A is open (or closed) the boundary 0A has
empty interior; we have A 2 d0A with equality if dA has empty interior; in addition
00A = 000A. Hidden solution: [uNACCESSIBLE UUID '0HB'] [UNACCESSIBLE UUID 'OHC']

E7.27 prerequisites:7.23.If (X, 7) is a topological space and A C X has no isolated
points, then also A does not have isolated points. Hidden solution: [uniccessisLE vuID
"OHF']

E7.28 wote:written exam, 12/1/2013.Let A be an open subset of X. Prove that, for any subset
B of X, the following inclusion holds: A N B C AN B. Show, by an example, that
the conclusion does not hold if you remove the assumption that A is open. Hidden
solution.‘ [UNACCESSIBLE UUID 'OHH']

E7.29 Given E C X, we distinguish the points x € X in three distinct sets that are a
partition of X.

« Forevery neighborhood U of x, U\{x} intersects E. These are the accumulation
points of E.

* x € E and there is a neighborhood U of x such that U N E = {x}. These are the
isolated points in E.

* Now describe the third set of points

Hidden solution: [vnACCESSIBLE UUID 'OHK']
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§7.b  Examples

§7.b Examples [2BD]
Exercises

E7.30 Let’s consider on R the family 7, = {(a,+o0) : a € R} U {@, R}. Show that [ouu]
it is a topology. Is it Hausdorff? Calculate closure, interior, boundary and derivative
of these sets:

o , {o,1} , [o,1] , (0,1) ,
[0,00) , (—=00,0] , (0,00) , (—00,0)

Hidden solution: [vnAcCESSIBLE UuID 'OHN']

E7.31 prerequisites:7.85,7.86.Let X = R U {4+ 00, —o0}, consider the family B of parts [oxp]
of X that contains

« open intervals (a, b) with a,b € R and a < b,
* half-lines (a, +o0] = (a, +0) U {+o0} with a € R,
« the half-lines [—o0, b) = (—o0,b) U {—oco} with b € R.

(Note the similarity of sets in the second and third points with the “neighbourhoods
of infinity” seen in Sec. §5.a).

Show that 3B satisfies the properties (a),(b) seen in 7.85. Let T therefore be the topol-
ogy generated from this base. The topological space (X, 7) is called extended line,
often denoted R.

This topological space is T, it is compact (Exercise 7.43), and is homoemorphic to
the interval [0,1]. It can be equipped with a distance that generates the topology
described above.

Hidden solution: [vnicCESSIBLE UuID '0HQ']

E7.32 prerequisites:7.85,7.86.Let X = R U {oo}, let’s consider the family B of parts of  [oxr]
X comprised of

« the open intervals (a, b) with a,b € Rand a < b,
« the sets (a, +00) U (—o0,b) U {0} witha,b € R and a < b.

Show that 3B satisfies the properties (a),(b) seen in 7.85. Let T therefore be the topol-
ogy generated by this base.The topological space (X, 7) is called one-point com-
pactified line.  This topological space is T, and it is compact (Exer. 7.44); it is
homeomorphic to the circle (Exer. 9.170); therefore it can be equipped with a dis-
tance that generates the topology described above.

E7.33 Topics:directed ordering.Prerequisites:2.112. [OHS]

Let (J, <) be a set with direct ordering. We decide that an ”open set” in J is a set A
that contains a half-line” of the form {k € J : k > j} (fora j € J) "%, Let therefore
7 be the family of all such open sets, to which we add @, J. Show that 7 is a topology.
Is this topology Hausdorff? What are the accumulation points?
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§7 TOPOLOGY

E7.34 Topics:accumulation point, maximum, direct ordering.Prerequisites:2.112, 7.33.

Find a simple example of a set (J, <) with direct ordering that has maximum but,
when we associate to J the topology 7 of the previous example, (J, 7y) has no accu-
mulation points.

Hidden solution: [unAcCESSIBLE UUID 'OHV']

E7.35 Topics:direct ordering. Prerequisites:2.110, 2.112, 2.121.
Let (I, <) be a set with direct ordering and with a maximum that we call co. We call
J =TI\ {oo} and assume that J is filtering (with induced sorting) and non-empty. In
this case we propose a finer topology. The topology 7 for I contains:
* 3.5

« sets A that contain a “half-line” {k € I : k > j}, fora j < oo, (these are called
“neighborhoods of 00”);

« subsets of I that do not contain oo.

Show that 7 is a topology. Is this topology Hausdorff? Show that oo is the only
accumulation point.

Hidden solution: [unaccessIBLE vuIp '0Hx']
The previous construction can be used in this way.

Remark 7.36. Let (J, <) be a non-empty set with filtering order. We know from 2.121
that J has no maximum. We extend (J, <) by adding a point o0 ”: Let’s set I = J U{oo}
and decide that x < oo for every x € J. It is easy to verify that (I, <) is a direct order,
and obviously oo is the maximum I. " Let T be the topology defined in 7.35. We know
that oo is an accumulation point. This topology can explain, in a topological sense, the
limit already defined in 6.58, and other examples that we will see in Sec. §7.g.

§7.c Generated topologies

Exercises

E7.37 Prerequisites:2.59.Let X be asetand V C P(X) a family of parts of X; we define
7 as the intersection of all topologies that contain V i.e.

T ﬂ{o,c 2 V,o topology in X}

Show that 7 is a topology.

T is the ”topology generated by V”; it is also called “the smallest topology that
contains V”.

See also the exercises 7.86.

§7.d Compactness

Definition 7.38. A subset K C X is compact " if, from every family of open sets

T61\we are taking A = X in the definition 7.19.
62Wwe could call such a A a neighborhood of infinity, as was already done in Sec. §5.a.
6350 (I, <) is not a filtering order.
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§7.e Connection

(A;);ier whose union UieIAi covers K, we can choose a finite number J C I of open set
whose union | J._. A; covers K.
ieJ

If you formulate these exercises in metric spaces, you can use the theorem 9.110 on
page 136 to deal with compact sets.
Exercises

E7.39 Suppose the topological space is compact. Show that every closed subset is
compact.

E7.40 Suppose the topological space is T, (see Definition 7.4). Prove that every com-
pact subset is closed.

E7.41 Topics:compact sets.Prerequisites:7.40. Note:For the real case, see 5.30. For the case of metric

spaces, see 9.120..

Let (X, ) be a T, topological space and let A,, C X be compact nonempty subsets
such that A, C A, then () Ap # @.

What happens if the space is not T,? Hidden solution: [uwAccesSIBLE vuID '0J7']

E7.42 prerequisites:7.40.Let (X, 7) and (Y, o) be topological spaces, with X compact
and Y T,. Let f : X — Y be continuous and injective; show that f is a homeomor-
phism between X and its image f(X).

Hidden solution: [uniccESSIBLE vuID '0J9']

E7.43 prerequisites:7.31.Show that the extended line (the topological space shown in
7.31) is compact. Hidden solution: [unaccessisLe vup '0Jc']

E7.44 prerequisites:7.32.Show that the compacted line (the topological space shown in
7.32) is compact.

See also the exercise 7.71 for a characterization of compact sets by nets.

§7.e Connection

Definition 7.45. Let (X, ) be a topological space. Given A,B C X, to shorten the
formulas we will use the (nonstandard) notation

* AiB to say that A, B have non-empty intersection,
* AdB to say that they are disjointed, and
* nA to say that A it is not empty.

we recall the definition of connectedness (Chap. 5 Sec. 11 of the notes [2] or, Chap. 2
in[22]).

* The space X is disconnected if it is the disjoint union of two open non-empty sets.

* The space X is connected if it is not disconnected. This may be rewritten in dif-
ferent fashions, as for example

VA,BE7,(nA A nB A XCAUB)= AiB.

64The definition shows that the empty set is compact. Some texts however explicitly exclude this case.
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» A non-empty subset E C Xis disconnected if it is disconnected with the induced
topology; that is, if E is covered by the union of two open sets, each of which
intersects E, but which are disjointed in E; in symbols,

JA,BET,EiA A EBBA ECAUB A ANBNE=Q. (7.46)

* Similarly a non-empty set E C X is connected if it is connected with the induced
topology. This may be written as

VA,Be,(EIA A EBBAECAUB) > ANBNE# Q. (7.47)
or equivalently

VA,BeT,(ECAUBAANBNE=@)=>(ECAVECB). (7.48)
Remark 7.49. It is customary to assume that the empty set is connected; this case,
however, is of little interest, generally we will exclude it in the following exercises.

There are many equivalent ways of expressing the above definitions; we leave them
as (simple) exercises. This Lemma may also be useful.

Lemma 7.50. IfY C X is connected and Y C E C Y, then E is connected.
For the proof, See Teorema 5.11.6 in [2], or Theorem 20 in Cap. 1 in [14].
Exercises

E7.51 Show that the assertions (7.47),(7.48) in 7.45 are equivalent. Hidden solution:
[UNACCESSIBLE UUID '2BV']

E7.52 The space X is disconnected if and only if it is the disjoint union of two non-
empty closed sets.

E7.53 A non-empty subset E C X is disconnected if E is covered by the union of two
closed sets, each of which intersects E, but which are disjoint inside E.

E7.54 prerequisites:7.45.X is disconnected if and only if there exist non-empty sets
A, B C X whose union covers X, but such that BdA and BdA.

Hidden solution: [unaccESSIBLE vUID '0JJ']

E7.55 pitficulty:+.Suppose E C X is disconnected, can we assume that
JA,Be t,EiA A EiIB A ECAUB A AdB. (7.56)

that is, that there exist two disjoint open sets, each of which intersects E, and that E
is covered by their union?
Hidden solution:  [unaccessisLe vuip rogu'] [UnAcCESSIBLE vuip 'oJP'] See also 9.77.

E7.57 Let (X, x) be a topological space, Y C X the topological space with the induced

topology
w={ANnY : Ae}.

Fix E C Y, consider these statements.

(cX) E is a connected set in the topological space (X, 7x);
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87.f Nets

(cY) E is a connected set in the topological space (Y, 7y).

Are the two statements equivalent?

Hidden solution: [vnicCESSIBLE vuID '113']

E7.58 Note:Proposition 5.11.2 notes [?].
Aset E C Xis disconnected if and only there exists a continuous function f : E - R
that assumes exactly two values, for example f(E) = {0, 1}.
E7.59 Note:Theorem 5.11.7 notes [2].
Let I be a family of indices. Show that if E; is a family of connected subsets of X
such that
Vi,jeEl, EENE#d,
then E = (J,_, E; is connected.
Hidden solution: [unaccessIsLe vuip '0Jr']
Definition 7.60. Given x € X, we will say that the connected component of X
containing x is the union of all the connected sets that contain x (note that the singleton

{x} is connected). The previous exercise 7.59 shows that the connected component is
connected.

Exercises

E7.61 Note:Section5.11.2 in the text [2].Show that two connected components are either disjoint
or coincide. So the space X is partitioned into connected components.
Hidden solution: [unaccessisLe vuip '0Ji']

E7.62 Let C C X be a closed set; let K be a connected component of C: show that K
is closed. Hidden solution: [unvACCESSIBLE vuIp '0Jz']

E7.63 Find an example of a space (X, 7) where there is a connected component that is
not open. Hidden solution: [vwiccesSIBLE UUID '260']

E7.64 Letnow (X, d) be a metric space where open balls B(x, r) are also closed. Show
that the connected components of X are all and only singletons {x}.

(A space where connected sets are always singletons, is called totally disconnected).

Hidden solution: [vnACCESSIBLE UUID '0K1']

See also the exercises in Sec. §9.e.

§7.f Nets

We will use the concepts of direct order, filtering order and cofinal set already discussed
in Sec. §2.d.a. In the following (Y, o) will be a Hausdorff topological space.

Definition 7.65. Let (Y, o) be a Hausdorff topological space. Let (J, <) be a set with
filtering order (defined in 2.110). Let ¢ : J — Y be a net (already met in Sec. §6.d).

We define that limje; p(x) = ¢ € Y'if and only if, for every neighborhood V of ¢ in
Y you have that ¢(j) € V eventually for j € J.
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The definition of eventually is in 2.125, and it means that there exists k € J such
that for every j > k you have ¢(j) € V.
The remark 6.57 holds in this case as well.

Definition 7.66. Givenanetx : J — Y, a point z € Y is said to be a limit point for
x if there is a subnet y : H — Y such that lim ey y(j) = z.

(Note that “subnet” is intended in the general sense presented at the end of 6.59,
where y = x o i by means ofamap i : H — J satisfying (6.60)).

Exercises

E7.67 prerequisites:2.121.Let J be a directed but non-filtering set; then let m € J be its
maximum (which exists as seen in 2.121); if we define limjc; ¢(x) as in 7.65, show
that the limit always exists and it is gp(m).

E7.68 Let (Y,0o) be a Hausdorff topological space and A C Y. Show that A coincides
with the set of all possible limits of nets ¢ : J — A (varying J and then ¢).

E7.69 Let (Y, o) be a Hausdorff topological space and A C Y. Show that x € Y'is
an accumulation point for A if and only if there is a J filtering set and there is a net
@ : J = A\ {x} such that limc; p(x) = x.

E7.70 Prerequisites:2.115,6.59.Difficulty: .

Let (Y, o) be a Hausdorff topological space. Let J be a filtering setand x : J — Y
be anet in Y. For every a € J define E, = {xg: B€J,f2>0a}and

E=()Ea
aeJ

Prove that E coincides with the set L of limit points (defined in 7.66).

Hidden solution: [unicCESSIBLE UUID '2FK']

E7.71 pPrerequisites:2.115,6.59,7.70.Difficulty:**.

Let (Y, o) be a Hausdorff topological space. Show that Y is compact if and only if
every net taking values in Y admits a converging subnet.

Hidden solution: [unAcCESSIBLE UUID '0K9']

§7.g Continuity and limits

Definition 7.72 (Limit). ' Let (X, 1) and (Y, o) be two topological spaces, with
(Y, o) Hausdorff. " Let E C Xand f : E — Y. Let also x, be an accumulation point
of E in X. We define that lim,_,,, f(x) = ¢ € Y if and only if, for every neighborhood
V of € in'Y, there exists U neighbourhood of x,, in X such that f(UNE \ {x,}) C V.

Definition 7.73. Let (X, 1) and (Y, o) be two topological spaces, with (Y, o) Haus-
dorff; let f : X — Y be a function.

It is said that f is continuous in x; if lim,_, . f(x) = f(xo).

It is said that f is continuous if (equivalently)

65Definition 5.7.2 in the notes [2].
660 have uniqueness of the limit and therefore to give an unique meaning to lim,._, xo S (x) as an element
of Y.
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§87.g Continuity and limits

* if f is continuous at every point, that is lim,_,, f(x) = f(y) for every y € X, or
s if f7Y(A) € Tforeach A € o.

(Thm. 5.7.4 in the notes [2].).
A continuous bijective function f : X — Y such that the inverse function f=! :
Y — X s again continuous, is called homeomorphism.

Exercises

E7.74 Consider this statement.

«Let f : X — Yand xy € X, then f is continuous at x, when, for every open set
B C Y with f(x,) € B, we have that f~!(B) is open.»
This statement is incorrect.

Build an example of a function f : R — R that is continuous at x,, = 0 but such that,
for every J = (a, b) open non-empty bounded interval, f~!(J) is not open. Hidden
SOlution.‘ [UNACCESSIBLE UUID '2BC']

E7.75 pifficulty:*.

Let Y be a topological space. We say that Y satisfies the property (P) with respect to
a topological space X when it satisfies this condition: for every dense subset A C X
and every pair of continuous functions f,g : X — Ysuch that f(a) = g(a) for every
a € A, necessarily there follows that f = g.

Prove that Y is Hausdorff if and only if it satisfies the property (P) with respect to
any topological space X.

E7.76 pPrerequisites:7.36.Explain how Definition 7.65 can be seen as a special case of
Definition 7.72. (Hint. proceed as in the note 7.36 and set E = J,X = I, Xy = 00).

E7.77 prerequisites:7.76.Let X, Y be topological Hausdorff space. Let E C X, let f :
E — Y, and suppose that x, is an accumulation point of E in X.
o If limy_,,, f(x) = € then, for each net ¢ : J — X with lim;¢; ¢(j) = x, we
have limje; f(9())) = ¢.
. 67

* Consider the filtering set J given by the neighborhoods of x,; ™ consider nets
@ : J - X with the property that ¢(U) € U \ {x,} for each U € J. We note

that lim ;7 9(j) = xo.
If for each such net lim;¢; f(¢(j)) = ¢, then lim,_, , f(x) = ¢.

Hidden solution: [unACCESSIBLE UUID 'OKF']

E7.78 prerequisites:7.67,7.76.Let X, Y be Hausdorff topological spaces. Let f : X —
Y, xo € X. The following are equivalent.

1. f is continuous at x;
2. for each net ¢ : J — X such that

lim p(j) = xo
jeJ

we have
g_ig} JF(e())) = f(xo)

67The fact that this is filtering was shown in 2.121, 7.15 and 7.24
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Hint, for proving that 2 implies 1. Suppose that X, is an accumulation point. Consider
the filtering set J given by the neighborhoods of x; consider nets ¢ : J — X with
the property that p(U) € U for each U € J; note that limjc; ¢(j) = xo.

Hidden solution: [vnACCESSIBLE UUID 'OKH']

§7.h Bases

Definition 7.79 (Base). Given a topological space (X, ), a base " is a collection
B of open sets (i.e. B C t) with the property that every element of T is an union of
elements of B.

For example, if X is a metric space, then the family of all open balls is a base.

Exercises

E7.80 Let B be a base for a topology 7 on X; chosen an open set A € t, for every
Xx € A we can choose a B, € B with x € By, and such that A = UxeA B,.

Hidden solution: [unACCESSIBLE UUID 'OKN'] [UNACCESSIBLE UUID 'OKP']

E7.81 prerequisites:7.80.Let B be a base for a topology 7 on X. Show that, given x € X,
{Be B : xeB}

is a fundamental system of neighbourhoods for x .

E7.82 prerequisites:7.21, 7.81, 7.80.Let B be a base for a topology 7 on X. Show that,
for any given A C X,
a=JiBes:Bca

while _
A={xeX:VBeEB,xEB=>BnNA+#J}

Hidden solution: [vNACCESSIBLE UUID 'OKT']

E7.83 prerequisites:7.80.Given X, given a base C for a topology ¢ on X, and a base B
for a topology f3 on X, we have that o 2 8 if and only if for every x € X and for every
B € B,B 3 x there exists C € C,C 3 x,C C B. Hidden solution: [unccEsSIBLE
UUID '0M8']

E7.84 Prerequisites:?.S?.LetX = {1, 2, 3} and let B = {{1, 2}, {2, 3}}, let T be the small-
est topology that contains B, show that 3B is not a base for 7.
Hidden solution:  [vnaccessIsLE vuip 'oki']
It is therefore interesting to try to understand when a family B can be the base for a
topology.

E7.85 Let B be a base for a topology 7 on X; then the following two properties apply.

(@) UB = X that is, the union of all the elements of the base is X.

68 Also known as basis. See [14] page 46, or Chapter 5 Section 6 Definition 5.6.4 in the notes [2], or [49]
for an introduction.
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§7.h Bases

(b) Given By, B, € B for each x € B; N B, there exists B; € B such that x € B; C
B, N B,.

Hidden solution: [unAcCESSIBLE UUID '0KY']

E7.86 pPrerequisites:7.37,zF:4.Conversely, let X be a set and B a family of subsets that
verify the previous properties (a),(b) seen in 7.85. Let ¢ the family of sets that are
obtained as a union of elements of B, in symbols "%

def
o= {UAi : I family of indexes and A; € BVi € 1} ;
iel
it is meant that also @ € o. Show that ¢ is a topology.
Hidden solution: [uvAccESSIBLE UUID '0MO']
E7.87 Prerequisites:Generated topology 7.37, 7.85, 7.86.Let’s resume 7.86. Let again X

be a set and B a family of subsets that satisfy the above properties (a),(b) seen in
7.85; suppose 7 the smallest topology that contains B. Prove that 3B is a base for 7.

Hidden solution: [unaccESSIBLE UUID 'oM2']
We can therefore say that a family that satisfies (a),(b) is a base for the topology it
generates. This answers the question posed in 7.84.

E7.88 prerequisites:7.37,7.85,7.86. Letnow Xj, ... X, be topological spaces with topolo-
gies, respectively, 1, ... 7,,; let X = Hln: X; be the Cartesian product. We apply the
above results to define the product topoelogy 7: this can be described in two equiv-
alent ways.

» Union of all Cartesian products of open sets "

n
r= { UTTA4: Ayj€n. .. AnjerVi €]
jeJ i=1

arbitrarily chosen sets of indexes} .

+ 7 is the smallest topology that contains Cartesian products of open sets.
Hidden solution: [unAccESSIBLE UuID 'oMj']

E7.89 prerequisites:7.88,7.85,7.86.Let now Xj, ... X, be topological spaces with topolo-
gies 1y, ... T, respectively and suppose that B4, B,, ... B,, are bases for these spaces.
LetX = H?ﬂ Xj be the Cartesian product, and let

n
B = {HAI : Al S BI’AZ S Bz, An S gn}

i=1

The family of all cartesian products of elements chosen from their respective bases.
Show that B is a base for the product topology. (This exercise generalizes the previ-
ous 7.88, taking B; = 7).

Hidden solution: [unAcCESSIBLE UUID 'OM6']

See also the exercise 9.51 for an application to the case of metric spaces.
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§7 TOPOLOGY

E7.90 prerequisites:7.88,7.89,7.83. Let, more in general, I be a non-empty index set, [2r7]
and let (X;, 7;) be topological spaces, for i € I; let B; be a base for 7;. (Note that the
choice B; = 1; is allowed.)

LetX = Hl. . be the Cartesian product.
We define the product topology T on X, similarly to 7.88, but with a twist.
A base B for 7 is the family of all sets of the form A = Hl. < Ai Where

Vl EI,Ai S BiVAi :Xi 5

and moreover A; = X; but for finitely many i.

Show that B satisfies the requirements in 7.85, so it is a base for the topology 7 that
it generates. Show that the product topology does not depend on the choice of the
bases B;. Hidden solution: [vwAccESSIBLE vuID '2F8']

E7.91 prerequisites:2.112, 7.85. We verify that what is expressed in 7.15 also applies  [ovo]
to the ”base”. Let B be a base for a topology 7 on X; consider the descending order
between sets (formally A < B <= A D B); with this order (3B, <) is a directed set,
whose minimum is @. Now suppose the topology is Hausdorff. Then taken x € X,
let U = {A € B : x € A}be the family of elements of the base that contain x: show
that U is a directed set. Show that it has minimum if and only if the singleton {x} is
open. Hidden solution: [vwaccEsSIBLE vuID 'oMB']

E7.92 Consider a totally ordered set X (that has at least two elements), and the family  [2rs]
F of all open-ended intervals

(x,oo)d=ef{zeX:x<z}, (—oo,y)d=9f{zeX:z<y},

def

(x,y) ={zeX :x<z<y} (7.93)

for all x,y € X. (Cf. 2.142.) Prove that this is a base for a topology, i.e. that it
satisfies 7.86. So F is a base for the topology 7 that it generates. This topology 7 is
called order topology.

If X has no maximum and no minimum, then only the intervals (x, y) are needed to
form a base for 7. This is the case for the standard topologies on R, Q, Z,

E7.94 prerequisites:7.90.Consider topological spaces (X, 7;), each with the discrete topol- [2Fp]
ogy (and each X; has at least two elements). Let I = NorI = {0,1,...N}; let
X = HieIX,- be the Cartesian product. We define the product topology t on X, as
explained in 7.90. Describe a simple base for this topology. Moreover, if I = N,
show that the topology 7 is not the discrete topology.

Hidden solution: [unAcCESSIBLE UUID '2FF']

E7.95 Prerequisites:7.92,7.90,2.131,7.90. [2F9]

Consider totally ordered sets (X;j, <;) (each has at least two elements), and the asso-
ciated order topologies T;.

LetI=NorI=1{0,1,...N};letX = HieIXi be the Cartesian product.

Consider these two topologies.

ef
69 As already discussed in ZF:4, you could also use the more compact notation & = {U.’T tFC B},
70 As defined at the beginning of section 6, chapter 5, of the notes [2].
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§7.i First- and second-countable spaces

» We define the product topology t on X, as explained in 7.90.
* We order X with the lexicographical order <, and then we build the order topol-
ogy o on X. (See 2.131,7.90)

Is there an inclusion between ¢ and 7?
If every X; is finite, prove that these two topologies coincide ™".

Hidden solution: [unAcCESSIBLE UUID '2FC']

§7.i First- and second-countable spaces

Definition 7.96. A topological space satisfies the first axiom of countability if each
point admits a fundamental system of neighborhoods that is countable.

Definition 7.97. A topological space satisfies the second axiom of countability when
it has a countable base.

Exercises

E7.98 pifficuity:«.If (X, 7) satisfies the second axiom of countability, if A C X is com-
posed only of isolated points, then A has countable cardinality. Hidden solution:
[UNACCESSIBLE UUID 'OMG']

E7.99 prerequisites:7.82.  If (X, 7) satisfies the second axiom of countability, given
A C X there exists a countable subset B C A such that B D A. In particular, the
whole space X admits a dense countable subset: X is said to be separable. The vice
versa holds for example in metric spaces, see 9.46. See also 9.91 for an application
in R,

Hidden solution: [vnACCESSIBLE UUID 'OMJ']

The countability axioms will return in exercises 9.45 and 9.46.

§7.j Non-first-countable spaces
Exercises
E7.100 7% prerequisites:7.90,7.79.Difficulty:+. Let Q be a non-empty set; let’s consider
X =R2.
1. Let p
Ugp ={8 €EX,Vx € E,|f(x) — g(x)| < p}

where f € X, p > 0 and E C Q is finite. Show that the family of these Ug, o
satisfies the requirements of 7.86, and is therefore a base for a topology 7 (Hint:
use 7.90). This topology is the product topology of topologies of R.

In particular for each f € X the sets Ub{ o are a fundamental system of neigh-
borhoods.

2. Check that the topology is T,.

T71Note that the order topology on a finite set is also the discrete topology; use 7.94.
T72These two exercises 7.100,7.101, are taken from a text originally published by Prof. Ricci in http:
//dida.sns.it/dida2/c1/08-09/folde0/pdf9 in March 2014.
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§7 TOPOLOGY

3. Note that X is a vector space, and show that the “sum” operation is continuous,
as an operation X X X — X; to this end, show that if f,g € X,h = f + g,
for every neighborhood V;, of h there are neighborhoods V%, ; of f, g such that
v+ W

4. Given B; C R open and non-empty, one for each i € Q, show that HiBi is
open if and only if B; = R except at most finitely many i.

Hidden solution: [unAcCESSIBLE UUID 'OMN']

E7.101 prerequisites:7.79,7.100,7.65.Difficulty:*.Let £ be an infinite uncountable set ;
consider X = R with the topology 7 seen in 7.100.

1. Show that every point in (X, 7) does not admit a countable fundamental system
of neighborhoods.
2. Setting

def

C ={f € X, f(x) # 0 for at most countably many x € Q} (7.102)

show that C = X;
3. and that if (f,,) C C and f,, — f pointwise then f € C.

4. Let I be the set of all finite subsets of (, this is a filtering set if sorted by
inclusion; consider the net

(23 I-X 599([1) = ﬂ14
then VA € I, p(A) € C but

lim p(A) = 1
fgrel}qo( )=1IxgC

Hidden solution: [uNACCESSIBLE UuID '2BQ']

E7.103 pifficulty:+.We restrict the topology described in the previous example to the
set Y = [0, 1]1% (that is, we restrict R to [0, 1], and set = [0, 1]). Find a sequence
(f,) € Ythat does not allow a convergent subsequence.

Hidden solution: [uvAccESSIBLE UUID 'oMQ']

Let’s recall the definition 7.38: a space X is “compact by coverings” if, for every
(Ay)ier family of open such that UieIAi = X, there is a finite subfamily J C I such
that UiE ;Ai = X, The Tychonoff theorem shows that this space Y is ”compact by
coverings”. This exercise shows you instead that Y it is not ”compact by sequences”™.
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88 Miscellanea

This Section hosts material that would not otherwise fit properly elsewhere.

§8.a Polygons

We present some simple geometrical properties of polygons, that may be rigorously
proven either by analytical methods (embedding geometrical objects as subsets of the
Cartesian plane), or purely geometrical methods (in the spirit of [11]).

In the following we will use the celebrated Jordan Theorem; a simple proof may be
found in [26].

Theorem 8.1. Let ¢ : [0,1] — R? be simple closed curve in the plane and C =
#([0, 1)) be its trace. (See 20.11 for the definition). The complement R\ C consists of
exactly two connected components, that are open. One of these components is bounded
(and is called “the interior of the curve”, or, “the region bounded by the curve”) and
the other is unbounded (the exterior). The curve C is the boundary of each component.

The proof of the Jordan Theorem usually starts with a simple Lemma (again, see
[26]; or Theorem 6 [11]).

Definition 8.2. By polygonal curve ¢ : [0,1] — R? we will mean: a not self-
intersecting (that is, injective) polygonal (that is, piecewise linear) curve in the plane.
Analytically, there are points Vi, Vi, ... Vi, (called “vertices”) in the plane, and 0 = t, <
t; ... < t, =1 such that

iy — 1

t—t;
o(t) = Vi + Vi when t; <t <tj.

liy1 — 1 liy1 — 4
The polygonal curve is closed if (0) = @(1). (In this case we require that ¢ is injective
when restricted to [0,1)).

Lemma 8.3. Let C = ¢([0,1]), let P be the region bounded by the closed polygonal
curve, and E the exterior; recall that C, P, E is a partion of the plane. Choose A,B ¢ C
and suppose that the segment AB meets C in k points, none a vertex. Then: if k is odd,
A, B are in different regions, A € P < B & P; if k is even, A, B are in the same region,
AeP&sBeP

Definition 8.4. A polygon is the plane figure bounded by the polygonal closed curve. 7>

Remark 8.5. Consider a polygonal curve, with n vertexes labeled Vi, ... V},; this
bounds a polygon: how many sides does it have?

It depends. If some vertexes (in sequence) are aligned, then the figure in the plane
will visually have less than n sides and vertexes. For this reason, we will distinguish
the unlabeled polygon (which is the subset of the plane) from the labeled polygon (in
which we also take into account the position of the vertexes); the latter is less intuitive,
but makes for better mathematics. See figure 3 on page 120.
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§8 MISCELLANEA

Figure 2: Examples of polygons with many sides (odd or even) and only two ears.
Figure for 8.8

Exercises

E8.6 pitficuity:x.Let n > 3 integer; consider a polygon of n + 1 vertices. Show that
it can be cut in two polygons, one with /& and one with k sides, and 3 < h < n,
3 < k < n. By ”cut” we mean, two vertexes of the polygon (not contiguous) can be
connected by a line that is internal and does not touch other vertexes or sides. The
intersection of the two polygons is the segment BD, they do not have other points in
common.

Hint. there is at least one vertex B ”convex” in which the inner angle 3 is “convex”
(i.e. 0 < B < 7 radians); call A, C the vertexes contiguous to B; reason on the
triangle ABC.

Hidden solution: [unAccESSIBLE UUID '1QT']

E8.7 Prove by induction that the sum of the internal angles of a polygon with n > 3
sides, is (n — 2)7.

(The proof is easy if the polygon is convex; in the general case 8.8 can be useful).
Hidden solution: [uNACCESSIBLE UUID '1xM']

E8.8 An ear of a polygon is the triangle ABC formed by three consecutive vertices
A, B, C of the polygon, such that the segment AC lies inside the polygon. This implies
that the triangle ABC does not contain any point of the polygonal curve in its interior;
and that the two segments AB, BC can be removed from the polygon and replaced

with AC to create a newer polygon. Two ears are non-overlapping if their interiors
do not intersect, or equivalently if the do not have a side in common.

Prove the Two ears theorem: every polygon with more than three vertices has at least
two non-overlapping ears. (See [17, 33] for more details).

(Hint: consider labelled polygons, to avoid the complication presented in figure 3 on
the following page.)

Hidden solution: [vwAccEsSIBLE vuID '2FV']

E8.9 pifficulty:+. Show that each polygon can be “triangulated”, i.e. decomposed as
a union of nonoverlapping triangles. '7#
Hidden solution: [vwAccESSIBLE vuID '1xX']

E8.10 Again, we say that a vertex B is ”"convex” if the inner angle (3 is “convex” (i.e.

0 < f < 7 radians). Prove that the polygon is convex if and only if all its vertices
are convex. Hidden solution: [uwiccessIBLE vuID '265']

73The polygonal curve is part of the polygon. Other definitions are possible. See [64].
741t is legitimate if two different triangles have an edge or a vertex in common.
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§8.b Cantor set

Vs
Vi Va Vs Vi Va Vs
V2 [ V2
v, OV, v,

Ve

Figure 3: A polygon where, removing an ear, the number of unlabelled sides drops
from 7 to 4.

§8.b Cantor set

Let in the following C C R be Cantor’s ternary set. This set is described in many texts,
as for example Sect. 2.44 in [22]; and also in Wikipedia [51]).

Exercises

E8.11 (Replaces ow4) Show that C is closed, and composed only of accumulation points.  [ogs]
Hence C is a perfect set.

E8.12 LetI ={0,2}and X = IV, consider the map F : X — C given by [09T]

F(x) = i 37n-ly, .

n=0
Show that it is a bijection.

Let’s now equip X with the topology defined in 7.95. 77°. Show that F is a homeo-
morphism.

Hidden solution: [uniccESSIBLE vuID '09v']

See also 10.22, 9.151, 9.60.

T75Note that the order topology on I = {0, 2} is also the discrete topology.
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§9 METRIC SPACES

89 Maetric spaces [OMR]

§9.a Definitions [2cc]
A metric space is a pair (X, d) where X is a set (nonempty) with associated distance d.

Definition 9.1. Adistance is a functiond : X XX — [0, co) that enjoys the following  rous]
properties:

e d(x,x)=0;

* (separation property) if d(x,y) = 0 then x = y;

* (symmetry) d(x,y) = d(y, x) for each x,y € X;

* (triangle inequality) d(x, z) < d(x,y) + d(y, z) for each x,y,z € X.

An example is R" with the Euclidean distance d(x,y) = |x — y|.
Definition 9.2. Given a sequence (x,), C X and x € X, [oMT]

 we will say that ”(x,), converges to x” if lim,, d(x,, x) = 0; we will also write
X, —n X to indicate that the sequence converges to x.

« We will say that ”(x,), is a Cauchy sequence” if

Ve>0 AN eN, Vn,m > N d(x,,x,) <t .

Example 9.3. To any given set X we may associate the discrete distance [2c1]
0 x=y
d(x,y) =
1 x#y

The induced topology is the discrete topology where every subset of X is an open set.
[Note. If you are not familiar with the concept of metric space, you can assume that
X = R"and d(x,y) = |x — y| in all exercises.]
Exercises
E9.4 Prove that a converging sequence (x,),, C X is Cauchy. [oMv]

E9.5 Given a sequence (x,), C X show that, if it converges to x and converges to y,  [om]
then x = y.
This result is known as Theorem of the uniqueness of the limit.

E9.6 We generalize the definition of metric space assuming thatd : X — [0, co] (the  [omx]
other axioms are the same). Show that the relation x ~ y defined by

x~y < d(x,y) <

is an equivalence relation, and that equivalence classes are open, and therefore are
disconnected from each other.

Hidden solution: [uniccESSIBLE UUID 'oMY']
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89.a Definitions

E9.7 Given f, g continuous functions on R, we define
d(f,8) = sup |f(x) — g(x)| .
x€eR

Prove that d is a distance on X = C(R), in the extended sense of the exercise 9.6.

Let f ~g < d(f,g) <  as before, show that the family of equivalence classes
X/ ~ has the cardinality of the continuum.

Hidden solution: [unAccESSIBLE UUID 'oNO']
E9.8 Prerequisites:9.39.Note:See also eserc. 14.49.  Suppose ¢ : [0, 00) — [0, 00) is mono-

tonic weakly increasing and subadditive, i.e. ¢(t)+ @(s) > ¢(t +s) for each t,s > 0;
and suppose that ¢(x) = 0 if and only if x = 0.

Then @od is again a distance. Examples: ¢(t) = \ﬁ e(t) = t/(1 +t), (t) =
arctan(t), ¢(t) = min{t, 1}.

Moreover show that if ¢ is continuous in zero then the associated topology is the
same. '’% Hidden solution: runaccessiaLe vurp "oz’

E9.9 If (x,), C Xis a sequence and x € X, show that lim,,_,, x, = x if and
only if, for each sub-sequence ny there exists a sub-sub-sequence ny, such that
limy,, o Xp, = x. Hidden solution: [unaccesszsLe vurp 'ony ']

h

E9.10 A sequence (x,) C X is a Cauchy sequence if and only if

I\}im sup{d(x,, X)) : n>=N,m>N}=0 .

E9.11 Asequence (x,,) C Xis a Cauchy sequence if and only if there exists a sequence
€, with g, > 0 and ¢, —, O such that, for every n and every m > n, we have
d(Xp, Xp) < €p-

Hidden solution: [unAccESSIBLE UUID '0N7']
E9.12 If (x,) C Xis a Cauchy sequence and there exists x and a subsequence n,, such
that limy, , o, X, = x then lim,,_, , X, = x.
Hidden solution: [unaccESSIBLE UUID '0N9']
This ”lemma” is used in some important proofs, e.g. to show that a compact metric

space is also complete.

E9.13 Leteg, > 0 be an infinitesimal decreasing sequence. If (x,,) C X is a Cauchy
sequence, there exists a subsequence n; such that

VkeN,VheN, h>k=> d(xnk,xnh) <eg .

Hidden solution:  [uwaccesszsie vurp onp'] This property is often used by choosing
€, = 27", or other sequence whose series converges.

E9.14 Let (x,), be a sequence such that 220:1 d(Xp, Xp41) < oo: prove that it is a
Cauchy sequence.

Compare this exercise, the previous 9.13 in case Zn €, < 00, and exercise 9.12.
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E9.15 If(x,) C Xisa Cauchy sequence, (y,,) C Xis another sequence, and d(x,, y,) —, [oxc]

0, then (y,) C X is a Cauchy sequence.

E9.16 Given (X, d) a metric space, show that d is continuous (as a function d : X X
X — R). You can actually show that it is Lipschitz, by associating to X X X the
distance

a(x, y) = d(xq, 1) + d(x3, y,), for x = (x1,x2),y = (1, )2) EX X X.
Hidden solution: [unicCESSIBLE UUID 'ONK']

E9.17 Prerequisites:5.28, 14.49,9.11.Difficulty:*.Note:Exercise 2, written exam, 9 July 2011.

Let ar(x) be a continuous function on R, bounded and strictly positive. Given f, g
continuous functions on R, we define

d(f,g) = sup (min{a(x), |f(x) — g(X)I}) -
xeR
Prove that d is a distance on C(R) and that (C(IR), d) is complete. Hidden solution:
[UNACCESSIBLE UUID 'ONP']

E9.18 nNote:Exercise 2, written exam, 25 March 2017.

Show that the following properties are equivalent for a metric space X:

« every sequence of elements of X admits a Cauchy subsequence;

 The completion X* of X is compact.

Hidden solution: [unAcCESSIBLE UUID 'ONR']

§9.b Topology in metric spaces
Let (X, d) be a metric space.

Definition 9.19 (ball,disc). Let x € X,r > 0 be given; we will indicate with B(x,r)
the ball,
de)
B(x,r) =f{y €X :d(x,y)<r}

that is also indicated with B,(x); and with
D(x,r) dzef{y €X :d(xy) <r}
the disk, that is also indicated with B,(x).
Definition 9.20. For the following exercises we define that

1. asetE is open if
Vxo € E,3r >0 : B(xg,¥) CE . (9.21)

It is easily seen that @, X are open sets; that the intersection of a finite number
of open sets is an open set; that the union of an arbitrary number of open set is
an open set. So these open sets form a topology.

76See Sec. §9.b below for a summary of definitions regarding topology in metric spaces: in particular the
result 9.39 will be useful.
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89.b Topology in metric spaces

2. The interior E° of a set E is
E°={x €E : 3r>0,B,(x) CE}; (9.22)

It is easy to verify that E° C E, and that E is open if and only if E° = E (exercise
9.31).

3. Aset is closed if the complement is open.

4. A point x, € X is adherent to E if

Vr>0, ENB.(xy) #

5. The closure E_ofE is the set of adherent points; it is easy to verify that E C E; It
is shown that E = E if and only if E is closed (exercise 9.35).

6. A is dense in B if A D B, that is, if for every x € B and for every r > 0 the
intersection B.(x) N A is not empty.

Note that, having the operational definition (9.21) of “open set”, then the axioms
(in the definition 7.2) in this case become theorems.
Exercises

E9.23 Topics:balls.

Prove that
By(x) C By(xo) (9.24)

for every x € B,(x,) and for every 0 < p < r — d(x,x,). Hidden solution:
[UNACCESSIBLE UUID 'OPO']

E9.25 Topics:balls, disks. Let X1, Xy € X, n,KL > 0, if d(xl, x2) >NhH+n then
B,l(xl) N D,z(xz) =@ . (9.26)
Hidden solution: [uniccESSIBLE vuID 'op2']

E9.27 Topics:interior. Prerequisites:9.23.Show that Br(X) is an open set using the defi-
nition (9.21). Hidden solution: [uwiccessIBLE vuID '0P;']

E9.28 Prove that a metric space is T, i.e. Hausdorff (see definition in 7.4).

E9.29 If A = B° then show that (B)® = A° (using the definitions in this section).

Hidden solution: [uniccESSIBLE vuID '0P7']

E9.30 prerequisites:9.29.Show that the notions of interior and closure seen above are
equivalent to those presented in the definition 7.2.

E9.31 Topics:interior. Show that E is open if and only if E° = E. Hidden solution:
[UNACCESSIBLE UUID 'OPC']

E9.32 Topics:interior. Show that if A C B C X and A is open then A C B° using the
above definitions.

Hidden solution: [unicCESSIBLE UUID 'OPF']
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E9.33 Topics:interior. Show that if A € B C X then A° C B°. Hidden solution: [orc]
[UNACCESSIBLE UUID 'OPH']

E9.34 Topics:interior.Prerequisites:9.27,9.32. [oPJ]

Given X metric space and A C X, show that
Ao — (Ao)° ,
using the above definitions.
For what has been said in 9.31, this is equivalent to saying that A° is an open set.

(For the case of X topological space, see the 7.11)

Hidden solution: [unAcCESSIBLE UUID 'OPK']

E9.35 Topics:interior. [oPM]
Show that E = E if and only if E is closed.

E9.36 Topics:closure. Prerequisites:9.33,9.29.(Replaces OPN) [OPP]

Show that if B C A C X then B C A; using the above definitions, or by switching to
complement set and using 9.33.

E9.37 Topics:closure.Prerequisites:9.29, 9.36. [opPQ]

Given a metric space X and a set A C X, show that

i-(@)

either by transitioning to the complement set and using 9.34, or by using the definition
of A as ”set of adherent points”.

As discussed in 9.35, this is equivalent to saying that A is a closed set.

E9.38 Let E C X, then E is a metric space with the restricted distance d = d|gyg. [OPR]

Show that A C E is open in (E, d) (as defined at the beginning of this section) if and
only there exists a set V' C X open in (X, d) such that VNE = A.

(The second way of defining “open” is used in topology.)

Hidden solution: [unicCESSIBLE UUID '2GD']

E9.39 prerequisites:7.83.Let X be a set with two distances d;, d,; let’s call 7;, 7, respec-  [ops]
tively the induced topologies. We have that 7y C 1, if and only if

Vx € XV >03n>0 : BXx,n) CBY(x,n)
where

BX(x,n)={yeX :d*(x,y)<n} , Blu,n)={yeX: di(xy) <n}

Note that this exercise is the analogue in metric spaces of the principle 7.83 for the
bases of topologies.
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89.b Topology in metric spaces

E9.40 pPrerequisites:7.88, 9.39, 11.8, 11.15,11.16.
Having fixed (X3, d,), ... , (X,, d,,) metric spaces, let X = X; X --- X X,.

Let ¢ be one of the norms defined in eqn. (§11.a) in Sec. §11.a. Two possible exam-
ples are (x) = [x;] + -+ + [xp] Or (X) = Max;=y. p [x;]-

Finally, let’s define for x,y € X

d(x,y) = p(d1Cer, y1)s oo s (s ) - (9:41)
Show that d is a distance; show that the topology in (X, d) coincides with the product
topology (see 7.88).
Note that this approach generalizes the definition of the Euclidean distance between
points in R" (taking X; = R and ¢(z) = , /Zi |z;|2). We deduce that the topology of
R" is the product of the topologies of R.
Hidden solution: [vnaccessIsLE vuIp 'oPx']
See also the exercise 9.51, which reformulates the above using the concept of bases
of topologies.

E9.42 prerequisites:9.25,9.16.

Let D(x,r) = {y € X : d(x,y) < r}be the disk, show that it is closed.
Let S(x,r) = {y € X : d(x,y) = r} be the sphere, show that it is closed.

Hidden solution: [unicCESSIBLE vuID '0PZ']

E9.43 Prerequisites:9.44,9.27,9.42, 9.36.Letr > 0.
def

Let D(x,r) = {y € X : d(x,y) < r} be the disk; show that B(x,r) C D(x,r) and
that B(x,r) C D(x,r)°.

Let S(x,r) = {y € X : d(x,y) = r} be the sphere; show that dB(x,r) C S(x, 7).

Find examples of metric spaces in which the above equalities (one, or both) do not
hold.

Find an example of a metric space where there is a disk that is open'”’.

[oPT]

[oPY]

foqo]

(See also 9.89 for the case of space R™). Hidden solution: [uniccESSIBLE UUID '0Q1'] [UNACCESSIBLE

UUID '0Q2']

E9.44 prerequisites:7.25.Let A C X where (X, d) is a metric space, we have that x € A
if and only if there exists (y,) C A and (z,,) C A sequences such that y,, — x and
z, — Xx. Hidden solution: [vwaccessIBLE vuID '0G4']

E9.45 prerequisites:Section §7.i. Find an example of a metric space (M, d) that does
not satisfy the second axiom of countability, i.e. such that there is no countable base
for the topology associated with (M, d).

Hidden solution:  [unaccessisLe vuip 'ogs']
E9.46 prerequisites:Section §7.i.Let (M, d) be a metric space and suppose that there

exists D C M that is countable and dense. Such (M, d) is called separable. Show
that (M, d) satisfies the second axiom of countability.

The converse is true in any topological space, see 7.99.
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E9.47 pPrerequisites:9.32,9.36, 7.13, 9.29.Difficulty:*.

Let X be a metric space, and A C X. We want to study the “open-close” operation
(A°) (which is the closure of the interior of A).

 Show a simple example where (A°) is not contained A.

* Then write a characterization of (A°) using sequences and balls.

« Use it to show that the “open-close” operation is idempotent, that is, if D = (A°)
and then E = (D°) then E = D.

Hidden solution: [unsccESSIBLE UUID '0Q9'] [UNACCESSIBLE UUID '0GB']

E9.48 prerequisites:9.69.Show that, for every closed set C C X there exist countably
many open sets A,, such that ﬂnAn =C.
Hidden solution: [unAccESSIBLE UUID '0GD']

A set obtained as an intersection of countably many open sets is known as ”a Gg set”.
The previous exercise shows that in a metric space every closed is a Gs.

Passing to the complement set, one obtains this statement. A set that is union of
countably many closed sets is known as “an F; set”. The previous exercise shows
that in a metric space every open set is an F; set.

See also the section §13.d.

E9.49 pifficulty:++.Find an example of a metric space where for every x € X,r > 0,
B,(x) is a closed set, but the associated topology is not discrete. 7%
Hidden solution: [uNACCESSIBLE UuID '0GG']

We note that such a space must be totally disconnected as shown in 7.64.

§9.b.a Bases composed of balls

To face these exercises it is necessary to know the concepts seen in Sec. §7.h.

Exercises

E9.50 Prerequisites:7.85, 7.86.Show that the intersection of two balls is an open set (ac-
cording to the definition 9.20). Hence the family of all balls meets the requirements
(a) and (b) in exercise 7.85; so (as shown in 7.86), the family of balls is a base for
the topology that it generates (which is the topology associated with metric space).

Hidden solution: [unAcCESSIBLE UUID '0GK']

E9.51 Let’s review the exercise 9.40.
Having fixed (X3, d,), ... , (X}, d;,) metric spaces, let X = X; X X; X --- X X,,.
Let d be the distance
d(x,y) = max di(x;, 1) -

This is the same d defined as in eqn. (9.41) inside 9.40, setting ¢(x) = max;—;._, |X;|.
We indicate with B(x, r) the ball in (X, d) of center x € X and radius r > 0.

T77There are also spaces where every ball is closed, see 9.49.
78See 7.5 for the definition.
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89.b Topology in metric spaces

We want to show that d induces the product topology on X, using the results seen in
Sec. §7.h.

Taken t € X;,r > 0 we indicate with B%i(t,r) the ball in metric space (X;,d;). Let
B; be the family of all balls in (X;, d;).

Let B be defined as
n
B = {HBdi(xi’ rl) Vi, X; € Xi’ri > 0}
i=1
This is the same B defined in 7.89.

Show that every ball B4(x, r) in (X, d) is the Cartesian product of balls B4i(x;,r) in
(X;, d;). So let P be the family of balls B4(x, r) in (X, d).

From 9.50 we know that 2 is a base for the standard topology in the metric space
(X, d).

Use 7.83 to show that 2 and B generate the same topology 7.
Use 7.89 to prove that 7 is the product topology.
We conclude that the distance d generates the product topology.

§9.b.b Accumulation points, limit points
Let’s redefine this notion (a special case of what we saw in 7.19)

Definition 9.52 (accumulation point). Given A C X, a point x € X is an accumulation
point for A if, for every r > 0, B(x,r) N A \ {x} is not empty.

The set of accumulation points of A is called derived set, we will indicate it with
D(A).
Exercises

E9.53 Topics:adherent point, accumulation point.

Check that

« Each accumulation point is also an adherent point, in symbols D(A) C 4;
« if a point adhering to A is not in A then it is an accumulation point;

So we obtain that A = A U D(A).

E9.54 Given A C X, a point x € X is an accumulation point if and only if there exists
a sequence (x,) C A which is injective and such that lim,,_, o, X,, = x.

E9.55 Let (X, d) metric space, and x € X. Show that A = {x} is closed; and that
A has an empty inner part if and only if x is accumulation point. Hidden solution:
[UNACCESSIBLE UUID '0QT']

E9.56 LetA C Xand let D(A) be the derivative (i.e. the set of its accumulation points).
Show that D(A) is closed. Hidden solution: [uwaccessTBLE vuIp 0gi']

Let’s add this definition (a special case of 7.66).
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Definition 9.57 (limit point). Given a sequence (x,), C X, a point x € X is said to
be a limit point for (x,),, if there is a subsequence ny such that limy._, o, X,, = X.

In English literature the terms ”cluster point”, ”limit point” and “accumulation
point” are sometimes considered synonimous, which can be confusing. We will stick
to the proposed definitions 9.52 and 9.57.

Exercises
E9.58 Find an example of a metric space (X, d) and a bounded sequence (x;)r C X
that has a single limit point x but that does not converge.
See also 9.90.
E9.59 Prerequisites:9.5,9.12.
« If a sequence (a;); C X converges to x then it has an unique limit point, which
is x.
« If a Cauchy sequence (ay), C X has a limit point then there is only one limit
point x and limy a; = x.

Hidden solution: [uNACCESSIBLE UUID '0RO']

E9.60 Topics:perfect set.Prerequisites:9.53,2.283,7.94.Difficulty:*x*.

Suppose (X, d) is a complete metric space. A closed set E C X without isolated
points, i.e. consisting only of accumulation points, is called a perfect set.

Let C be the Cantor set. Assume that E is perfect and non-empty. Show that there
exists a continuous function ¢ : C — E that is an homeomorphism with its image.
This implies that |[E| > |R].

So, in a sense, any non-empty perfect set contains a copy of the Cantor set.

This can be proven without relying on continuum hypothesis 2.283. Cf. 9.129.
Due to 7.42, it is enough to show that there exists a ¢ : C — E continuous and
injective.

Hidden solution: [unACCESSIBLE UUID '2F4']

Other exercises on these topics are 9.84, 9.85, 9.86, 9.90 and 9.96.

§89.c Quotients
Exercises

E9.61 Suppose that d satisfies all distance requirements except ”separation property”.
Consider the relation ~ on X defined as x ~y <= d(x,y) = 0; show that is an
equivalence relation. Let’s define Y = X/ ~; show that the function d “passes to
the quotient”, that is, there exists d : Y X Y — [0, o0) such that, for every choice of
classes s,t € Y and every choice of x € 5,y € t you have d(s, t) = d(x, y). Finally,
show that d is a distance on Y.

This procedure is the metric space equivalent of Kolmogoroff quotient.
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89.d Distance function

E9.62 Let (X, d) be a metric space and ~ an equivalence relation on X. Let Y = X/ ~
be the quotient space. We define the function § : Y2 — R as

(x,y) = inf{d(s,t) : s € x,t € y} . (9.63)

Is it a distance on Y? Which properties does it enjoy among those indicated in 9.1?
Hidden solution: [unACCESSIBLE UUID '0R4']

E9.64 Let (X, d) be a metric space where X is also a group. Let © be a subgroup.

We define that x ~y < xy~! € 0. It is easy to verify that this is an equivalence
relation. Let Y = X/ ~ be the quotient space. "7

Suppose d is invariant with respect to left multiplication by elements of ©:
d(x,y) =d(6x,6y) Vx,y e X,V6 € O . (9.65)

(This is equivalent to saying that, for every fixed 6 € O the map x — 6x is an
isometry). We define the function § : Y2 — R as in (9.63).

» Show that, taken s,t € X,
8([s], [t]) = inf{d(s,61) : 6 € O} (9.66)

where [s] is the class of elements equivalent to s.
» Show that § > 0, that § is symmetric and that ¢ satisfies the triangle inequality.

* Suppose that, for every fixed ¢t € X, the map 6 — 6t is continuous from O to
X; suppose also that O is closed: then & is a distance. T°

Hidden solution: [unAcCESSIBLE UUID 'OR6']

§9.d Distance function

Definition 9.67. Given a metric space (M, d), given A C M non-empty, we define
the distance functiond, : M — R as

dua(x) = ;}251 d(x,y). (9.68)

Exercises
E9.69 Topics:distance function.

1. Show that d4 is a Lipschitz function.
2. Show thatdy = d5.

3. Show that {x, d,(x) = 0} = A.

4

. If M = R" and A is closed and non-empty, show that the infimum in (9.68) is
a minimum.

See also 14.53 and 14.54. Hidden solution: [uNACCESSIBLE UUID 'ORB']
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§9 METRIC SPACES

Figure 4: Fattening of a set; exercise 9.70

E9.70 Topics:fattened set.Prerequisites:9.69.

Consider a metric space (M,d). Let A C M be closed and non-empty, let r > 0
be fixed, and let d4 be the distance function defined as in eqn. (9.68). Let then
E = {x,d4(x) < r}, notice that it is closed.

1. Show that

dp(x) 2 max{0, (da(x) — )} . (9.71)
2. Show that in (9.71) you have equality if M = RV,
3. Give a simple example of a metric space where equality in (9.71) does not hold.

4. If M = R", given A C R" closed non-empty, show that E = A & D, where
D, = {x,]x| < r}and

ADB g{x+y,x €A,y € B}
is the Minkowski sum of the two sets (see also Section §11.f).

Hidden solution:  [unaccesssre vurp 'orp'] The set {x,ds(x) < r} = A®D D, is
sometimes called the ”fattening” of A. In figure 4 we see an example of a set A
fattened to r = 1,2; the set A is the black polygon (and is filled in), whereas the
dashed lines in the drawing are the contours of the fattened sets. ™! See also the
properties in sections §11.f and §11.g.

§9.e Connected set
See definitions in Sec. §7.e. We also define this notion.

Definition 9.72. A topological space (X, T) is ”path connected” if, for every x,y € X,
there is a continuous arc y : [a,b] - X with x = y(a),y = y(b).

T791f @ is a normal subgroup then Y = X/ ~ is also written as Y = X /0, and this is a group.

T80Note that, using 13.27, under these hypotheses the map of multiplication (8, x) ~ 6x is continuous
from @ X X to X.

81The fattened sets are not drawn filled — otherwise they would cover A.
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89.f Topology in the real line

Exercises

E9.73 Find a sequence of connected closed sets C,, C R? such that C,,,; C C,, and
the intersection ﬂn C,, is a non-empty and disconnected set.
Can you find such an example in R?
Hidden solution: [vnACCESSIBLE UUID 'ORJ']

E9.74 Find a sequence of sets C, C R? that are closed and path connected, such

that C,,,1 € C,, and the intersection ﬂn C,, is non-empty, connected, but not path
connected.

Hidden solution: [unAcCESSIBLE UUID 'ORM'] [UNACCESSIBLE UUID 'ORN']

E9.75 Consider the example of the set E C R? given by
E={0,0): -1<t< 1}u{(x,sin %) S xe (0,1]} . (9.76)

Show that this set is closed, connected, but is not path connected.
Hidden solution: [unACCESSIBLE UUID '0RQ']
This set is sometimes called closed topologist’s sine curve [45].
E9.77 pifficulty:+.Let (X, d) be a metric space. Show that E C X is disconnected if
and only if ”there are two disjoint open sets, each of which intersect E and such that

E is covered by their union” (see the proposition formalized in eqgn. (7.56) in the
exercise 7.55).

Hidden solution: [unACCESSIBLE UUID 'ORS']

E9.78 Let D C R? be countable; show that R? \ D is path connected.
Hidden solution: [unaccessisLe vuip '0rv']
E9.79 Find an example of a metric space X that is path connected, where there exists

an open subset A C X that is connected but not path connected. Hidden solution:
[UNACCESSIBLE UUID 'ORZ']

§9.f Topology in the real line
Exercises
E9.80 Show that a set A C R is an interval if and only it is convex, if and only if it is
connected.
(A part of the proof is in Theorem 5.11.3 in [2]).
Hidden solution: [unAccESSIBLE UUID '081']
(Note how in this case the exercises 2.143 and 7.59 coincide).
E9.81 Letus fix a € R, consider the set A of numbers of the form an + m with n, m

integers. Show that A is dense in R if and only if « is irrational. Hidden solution:
[UNACCESSIBLE UUID '0S3']

E9.82 Given I C Q non-empty, show that I is connected if and only I contains only
one point. Hidden solution: [uNACCESSIBLE vuID '0S5']
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§9 METRIC SPACES

E9.83 Show that every open non-empty set A C R is the union of a family (at most
countable) of disjoint open intervals. Hidden solution: [unaccessisLe vup '0s7']

E9.84 Find a compact A C R that has a countable number of accumulation points.
Hidden solution: [vnaccessIBLE vuIp '059']

E9.85 Prerequisites:9.54. Show that the set A C R defined by
A={ojlu{l/n: neN,n>1}u{l/n+1/m: nmeN,n>1,m> 1}

is compact; identify its accumulation points.
Hidden solution: [unAccESSIBLE UUID '0SC']

E9.86 pifficuity:++. Let A C R. We recall that D(A) is the derivative of A (i.e. the set
of accumulation points of A). Describe a closed set A such that the sets

A, D(A), D(D(A)), D(D(D(A))) ...

are all different.

Hidden solution: [unAcCESSIBLE UUID '0SF']

E9.87 Prerequisites:9.34, 9.37, 7.13, 9.47.Difficulty:*x.

Find a subset A of R such that the following 7 subsets of R are all distinct:

A A« (4), @) ((4)) (@) -
Also prove that no other different sets can be created by continuing in the same way
(also replacing R with a generic metric space).
Hidden solution: [unaccessIsLE vuip '0sH']
E9.88 pifficulty:++.Prove that it is not possible to write R, or an interval D C R, as a
countable and infinite union of closed and bounded intervals, pairwise disjoint.

Hidden solution: [unaccESSIBLE UUID '0W7']

§9.g Topology in Euclidean spaces

In the following we consider the metric space R" with the usual Euclidean distance.

Exercises

def

E9.89 Prerequisites:9.43.Let B(x,r) = {y € R" : |x—y| < r}be the ball; let D(x, r) =
{y € R" : |x —y| < r} the disc; let S(x, r) = {y € R" : |x — y| = r} be the sphere.
Show that B(x,r) = D(x,r), that B(x,r) = D(x,r)°, and that dB(x,r) = S(x,r).
Also show that B(x, r) is not closed and D(x, r) is not open.

(This result holds more generally in any normed space: see 11.7).
E9.90 prerequisites:9.59, 9.9. Given asequence (x;), C R", these facts are equivalent

a the sequence is bounded and has a single limit point x

b limy x; = x.
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89.g Topology in Euclidean spaces

Hidden solution: [uvaccessisLe vuip 'osp'] See also 9.58.

E9.91 prerequisites:7.25, 7.26.For each A C R" closed non-empty set, there exists
B C A such that A = 0B.

In which cases does there exist such a B that is countable?
In which cases does there exist such a B that is closed?
Hidden solution: [UNACCESSIBLE UUID '0SR'] [UNACCESSIBLE UUID '0SS']
See also 7.99.
E9.92 prerequisites:7.29.For every non-empty closed set E C RY, there exists F C R”
such that E = D(F).
Can you find it F C E?

Hidden solution: [unAcCESSIBLE UUID '0SX'] [UNACCESSIBLE UUID '0SY']

E9.93 What are the sets A C R" that are both open and closed?

Hidden solution: [vnaccessIsLE vuIp '0T12']
E9.94 Let f : R —» R" continue; show that these two conditions are equivalent

* limt—>oo |f(t)| = +o00 and limt_,_oo |f(t)| = +4o00;
- f is proper, i.e. for every compact K C R" we have that the counterimage
f~X(K) is a compact of R.

E9.95 prerequisites:Section §7.i.Show that RV satisfies the second axiom of count-
ability.

E9.96 Prerequisites:7.98. Note:exercise 4 in the written exam of 13/1/2011.
If A C R" is composed only of isolated points, then A has countable cardinality.

Conversely, therefore, if A C R" is uncountable then the derivative D(A) is not
empty.

Hidden solution:  [unaccessisLe vuip 'o16']
E9.97 LetA C R" be a bounded set. For every ¢ > 0 there is a set I C A that satisfies:

« I is a finite set,

* Vx,y €1, x # yyouhave x & B(y,¢) (i.e. d(x,y) > ¢),

AC UB(x,s) .

xel

Hidden solution: [vnAcCESSIBLE UUID '0T8']

E9.98 pifficulty:x. What is the cardinality of the family of open sets in R"?
Hidden solution: [unaccessisLe vuip 'o18']

E9.99 Let E C R" be not empty and such that every continuous function f : E - R
admits maximum: show that E is compact.
(See 9.119 for generalization to metric spaces)

Hidden solution: [unACCESSIBLE UUID 'OTF']
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§9 METRIC SPACES

§9.h Fixed points
Exercises

E9.100 Find a function f : R — R such that

Vx,y €R,x#y=|f(x) - fOI < |x -yl
but that has no fixed points. Hidden solution: [unaccessisLe vup '27']

E9.101 prerequisites:9.120.Let (X, d) be a compact metric space, and let f : X — Xbe
such that

Vx,y € X,x #y=d(f(x), f(y)) <d(x,y)
Show that f has a single fixed point.
This result is sometimes called Edelstein’s Theorem.

Hidden solution: [unaccESSIBLE vuID '27¢']

§9.i Isometries

Definition 9.102. Given (M;,d,) and (M,, d,) metric spaces, a map ¢ : M; - M,
is called an isometry if

VX,y € My, di(x,y) = dy(9(x), p()) - (9.103)

We will see in Sec. §11.b the same definition in the case of normed vector spaces.
Obviously an isometry is Lipschitz, and therefore continuous. Isometries enjoy some
properties.

Exercises
E9.104 Topics:isometry. AN isometry is always injective.

E9.105 If the isometry ¢ is surjective (and therefore is bijective) then the inverse ¢!
is also an isometry.

E9.106 If (M, d,) is complete then its image ¢(M, ) is a complete set in M,; and there-
fore it is a closed in M,.
Hidden solution: [uwaccesszere vuip orr'] Consequently, if the isometry ¢ is bijec-
tive and one of the two spaces is complete then the other is also complete.

E9.107 Topics:isometry. Difficulty:+.Let (X, d) be a compact metric space; let T : X —
X be an isometry, then T is surjective.

Provide a simple example of a non-compact metric space and T : X — X a non-
surjective isometry.

Hidden solution: [unaccESSIBLE vuID '0TV']

ES.108 Topics:isometry.Prerequisites:9.107.Difficulty:*.

Let (X, d) and (Y, &) be two metric spaces of which X compact, T : X — Y and
S 'Y — X two isometries. Prove that T and S are bijective.

Hidden solution: [unACCESSIBLE UUID '0TY']
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§9.j Compactness

E9.109 Topics:isometry.Difficulty:*. Find an example of two metric spaces (X, d) and
(Y, ) that are not isometric but for which there are two isometries T : X — Y and
S:Y->X

Hidden solution: [unvaccesSIBLE vuID 'ovi']

§9.j Compactness
The Heine-Borel Theorem [56] extends to this context.

Theorem 9.110. Given a metric space (X, d) and its subset C C X, The following
three conditions are equivalent.

« Cis sequentially compact: every sequence (x,,) C C has a subsequence converg-
ing to an element of C.

» Ciscompact: from each family of open sets whose union covers C, we can choose
a finite subfamily whose union covers C.

» C is complete, and is totally bounded: for every ¢ > 0 there are finite points
X1...X,, € Csuch that C C U?zl B(x;, €).

(This theorem has a generalization in topological spaces, see 7.71).

Exercises

E9.111 Setting X = R" and d the usual Euclidean distance, taken C C R", use the
above theorem 9.110 to show (as a corollary) the usual Heine-Borel theorem [56]: C
is compact if and only if it is closed and bounded.

Hidden solution: [unAcCESSIBLE UUID '0V5']

E9.112 Show thatif K C Xis compact then it is closed. Hidden solution: [vvaccessisLE
vurp rov7'] (See 7.40 for the case of topological space)

E9.113 Let (X, dx) and (Y, dy) be metric spaces, with (X, dx) compact; suppose that
f X — Yis continuous and injective. Show that f is a homeomorphism between
X and its image f(X).

Hidden solution: [unaccessIBLE uuID '0v9']

(See 7.42 for the case of topological space).

E9.114 Let n > 1 be natural. Let (X;,d;) be compact metric spaces, fori = 1,...n;
choose y; € X; fori =1,...nand k € N. Show that there exists a subsequence k,
such that, for every fixed i, y; x, converges, that is, the limit limy,_, , y; i, exists.

E9.115 pifficulty:+.Let (X;, d;) be compact metric spaces, fori € N, and choose y; ; €
X; for i, k € N. Show that there exists a subsequence kj, such that, for every fixed i,
Yik, converges, that is, the limit limy,_, o, y; k, exists.

E9.116 Let be given a metric space (X, d). As in 9.19 we define the disk D(x,¢) =
{y € X,d(x,y) < €} (which is closed). (X, d) is locally compact if for every x € X
there exists € > 0 such that D(x, ¢) is compact. Consider this proposition.
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§9 METRIC SPACES

«Proposition A locally compact metric space is complete. Proof Let (x,,),, C X be
a Cauchy sequence, then eventually its terms are distant at most €, so they are
contained in a small compact disk, so there is a subsequence that converges, and
then, by the result 9.12, the whole sequence converges. q.e.d. »

If you think the proposition is true, rewrite the proof rigorously. If you think it’s
false, find a counterexample.

Hidden solution: [unAcCESSIBLE UUID 'OVF']
E9.117 Let (X, d) be a metric space, and let C C X. Show that C is totally bounded

if and only if C is totally bounded. (See 9.110 for the definition of totally bounded).
Hidden solution:  [unaccessIsLe vuip 'ove']

E9.118 prerequisites:9.38.Let (X, d) be a totally bounded metric space. Let E C X,
then E is a metric space with the restricted distance d = d|gyg. Show that (E, d) is
totally bounded. (See 9.110 for the definition of totally bounded). Hidden solution:
[UNACCESSIBLE UUID '2GC']

E9.119 Prerequisites:9.59,9.122.Difficulty:*.

Let (X, d) be a metric space such that every continuous function f : X — R has
maximum: show that the space is compact.

(See 9.99 for a rewording with X = R™.) Hidden solution:  [unAcCESSIBLE UUID
'OVM'] [UNACCESSIBLE UUID 'OVN']
ES.120 Topics:compact.Prerequisites:9.112.

Let (X, d) be a metric space, and let A,, C X be compact non-empty subsets such that
Apyy CAp: then [ _(An # @.

(This result can be derived from 7.41; but try to give a direct demonstration, using
the characterization of ”compact” as ”sequentially compact ”, i.e. the first point in
9.110).

Hidden solution: [unAccessIBLE vuID 'ovgQ']

E9.121 Letbe given a metric space (X, d) and its subset C C X that is totally bounded,
as defined in 9.110: show that C is bounded, i.e. for every x, € C we have

sup d(xg,x) < o0
xeC

or equivalently, for every x, € C there exists r > 0 such that C C B(x,, ).

The opposite implication does not hold, as shown in 9.123

E9.122 Let (X, d) be a metric space and let D C X, show that these clauses are equiv-
alent:

+ D is not totally bounded;

» there exists € > 0 and there is a sequence (x,),, C D for which

vn,m e N, d(x,,x,,) > ¢
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§9.k Baire’s Theorem and categories

E9.123 prerequisites:9.122.Let X = C°([0, 1]) be the space of continuous and bounded
functions f : [0,1] — R, endowed with the usual distance

doo(f,8) = If — 8llo = sup [f(x)—g(x)

xe[0,1]

We know that (X, d,) is a complete metric space. Let
D0,1)={feX :d(0,f)<1}={feX :Vxe[0,1], [f(x)] <1}

the disk of center O (the function identically zero) and radius 1. We know from 9.42
that it is closed, and therefore it is complete. Show that D is not totally bounded by
finding a sequence (f,,) C D as explained in 9.122.

§9.k Baire’s Theorem and categories
The following is Baire’s category theorem; there are several equivalent statements.
Theorem 9.124. Suppose (X, d) is complete.

* Given countably many sets A,, that are open and dense in X, we have that ﬂn Ay
is dense.

* Given countably many sets C,, closed with empty interior in X, we have that

U,, Cu has empty interior.

Definition 9.125. A set that is contained in the union of countably many closed sets
with empty interior is called first category set in X. "2 A set that is not first category,
is said second category.

Exercises

[ovT]

[ovv]

[ovw]

E9.126 A complete metric space X is second category in itself. Hidden solution: [unaccessmzne

UuID 'ovy']

E9.127 Given X = R, the set of irrational numbers is second category in R. Hidden
SOIUtion.' [UNACCESSIBLE UUID 'OWO']

E9.128 Reflect on the statements:
* A closed set C inside a complete metric space (X, d) is complete (when viewed
as a metric space (C, d)).
e Theset C ={0}u{1/n : n € N}is closed in R, so C is complete with distance
d(x,y) =[x —yl.
» Cis composed of countably many points.

« Asingleton {x} is a closed set with an empty internal part.

Why is there no contradiction?

Hidden solution: [unAcCESSIBLE UuID 'oW2']
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§9 METRIC SPACES

ES.129 Topics:perfect set.Prerequisites:9.53,2.283.

Suppose (X, d) is a complete metric space. A closed set without isolated points, i.e.
consisting only of accumulation points, is called a perfect set. Show that a non-
empty perfect set E contained in X must be uncountably infinite. (Find a simple
direct proof, using Baire’s Theorem 9.124.)

Hidden solution: [unicCESSIBLE UuID '2pZ']

The Cantor set is a perfect set, see 8.11.

§9.1 Infinite product of metric spaces

Exercises

E9.130 prerequisites:9.5.Sia p(t) = t/(1+¢). Let (Xj, d;) be metric spaces withi € N,
let X = HieN X;, for any f, g € X we define the distance on X as

d(f.8) = 2 2 *p(di(f k), g(k))) -
k=0

Prove that d is a distance.

E9.131 Let f, f,, € X be as before in 9.130, show that f, —, f according to this
metric if and only if for every k we have f,,(k) —,, f(k).

E9.132 Let (X;,d;) and (X, d) be as before in 9.130. If all the spaces (X, d;) are com-
plete, prove that (X, d) is complete.

E9.133 Prerequisites:9.115,9.131.Difficulty:*. Let (X;, d;) and (X, d) be as before in 9.130.

If all the spaces (Xj, d;) are compact, prove that (X, d) is compact. Hidden solution:
[UNACCESSIBLE UUID 'OWF']

E9.134 prerequisites:9.133. We want to define a distance for the space of sequences. We
proceed as in 9.130. We choose X; = R for each i and set that d; is the Euclidean
distance; then for f,g : N — R we define

d(f,8) = D, 2 %I f (k) — g(k)]) .
k

We have constructed a metric space of sequences (R, d).

In the space of sequences (RN, d) we define
K ={f € RY VK, |f(k)] <1}
Show that K is compact. Hidden solution: [uvaccessIBLE vuIp 'owH']

E9.135 Let N(p) be the minimum number of radius balls p that are needed to cover K
(from the previous exercise 9.134). Estimate N(p) for p — 0.

See also Sec. §10

§9.m Ultrametric

Definition 9.136. An ultrametric space is a metric space in which the triangle in-
equality is reinforced by the condition

d(x,y) < max{d(x, z),d(z,y)} . (9.137)

82t js sometimes also called meagre set (for example in Wikipedia [47]).
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§9.m Ultrametric

Exercises
E9.138 Show that (9.137) implies that d satisfies the triangle inequality.

E9.139 Note that if d(x,y) # d(y,z) then d(x,z) = max{d(x,y),d(y,z)}. Hidden
solution: [unaccessisre vurp 'owg'] Intuitively, all triangles are isosceles, and the base
is shorter than equal sides.

E9.140 Consider two balls B(x, r) and B(y, p) radius 0 < r < p that have non-empty
intersection: then B(x,r) C B(y, p).
Similarly for the disks D(x, r) = {y eX :d(x,y) <r}and D(y,r).
Hidden solution: [unaccEsSSIBLE UUID '0WS']

E9.141 Show that two balls B(x, r) and B(y, r) of equal radius are disjoint or are coin-
cident; in particular they are coincident if and only if y € B(x,r). Similarly for the

discs D(x, ) = {reX :d(,y) <r}and D(y,r).

Hidden solution: [unAcCESSIBLE vuID 'oWv']

E9.142 Show that every open ball B(x, r) is also closed. Show that every disk D(x, r)
with r > 0 is also open. Hidden solution: [uwaccessisre vuip owx'] By the exercise
7.64, there follows that the space is totally disconnected.

E9.143 Let ¢ : [0,00) — [0, 00) be a function that is continuous in zero, monotoni-
cally weakly increasing and with ¢(x) = 0 < x = 0. Show that d = pod is still
an ultrametric. Show that spaces (X, d) (X, d) have the same topology.

Compare with the exercise 9.8, notice that we do not require ¢ to be subadditive.

§9.m.a Ultrametric space of sequences
Let’s build this example of ultrametric on the space of sequences.

Definition 9.144. Let I be a non-empty set, with at least two elements. Let X =
{f : N = I} = I be the space of sequences. Let x,y € X. If x = y then we set
d(x,y) =0. ™ If x # y, we set

c(x,y) = min{n > 0, x(n) # y(n)} (9.145)

to be the first index where the sequences are different; then we define d(x, y) = 27¥),

Remark 9.146. Because of the exercise 9.143, we could equivalently define d(x,y) =
€c(x,y) With €, > 0 infinitesimal decreasing sequence.
Exercises

E9.147 Prerequisites:9.144. Show that d(x, y) < max{d(x, Z), d(y, Z)}

Hidden solution: [uniccESSIBLE UUID '0X3']

E9.148 Topics:complete. Prerequisites:9.144.Show that (X, d) is Complete. Hidden solu-
tion: [UNACCESSIBLE UUID 'OX5']
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§9 METRIC SPACES

E9.149 Topics:compact.

Prerequisites:9.144.
Show that (X, d) is compact if and only if I is a finite set.

Hidden solution: [unicCESSIBLE vuID '0x7']

E9.150 prerequisites:9.144,8.12. Suppose that I is a group; then X is a group (it is the
Cartesian product of groups); and multiplication is carried out component by com-
ponent”. Show that the product in X is a continuous operation, and so for the inver-
sion map. So (X, d) is a topological group.

Hidden solution: [unaccESSIBLE vuID '0x9']

E9.151 prerequisites:9.144,8.12. Let I be a set of cardinality 2, then the space (X, d) is
homeomorphic to the Cantor set (with the usual Euclidean metric |x — y|).

Hidden solution: [unAcCESSIBLE UuID '0xD']

Combining this result with 9.150 we get that the Cantor set (with its usual topol-
ogy) can be endowed with an abelian group structure, where the sum and inverse are
continuous functions; This makes it a topological group.

See also 10.24.

§9.n P-adic ultrametric

We report from the notes [2] the definition of the p—adic distance on the Q set. Let p
be a fixed prime number.

Definition 9.152. Each rational number x # 0 breaks down uniquely as a product
X=xp"py? - pet (9.153)

where p; < p, < -+ < py are prime numbers and the m; integers. Fixed as above a
prime number p, we define the p—adic absolute value of x € Q as

x|, = 0 if x=0
P |p=™ if p™ is the factor with base p in the decomposition (9.153).

Finally, we define d(x, y) = |x — y|p, which will turn out to be a distance on Q, called
p—adic distance.

We add this definition, which will be very useful in the following.

Definition 9.154. Forn € Z,n # 0 we define
®p(n) = max{h € N, p" divides n} .

Let’s also define ¢p(0) = oco. This ¢, is known as p-adic valuation [63]. .
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§9.0 Circle

Exercises
E9.155 Prove these fundamental relation.
1. |1|, = 1 and more generally |n|, < 1 for every nonnull integer n, with equality
if n is not divisible by p.
2. Given n nonnull integer, we have that |n|, = p~%p(m,
3. Givenn, mintegers, we have that ¢, (n+m) > min{g,(n), ¢,(m)} with equality
if pp(n) # @p(m).
4. Given n, m nonzero integers, we have that p,(nm) = @,(n)+,(m) and there-
fore |nm|, = |n|,|m|p.
5. Given x = a/b with a, b nonnull integers we have that |x|, = p~Pp(@+ep(b),
Note that if a, b are coprime, then one of the two terms ¢, (a), ¢,(b) is zero.
6. Prove that |xy|, = [x|,|y], for x,y € Q.
7. Prove that |x/y|, = |x|p/|y|p for x,y € Q nonzero.
E9.156 Check that
X + ylp < max{|x|p, [ylp} (9.157)

for each x, y € Q. and therefore
dp(x,z) < max{d,(x,y),d,(y,2)}, Vx,y,z€Q .

that is, this is an ultrametric (and therefore a distance). Hidden solution: [vvaccessiBLE
wurp roxn'] The properties 6 and (9.157) say that the p-adic valuation is an absolute
value, and indeed it is a Krull valuation.

E9.158 Show that the multiplication map is continuous. Hidden solution: [vvaccessiBLE
UUID 'OXR']

E9.159 Find an example of a sequence that tends to zero (but never takes the value 0).
This example shows that the associated topology is not the discrete topology. Hidden
solution: [UNACCESSIBLE UUID '0XV']

E9.160 pifficuity:*.Show, for every a/b € Q with a, b coprime and b not divisible by
p, there exists (x,), € Z such that |x,, — a/b|, —, 0. Note that the assumption is
necessary.

Hidden solution:  [unaccessisre vuip oxx'] We proved that Z is dense in the disk
{xeQ,|x], <1}.

E9.161 pifficulty:++.Show that (Q, d) is not a complete metric space.
Hidden solution: [uvAccESSIBLE UUID '0XZ']

E9.162 Show that no p—adic distance on Q is bi—Lipschitz equivalent to the Euclidean
distance (induced by R).

Hidden solution: [unaccESSIBLE vuID '0v1']
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§9 METRIC SPACES

§9.0 Circle
Definition 9.163. S! = {x € R2?, |x| = 1} is the circle in the plane.

It is a closed set in R?, so we can think of it as a complete metric space with the
Euclidean distance d(x,y) = |x — y|p2.

Definition 9.164. We denote by R/27 the quotient space R/ ~ where x ~y <
(x —y)/(2) € Z is an equivalence relation that makes points equivalent that are an
integer multiple of 27t. This space R/27 is called the space of real numbers modulo
27T,

Asusual, given t € R, we indicate with [t] the class of elements in R/27 equivalent
to t.
Exercises
E9.165 Consider the map
@ :R2r - St
[t] +— (cos(t),sin(t))
Show that it is well-defined and bijective.
Hidden solution: [uNACCESSIBLE UUID '0Y6']

E9.166 Through this bijection we transport the Euclidean distance from S' to R/27
defining
de([s]. [¢]D) = |®([s]) — 2([tD|rz> -

With this choice the map @ turns out to be an isometry between (S*, d) and (R/27, d,)
(see the Definition 9.102). So the latter is a complete metric space.

With some simple calculations it can be deduced that

do([s],[t]) = \/| cos(t) — cos(s)|? + | sin(t) — sin(s)|2 = /2 — 2 cos(t — 5) .

Then we define the function

do([s], [t]) = inf{|s—t —27k| : k€ 7} ,
show that it is a distance on R/27.
Hidden solution: [unvacceSSIBLE vuID '0vs']

E9.167 Show that d,([s], [¢]) is the length of the shortest arc in S* that connects ®([s])
to ([t]).

E9.168 Show that distances d, and d, are equivalent, proving that zda <d.<d,.
Ve

Hidden solution: [unaccESSIBLE vuID 'ovc']
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§9.0 Circle

E9.169 Prerequisites:9.61.0ne can easily show that a function f : R/27 — X can be [ovp]
seen as a periodic function f : R — X of period 27, and vice versa.

This can be easily obtained from the relation f([t]) = f(t) where t is a generic
element of its equivalence class [t]. Assuming that f is periodic (with period 27),
the above relation allows to derive f from f and vice versa.

Show that f is continuous if and only if f is continuous.

E9.170 prerequisites:7.32.Let (X, 7) be the compactified line, the topological space de-  [ovF]
fined in 7.32. Show that it is homeomorphic to S*.

83This can also be achieved by defining c(x, X) = oo
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§10 DIMENSION

§10 Dimension

Let (X, d) be a metric space. Let in the following K a compact non-empty subset of X,
and N(p) the minimum number of balls of radius p that are needed to cover K. "

Definition 10.1. If the limit exists
log N(p)
m ———— 10.2
p—l>0+ log(1/p) (10.2)
we will say that this limit is the Minkowski dimension dim(K) of K.

If the limit does not exist, we can still use the limsup and the liminf to define the
upper and lower dimension.

Note that this definition depends a priori on the choice of the distance, i.e. N =
N(p,K,d) and dim = dim(K, d). See in particular 10.10.

Exercises
E10.3 Show that N(p) is decreasing as a function of p.

E10.4 Prerequisites: 9.114.Difficulty:+.Show that N(p) is bounded if and only if K con-
tains only a finite number of points. Hidden solution: [unaccessisie vuip rove'] So if
K is infinite, then lim,_,o, N(p) = co.

E10.5 Let N'(p) be the minimum number of balls, with radius p and centered in K,
that are necessary to cover K: then

N'(2p) < N(p) < N'(p) .

So the dimension does not change if you require the balls to be centered at points of
K. Hidden solution: [vnaccesSIBLE UUID '0YR']

E10.6 Let P(p) be the maximum number of balls, with radius p and centered in K, that
are disjoint. Show that
N(2p) < P(p) < N(p/2) .
So the dimension can also be calculated as
log P(p)
im ———=. 10.7
-0+ log(1/p) (107
Such a construction is known as ball packing. Hidden solution: [unaccessisLe vuip

'0YT']

E10.8 Inthe exercise 10.6 it is important to require that the balls are centered in points
of K. Find an example of metric space (X, d) and compact K C X of finite dimension,
but such that, for every n € N and every p > 0, there are infinite disjoint balls each
containing only one point of K.

Hidden solution: [unAcCESSIBLE UUID '0YW']

E10.9 Show that the dimension does not change if you use disks

D(x,r) = {y, d(x,y) <1}

instead of balls B(x, ). Hidden solution: [uwaccessteLE vurp 'ovy']
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E10.10 Prerequisites:9.8.Let K C Xcompact; fix & > 1; define &(x,y) = a\l d(x, y)
We know from 9.8 that it is a distance. Show that

adim(K, d) = dim(K, d) .

In particular K = [0,1] (the interval K € X = R) with the distance d(x,y) =

4/|x — y| has dimension c.

Hidden solution: [unaccESSIBLE vuID '0z0']

E10.11 Topics:norm.Prerequisites:11.10.

Let K be a compact in R"; we write dim(K, | - |) to denote the limit that defines the
dimension, using the balls of the Euclidean norm. Given a norm ¢ we can define the
distance d(x,y) = ¢(x — y), and with this calculate the dimension dim(K, ¢). Show
that dim(K, | -|) = dim(K, ¢), in the sense that, if one limit exists, then the other limit
exists, and they are equal. Hidden solution: [uvAccESSIBLE vuID '0z2']

E10.12 We indicate an operating policy that can be used in the following exercises.

» If there is a descending sequence p; — 0 and h; positive such that h; balls of
radious p; are enough to cover K, then

. logN(p) .. log hj 4
limsup ———= < limsup ——— . 10.13
o Tog(1/p) = "P Tog(1/p) (1013
* If, on the other hand, there is a descending sequence 1, — 0, and C,, C K finite
families of points that are at least distant  from each other, i.e. for which

Vx,y € Cp,x #y=>d(x,y) 27, (10.14)

then
log };
lim inf > liminf

= _— 10.15
2202 Togt/p) = R Togil) (1019

where [; = |G| is the cardinality of Cj. Note that the points of x € C; are centers
of disjoint balls B(x, 1;/2), therefore [; < P(1/2), as defined in 10.6.

In particular, if

log by, log [

limsup ———— =liminf ——— = 10.16
MU ey e gt P (10.16)

then the set K has dimension f.

Hidden solution: [UNACCESSIBLE UUID '0z5'] [UNACCESSIBLE UUID '0Z6']

E10.17 prerequisites: 11.25 10.11 10.12.Difficulty:*.Let K C R™ compact. Consider the
family of closed cubes with edge length 27" and centers at the grid points 272",
We call it ”n-tessellation”. Let N,, be the number of cubes of the n-tessellation
intersecting K. Show that N,, is weakly increasing. Show that the following limit
exists

log, N,
lim —2" (10.18)
n—oo
84By the Heine—Borel theorem 9.110 we know that N(p) < oo
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§10 DIMENSION

if and only if the limit (10.2) (that defines the dimension) exists. Show that, when
they both exist, they coincide. This approach to computing the dimension is called
Box Dimension.

Hidden solution: [vn4ccESSIBLE UUID '0z8'] [UNACCESSIBLE UUID '0Z9']
These quantities have an interpretation in rate-distortion theory. “n” is the posi-
tion of the last significant digit (in base 2) in determining the position of a point x.
“log, N,,” is the number of ”bits” needed to identify any x € K with such precision.
E10.19 Let a,, be an infinitesimal decreasing positive sequence. Let K C R given by
K={0lufa, :neN,n>1};

note that it is compact. Study the dimension of K in these cases:

« a,=n"withg > 0;

*a,=0"withé > 1.
Hidden solution: [unaccessisLe vuip 'o0zc']

E10.20 Let1 < d < n be integers. Let [0,1]¢ be a cube of dimension d, we see it as a
subset of R" by defining

K =1[0,1]% x {(0,0...0)}
namely

K={xeR"0<x<1,..0<x3 <1, X341 = ... = X, =0}

Show that the dimension of K is d.
Hidden solution: [uvAcCESSIBLE UUID '0zF']

E10.21 Show that the dimension of the (image of) Koch curve is log 4/ log 3. (See for
example [58] for the definition).

Hidden solution: [unacCESSIBLE UUID '0zH']

E10.22 Show that the dimension of the Cantor set is log(2)/log(3).
Hidden solution: [uNACCESSIBLE UUID '0ZK']

E10.23 prerequisites:12.18,11.35.Inside the Banach space X = C°([0, a]) endowed with
the norm || - ||, We consider

K ={f,f(0)=0,Yx,y,|f(x) = f(»)| < L|x - y|}
where L > 0, a > 0 are fixed.
Estimate N(p) for p — 0

E10.24 Topics:ultrametric.Prerequisites:9.144.

Fix 4 > 0. We define the ultrametric space of sequences as in Sec. §9.m.a: let I be
a finite set, of cardinality p; let X = I be the space of sequences; define c as in
eqn. (9.145); define d(x,y) = A¢¥). We know from exercises 9.149 and 9.146
that (X, d) is compact.

Show that the dimension of (X, d) is log p/log 1.

Hidden solution: [unaccESSIBLE vuID '02Q']

E10.25 pifficuity:*.Describe a compact set K C R for which the limit (10.2) does not
exist.
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§11 Normed spaces

Let in the following X be a vector space based on the real field R.

Definition 11.1 (Norm). A norm is an operation that maps a vector v € X in a real
number ||v||, which satisfies

1. |lv|| = 0 and ||v|| = 0 if and only if v = 0;

2. foreveryv € Xand t € R we have |t||v] = ||tv| (we will say that the norm is
absolutely homogeneous);

3. (Triangle inequality) for every v, w € X we have
o+ w| < ol + [lwl
this says that one side of a triangle is less than the sum of the other two.

Remark 11.2. Many of the results in subsequent exercises generalize to the case of
”asymmetic norms”, where the second request will be replaced by this: for every real
t > 0 you have t||lv|| = |tv|. (In this case we will say that the norm is positively
homogeneous).

Exercises

E11.3 Let X be a vector space and f : V — R a function that is positively homoge-
neous, that is: for every v € X and ¢ > 0 you have tf(v) = f(tv).

Show that f is convex if and only if the triangle inequality holds: for every v,w € X
you have

fo+w) < fO)+ f(w)

In particular, a norm is always a convex function.

E11.4 Note that if v,w € X are linearly dependent and have the same direction (i.e.
you can write v = Aw or w = Av, for 4 > 0), then you have

v+ w| = [[v]l + [[w]
In particular, a norm is not a strictly convex function, because
1 1
v vhl = =|lv|| + =|jv
12 + o2l = S [lvll + S vl

E11.5 Prerequisites:11.7, 14.57, 11.3.Difficulty:+. We will say that the normed space
(X, || - I is strictly convex'® if the following equivalent properties apply.
+ Thedisc D = {x € X : |x|| < 1} is strictly convex. "%

* The sphere {x € X, | x| = 1} does not contain non-trivial segments (that is,
segments of positive length).

85See [31] for more properties.
86 The definition is in 14.57.
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§11 NORMED SPACES

» Forv,w € D with ||v|| = |w|| = 1 and v # w, for every ¢ such that 0 < t < 1,
we have that |tv + (1 — Hw|| < 1.

+ For every v,w € X that are linearly independent we have ||v + w|| < |v| +
l[wll

Show that the previous four clauses are equivalent.

Hidden solution: [vniccESSIBLE vuID '102']

E11.6 Let X be a normed vector space with norm || - ||. Show that the sum operation  [105]
'+' 1 X X X — X is continuous.

E11.7 Prerequisites:9.43. [106]

Let again X be a normed vector space with norm | - ||. Let B(x,r) = yeXx:

|x — y|l < r}be the ball. Let D(x,r) = {y € X : ||x —y| < r} be the disk. Let
S(x,r) = {y € X : ||x — y|| = r} be the sphere. Show that B(x,r) = D(x,r), that
B(x,r) = D(x,r)°, and that dB(x,r) = dD(x,r) = S(x,r). Also show that B(x,r) is
not closed and D(x, r) is not open.

E11.8 prerequisites:9.39.Let X be a vector space, let ¢, 1) be two norms on it. Show that (1073
the topologies generated by ¢ and 1 coincide, if and only if there exist 0 < a < b
such that

Vx, ap(x) < d(x) < bp(x) . (11.9)
(When the relation (11.9) holds, we will say that the norms are ”equivalent”).

Hidden solution: [uNACCESSIBLE UUID '108']
E11.10 We want to show that ”the norms in R" are all equivalent.” [109]

Let ||x|| = 4/ 2?21 x? be the Euclidean norm. Let ¢ : R™ — [0, c0) be a norm: it
can be shown that ¢ is a convex function, see 11.3; and therefore ¢ is a continuous
function, see 14.33. Use this fact to prove that there exist 0 < a < b such that

Vx, alx| < $(x) < blx]| . (11.11)

Hidden solution: [uniccESSIBLE UUID '10B']
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§11.a Norms in Euclidean space

§11.a Norms in Euclidean space

Definition 11.12. Given p € [1, o], the norms || x||, are defined on R" with

14 n
.|p
Ixll, =1V Lim Xl P # 00 (11.13)

maX?:] |xl| p=o0

(The fact that these are norms is demonstrated by the 11.21).

Exercises
E11.14 Show that lim,,_, , [[x[l, = [[X]|co-

E11.15 Prerequisites:16.65.HaVng fixed t,s € [1, OO] withs > tand x € Rn, show
that || x||g < ||x||;- Also show that |x|; < |x||; if » > 2 and x # 0 and x is not a
multiple of one of the vectors of the canonical basis ey, ... e,.

Hints:

1. usethat1+tP < (1+¢t)Pforp>1andt > O0;or

2. use Lagrange multipliers; or

3. remember that f(a+b) > f(a)+ f(b)whena > 0,b > 0 f(0) =0and f : [0,00) — R
is strictly convex and continuous in 0 (see exercise 14.49), therefore derive C;—t(log llxll)
and set f(z) = zlog(z)).

Hidden solution: [unAcCESSIBLE UUID '10G']

E11.16 Having fixeds,t € [1, co] with s < t, show that n=/5||x||; < n~¢||x]|, (where
we agree that n~1/® = 1). (Note that this is an inequality between averages).
(Hint. Set a = t/s and y; = |x;|5, then use the convexity of f(y) = y*. Another tip:
use 11.17.) Hidden solution: [unaccEssIBLE vUID '10K']

E11.17 Letbe given p,q € [1,0] such that 1/p + 1/g = 1 " and x, y € R"; show
the Holder inequality in this form

n
Doyl < xlplylly - (11.18)

i=1
In what cases is there equality?

Tips: Fix x;,y; > 0. For the cases with p,q < oo you can:

* use Young inequality (14.50 or 23.16);
* use Lagrange multipliers;

* start from the case n = 2 and set x, = tx, and y, = ay,; then, for cases n > 3 use
induction.

Hidden solution: [vnAcCESSIBLE vuID '10n']
E11.19 Prerequisites:11.17.Infer the version
n
Drxy < lxlplylly (11.20)
i=1

from (11.18). In which case does equality apply?
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E11.21 prerequisites:11.17.Given p € [1, o] show the Minkowski inequality
lx+yllp < lxllp + I¥llp - (11.22)

There follows that || x||, are norms.

For p € (1, o0) find a simple condition (necessary and sufficient) that involves equal-
ity; compare it with 11.4; deduce that R", with the norm || - ||, for p € (1, 0), is a
strictly convex normed space (see 11.5). Hidden solution: [uniccessisLe vuip '10R']

E11.23 prerequisites:11.3,14.55,11.15.Let ¥ > 0; if p € [1, 0] then the ball Bf =
{llxl, < r}is convex; also Bf € BYif p > p. Inthe case n = 2 of planar balls,
study graphically the shape of the balls as p varies. Are there points that are on the
border of all balls? Hidden solution: [vnaccessisLe vuip '107']

E11.24 Ifr > 0 and p € (1, o) then the sphere {||x[|,, = r} is a regular surface. Hidden
solution: [UNACCESSIBLE UUID '10W']

E11.25 prerequisites:(i1.13). We equip R" with the norm ||x||o: show that in dimension
2 the disk {x € R", ||x|,, < 1} is a square, and in dimension 3 it is a cube, etc etc.
Now we equip R" with the norm ||x||;: show that in dimension 2 the disk {x €
R™,||x|l; < 1}is a rhombus i.e. precisely a square rotated 45 degrees; and in dimen-
sion 3 the disk is an octahedron.

E11.26 Find a norm in R? such that the ball is a regular polygon of n sides.

Hidden solution: [unvaccESSIBLE vuID '10Z']

§11.b Isometries
We rewrite the definition 9.102 in the case of normed spaces.

Definition 11.27. If M;, M, are vector spaces with norms | ||a, and respectively ||||pz,,
then ¢ is an isometry when

VX, y € My, [Ix = yllv, = l9(x) = e(0llm, (11.28)
(rewriting the definition of distance using norms).
We will compare it with this definition.

Definition 11.29. Let B,, B, be two normed vector spaces. A function f : B; — B,
is a linear isometry if it is linear and if

Izl5, = 1f(2llp, ¥z € By . (11.30)

If @ is linear then the definition of equation (11.28) is equivalent to the definition
of linear isometry seen in equation (11.30) (just set z = x — y). This explains why both
are called “isometries”.

By the Mazur—Ulam theorem [60] if M7, M, are vector spaces (on real field) equipped
with norm and ¢ is a surjective isometry, then ¢ is affine (which means that x +—
o(x) — ¢(0) is linear).

We now wonder if there are isometries that are not linear maps, or more generally
affine maps.

87This means that if p = 1 then g = oo ; and vice versa.
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§11.c Total convergence

Exercises

E11.31 Suppose the sphere {x € M, ||x|lps, = 1} contains no non-trivial segments:
Then every function that satisfies (11.28) is necessarily affine.
(See also Exercise 11.5.)

E11.32 The condition that ¢ is surjective cannot be removed from the Mazur—Ulam
theorem. Find an example.

Hint. By the previous exercise 11.31, the sphere {x € M, ||x||ps, = 1} must contain
segments.

Hidden solution: [unAcCESSIBLE UUID '115']

§11.c Total convergence

Definition 11.33. Let in the following X be a normed vector space based on the real
field R, with norm || -|. Let (f,),en be a sequence of elements of X. The series Z:’:O In

converges totally when 3, ||f|l < oo.

Exercises

E11.34 Show that if the series of (f;,),, (g,), converge totally, then the series of (f,, +
g, converges totally.
E11.35 Topics:total convergence.Prerequisites:9.12,9.13,9.14.
Let V be a vector space with a norm ||x||; So V'is also a metric space with the metric
d(x,y) = ||x — y||. Show that the following two clauses are equivalent.
« (V,d) is complete.
» For each sequence (v,), C V'such that 3} |[lu,]l < oo, the series 3 v, con-
verges.
(The second is sometimes called the “total convergence criterion”)

A normed vector space (V, | - ||) such that the associated metric space (V, d) is com-
plete, is called a Banach space.

Hidden solution: [uniccESSIBLE vUID '119']

§11.d Norms of Linear application

In the following (X, ||[|lx)and (Y, ||||y) will be normed spaces; A : X — Yis a linear
application; we define the induced norm as

def
lAlx,y = sup  [Ax[ly.
xeX, |x|x<1
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Exercises
E11.36 Show that ||A|x,y < oo if and only if A is continuous.

E11.37 Note that if X has finite dimension then every linear application is continuous,
and
A = max Ax|y .
lxy = _max _ lAx]y
E11.38 Let £(X,Y)be the space of all continuous linear applications. Show that ||-||x vy
is anorm in £(X,Y).

E11.39 Let (Z,||||z) be an additional normed space, and B : Y — Z a linear applica-
tion. We similarly define

def
vz= sup [Bylz ;
YEY, |lyly<1

2]

show that
IAB|x,z < |Alx ylBly,z -
§11.e Norms of Matrixes
Let then p, q € [1, oo]; we use the following norms |x|, defined in eqn. (11.13).

Definition 11.40. Let A € R"™*" be a matrix; considering it as a linear application
between normed spaces (R", ||,) and (R™, ||,), let’s define again the induced norm as

def
Al = Ax 11.41
[Allp.q e &% bt |Ax|q ( )

(Note that the maximum is always reached at a point with |x|, = 1).
The norm ||Al|,; is called the spectral norm. .

Definition 11.42. We also define the rules
VZijAlP <o,

rnax,-,j IAl,j| p =0

[AlF—p = {

for p € [1, ). The case p = 2 is called Frobenious’ norm.

Exercises
E11.43 prerequisites:11.10.Note that the norms ||A||p 4 and [|A|F—p are all equivalent.

E11.44 prerequisites:11.39.Let’s consider square matrices, i.e. n = m. We know from
11.39 that norms [|A]|, ; are submultiplicative, that is |AB| [Allp,qllA

pq < p.q:

Show that the Frobenious norm is also submultiplicative.

Note that for a submultiplicative norm we have that |[A¥|| < ||A||* for every natural
k.
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811.f Minkowski sum

E11.45 Show that

m
A = max Z A;
Il = max 31401

n
1Allg 00 = max. JZZI Al -

E11.46 If A € C"™" we can define the induced norms

def
[Allp,q = . max  |Ax|g . (11.47)

ecn, |x|p<1

Show that [|A]lpq = [|Allp,q-
E11.48 Show that if A € R"™*" you have

max |Ax|, = max |Ax|, .
xeRN,|x|,<1 xeCnh,|x|,<1

Hidden solution: [unvaccESSIBLE vuID '11Q']

§11.f Minkowski sum

Let be in the following X be a vector space normed with norm || - ||.

Definition 11.49. Let X be a vector space and A, B C X. We define the Minkowski
sumA®@®BC Xas
A®B={x+y:x€Ay€eB}.

In the following, given A C X, z € X we will indicate withA+z ={b+2z : b € B}
the translation of A in the direction z.
Exercises

E11.50 prerequisites:11.49.Show that the sum is associative and commutative; and that
the sum has a single neutral element, which is the set {0} consisting of the origin
alone.

E11.51 Prerequisites:11.49.1f A is open, show that A @ B is open. Hidden solution:
[UNACCESSIBLE UUID '11V']

E11.52 prerequisites:11.49.1f A, B are compact, show that A @ B is compact. Hidden
solution: [UNACCESSIBLE vuID '11x']

E11.53 prerequisites:11.49.1f A is a closed set and B is a compact set, show that A @ B
is closed. Hidden solution: [unvAccESSIBLE vuIp '112']

E11.54 prerequisites:11.49.Show an example where A, B are closed but A @ B is not
closed. Hidden solution: [uvaccessIBLE vuIp '121']

E11.55 prerequisites:11.49.If A, B are convex show that A @ B is convex. Hidden so-
lution: [unacCESSIBLE vvip '123']

See also the exercises 5.29 and 9.70.
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§11 NORMED SPACES

§11.g Mathematical morphology [2cq]
Let be in the following X be a vector space normed with norm || - ||

Definition 11.56. For A, B C X arbitrary subsets, we recall the definition of Minkowski [124]
sumA@®B={x+y:x €A,y € B} defined in 11.49.
Having now fixed a set B, we define

* the dilation of a set A C X to be A @ B;

* the erosion of a set A C X as

A6B={zeX:B+z)CA} ;

* the closing A « B= (A & B) © B;
* the opening Ao B = (A © B) ® B.

Where, given B C X,z € X, we have indicated withB+z = {b+z : b € B} the
translation of B in the direction z. In previous operations B it is known as ”structural
element”, And in applications often B it’s a puck or a ball.

Let in the following A,B,C C X,w,z € X. Some of the following exercises are
taken from [27].
Exercises

E11.57 Prerequisites:11.56. [125]

Show the following identities:

AeB = [J@+y)
yeB
AeB = [|@Aa-y)
yEB
Hidden solution: [unicCESSIBLE UuID '126']
E11.58 pPrerequisites:11.57,11.56. [127]

Let B = {—b : b € B}: show that (A @ B)° = A° © B, where A° = X \ A is the
complementary. Hidden solution: [unaccessiBLE vUID '128']
E11.59 prerequisites:11.56,11.57. [129]

Show that the four operations are monotonic: if A C Cthen A@ B C C @ B,
ABBCCOBB, A«BCC(Ce+B and AoB C CoB. Hidden solution: [vuniccESSIBLE

UUID '12B']

E11.60 prerequisites:11.56,11.51,11.58.1f A is closed, show that A © Bis closed. Hidden r12c]
SOIUtiOn.' [UNACCESSIBLE UUID '12D']

E11.61 prerequisites:11.56. [12F]

Show that erosion has the invariant property in this sense:

A+z)©6(B+z)=AOSB.
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8§11.g Mathematical morphology

E11.62 Prerequisites:11.56.

Moreover, the erosion satisfies (A © B) © C = A © (B @ C). Hidden solution:

[UNACCESSIBLE UUID '12H']

E11.63 Prerequisites:11.56.

Show that the expansion enjoys the distributive property with respect to union:
(AuC)®B=(A®B)U(C®B).
Hidden solution: [unAcCcESSIBLE UUID '12K']

E11.64 prerequisites:11.56,11.63,11.58.Show that erosion has the distributive property
with respect to the intersection:

AnC)eB=A6B)N(CESB).
Hidden solution: [unaccessisLe vuip '12n']
E11.65 prerequisites:11.56,11.58.Sia B ={—b : b € B}. Show that
(A+B) =(A°0B).

Hidden solution: [unaccESSIBLE vuID '129']

E11.66 Prerequisites:11.56.
Show that
AcC(CoB)
if and only if
A®B)ccC.

Hidden solution: [uniccESSIBLE vuID '125']

E11.67 Prerequisites:11.56.

Recall that the operation A « B = (A @ B) © B s called ”closing”.

» Show that A C A « B.

« LetX = R", B = B, = {|| x| < r}aball, find an example of a set A that is open
non-empty bounded, and A « B = A.

* Setting X = R", B = B, a ball, find an example where A « B # A.
Hidden solution: [unaccESSIBLE vuID '12v']

E11.68 Prerequisites:11.56,11.57.

The opening is also givenby AoB = Uxe X.B4+xCA (B+ x), which means that it is the
locus of translations of the structuring element B inside the set A. Hidden solution:
[UNACCESSIBLE UUID '12X']

E11.69 Prerequisites:11 .56.In the fOHOWng A, B, B Cc R”.

# o # .
* Find an example where BC Band Ao B C Ao B.

£ NP
 Find an example where BC Band Ao B C Ao B.
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§11 NORMED SPACES

Hidden solution: [unvaccesSIBLE vuID '122']

E11.70 prerequisites:11.56,11.68.1f A is convex and B is the convex envelope (see 14.15  [130]
of B, show that A o B C A o B. Show with an example that equality may not apply.
Hidden solution: [vnaccessIsLE vuip '131']

E11.71 Prerequisites:11.56,11.68.1f A, B are convex, show that A o B is convex. Hidden [132]
solution: [UNACCESSIBLE vuID '133']
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§12 Semicontinuity, right and left limits

§12.a Semi continuity
Let (X, 7) be a topological space.

Definition 12.1. A function f : X — R is said lower semicontinuous (abbreviated

Ls.c.) if
Vxo € D(X) , liminf f(x) > f(xg)

and vice versa it says upper semicontinuous (abbreviated u.s.c.) if

Vxo € D(X) , limsup f(x) < f(xq).

X—Xo
(D(X) are the accumulation points in X).

Note that f is lower semi continue if and only if (—f) is upper semi continue: so in
many subsequent exercises we will only see cases I.s.c. cases.

Exercises

E12.2 Letf : R — Rbe defined as f(x) = 1if x € R\ Q, f(0) =0, and f(x) = 1/q
if |[x| = p/q with p, q coprime integers, ¢ > 1. Show that f is continuous on R \ Q
and discontinuous in every t € Q.

Show that the described function is u.s.c. Hidden solution: [vnAcCESSIBLE UuID '13B']

E12.3 Prerequisites:12.2.
Construct a monotonic function with the same property as the one seen in the exercise
12.2.

E12.4 Let f : X — R; the following assertions are equivalent.

1. f is lower semicontinuous.

2. For every t, we have that the sublevel
S;={xeX, f(x)<t}

is closed.
3. The epigraph
E={(t) e XXR, f(x) Lt}
is closed in X X R.
Note that the second condition means that f is continuous from (X, 7) to R, 7, where

7, = {(a,0) : a € R} U {@, R} is the set of half-lines, which is a topology (easy
verification).

Then formulate the equivalent theorem for functions upper semicontinuous.
Hidden solution: [unAccESSIBLE UUID '13F']

E12.5 If f,g : X — R are lower semicontinuous, then f + g is .s.c. Hidden solution:
[UNACCESSIBLE UUID '13H']
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§12 SEMICONTINUITY, RIGHT AND LEFT LIMITS

E12.6 Let I be a family of indices. Supposte that, forn € I, f, : X — Rare l.s.c. 133
functions. We define f = sup, s Jn, then fisls.c. (defined as f : X - RU{+co}).
88 Hidden solution: rumaccessizLe vurp '13x']

E12.7 Vice versa, given f : R - RU {+o0} Ls.c., there exists an increasing sequence  [13y]
of continuous functions f,, : R — R such that f,(x) —, f(x). Hidden solution:
[UNACCESSIBLE UUID '13N']

E12.8 Topics:inf-convolution.Difficulty:*. When (X, d) is a metric space, and f X - [13P]
R U {+o0} is l.s.c. and bounded from below, let

fulx) = inf{f(y) + nd(x, )}
yeX

be the inf-convolution. Show that the sequence f;, is an increasing sequence of Lip-
schitz functions with f,,(x) —,, f(x). Hidden solution: [uwvaccessisLE vuIp '13']

E12.9 Given f : X — R, define [13R]

7)) = f(x) vlimsup f(y) ;

y—ox
show that f*(x) is the smallest upper semicontinuous function that is greater than or
equal to f at each point.
Similarly, define

[0y =f(x) A 11;1 inf f()

then —(f*) = (—f)., and therefore f.(x) is the greatest lower semicontinuous func-
tion that is less than or equal to f at each point.
Finally, note that f* > f..

Hidden solution: [vnicCESSIBLE vuID '135']

E12.10 Topics:oscillation. [13T]
Given any f : X — R, we define oscillation function osc(f)

def

osc(f)(x) = f*(x) = fulx)

1. Note that osc(f) > 0, and that f is continuous in x if and only if osc(f)(x) = 0.
2. Show that osc(f) is upper semicontinuous.

3. If (X, d) is a metric space, note that
osc(f)(x) = lim sup(|f(y) = f(2)], d(x,y) <& d(x,2) <e}
£—>0+

Hidden solution: [vnAcCESSIBLE vuID '13v']

E12.11 Let (X, 7) be a topological space and f : X — R a function. Let X € X be [13u]
an accumulation point. Let eventually U, be a family of open neighbourhoods of x
with U, 2 U,,,;. Then there exists a sequence (x,) C X with x,, € U,, and x,, # X
and such that

lim f(x,) = liminf f(x) .
n—>oo X=X

(Note that in general we do not claim neither expect that x,, — X). Hidden solution:
[UNACCESSIBLE UUID '13X']
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812.b Regulated functions

E12.12 Let (X, 1) be a topological space and f : X — R a function; let x € Xbe an [13v]
accumulation point; let A be the set of all the limits lim,, f(x,,) (when they exist) for
all sequences (x,,) C X such that x,, — X; then

liminf f(x) <infA ;
X=X
moreover, if (X, 7) satisfies the first axiom of countability, then equality holds and
infA = min A.
E12.13 Let f; : [0,00] — [0, co] monotonic function (weakly increasing) and right [132]
continuous. Let then f, : [0, 00) — [0, o] be given by

f(s) = sup{t > 0 : f() > s}

(with the convention that sup @ = 0) and then again f; : [0, ) — [0, o] defined
by
f3(s) = sup{t 2 0 = fo(t) > s}
then f; = f.
Hidden solution: [uNACCESSIBLE UUID '140']

§12.b Regulated functions (201

Definition 12.14. [141]
Let I C R be an interval. Regulated functions f : I — R are the functions that

admit, at every point, right and left limits. ™

(Note in particular that every monotonic function is regulated, and every continuous
function is regulated.)

Exercises
E12.15 Show that a regulated function f : [a, b] — R is bounded. [142]

E12.16 prerequisites:12.10. Let I = [a, b] be closed and bounded interval. Show that  [143]

* f : [a,b] = Ris regulated if and only if

« for any € > 0, there exists a finite set of points P C I such that, for every J C I
with J an open interval that does not contain any point of P, the oscillation of f
in J is less than e.

E12.17 LetI = [a, b]. Let V be the set of functions f : [a,b] — R that are piecewise [144]
constant; it is the vector space generated by 1j, all the characteristic functions of
all intervals J C I. Prove that the closure of V' (according to uniform convergence)
coincides with the space of regulated functions.

So the space of regulated functions, endowed with the norm || - ||, is @ Banach space.

See also exercises 15.7, 15.8, 15.9 and 17.8.
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§12 SEMICONTINUITY, RIGHT AND LEFT LIMITS

§12.c Sup transform

Definition 12.18. Suppose that either I = R* or I = R in the following, for simplicity.
Let € > 0; given a bounded function f : I — R ™, we define the ”sup transform”
as the function g : I — R given by

gx)= sup f(y) . (12.19)

ye(x,x+¢€)

We summarize this transformation with the notation g = F(e, f).

Exercises
E12.20 Prerequisites:12.18. Show that g is regulated.
E12.21 prerequisites:12.18.Show that g is lower semicontinuous.

E12.22 prerequisites:12.18.Show that f = g if and only if f is monotonic weakly de-
creasing and right continuous.

E12.23 Prerequisites:12.18. Given

-1 x=4

g(x)={o X#£4

find f such that g = F(1, f).
Hidden solution: [uNACCESSIBLE UUID '149']

E12.24 prerequisites:12.18.Show that if f is continuous then g is continuous.

Hidden solution: [unACCESSIBLE UUID '14C']

E12.25 prerequisites:12.18,11.35.Let C = Cp(I) be the space of continuous bounded
functions f : I :— R). This is a Banach space (a complete normed space) with the

norm || flleo = sup, | f(x)].

Consider the map F : [0, o) X C}, — C}, transforming g = F(e, f), as defined in the
eqgn. (12.19).

Show that F is continuous.

E12.26 prerequisites:12.18.How do previous exercises change if you define instead

gx)= sup f(@y)? (12.27)

YE[x,x+¢]

Hidden solution: [uNACCESSIBLE UUID '14G']

88 Note that this is also true when n € T is an uncountable family of indices; and it is also true when f,
are continuous

89 At the extremes, of course, only one of the two limits is required.

90The ”bounded” hypothesis is convenient, the following resulst are valid even without this hypothesis,
with simple modifications.
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§13 Continuity

§13.a Continuous functions

Definition 13.1. Let A CRand f : A — R be a function; let x € A; f is called
continuous at x if

Ve>0,30 >0, VyeA, |x—y|<d=|f(x)— f(y)| <e .

f is called continuous if it is continuous in every point.
The set of all continuous functions f : A — R is denoted with C(A); it is a vector
space.

Further informations on this subject may be found in Chap. 3 in [4], or Chap. 4 of

[22].

Exercises

E13.2 Suppose that f : (0,1] — R is a continuous function. Prove that, it is bounded
from above ™" if and only if limsup, _ . f(x) < +oo.

E13.3 prerequisites:9.96.Let f : R — R be a bounded function. Let it be shown that
there at most countably many points where a discontinuity may be removed (i.e. the
points z for which lim,._,, f(x) # f(z), see [52]).

E13.4 prerequisites:9.96.Let f : R — R be a bounded function. Show that the set of
discontinuity points of the second type is countable at most (i.e. the points z where
the lateral limits exist but lim,_,,, f(x) # lim,_,,_ f(x), see [52]).

E13.5 prerequisites:5.8.Fixed a > 1 we define, for x € R, a* as in 5.8. Show that this
is a continuous function and that it is a homeomorphism between R and (0, c0). The
inverse of y = a* is the function logarithm x = log, y.

E13.6 Prerequisites:9.83.Difficulty:*.

Let C C R be a closed set, and let f : C — R be continuous function. Show that
there exists g : R — R continuous and extending f, i.e. g, = f.

Hidden solution: [unAcCESSIBLE UUID '14Q']

E13.7 pifficulty:#+.Find a continuous function f : R — R that is not monotonic in
any interval (open nonempty).

E13.8 Prerequisites:Riemann integral.

Given a continuous function f = f(x,y) : R X [0,1] - R, setting

1
g(x) = f feydy
0

show that g is continuous.

Hidden solution: [uvACCESSIBLE UUID '14V']
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§13 CONTINUITY

E13.9 Given a continuous function f = f(x,y) : R x [0,1] - R, and setting
g(x) = max_ f(x,y)
yelo.1]

show that g is continuous. Hidden solution: [unaccessisLe vuip '14x']

E13.10 Let x,,y, be strictly positive real sequences with limit zero; there is a con-
tinuous and monotonic function f : [0,00) — [0, 00) such that f(0) = 0 and
Vx > 0, f(x) > 0, and such that Vn, f(x,) < y, (hence lim,_,q, f(x) = 0).

Hidden solution: [uNACCESSIBLE UUID '14Z']

[14w]

[14Y]

E13.11 Letbe givenafunctiong : [0, c0) — [0, o] such that g(0) = 0 and lim,,_,(, g(x) =s0

0; then there exists a continuous and monotonic function f : [0, c0) — [0, co] such
that f(0) = 0, limy_,g4 f(x) =0,and f > g.

E13.12 Prove that if a monotonic function is defined on a dense subset of an open
interval I, and has dense image in another open interval J, then it can be extended to
a monotonic continuous function between the two open intervals I, J.

(What happens if I is closed but J is open?)

E13.13 Prerequisites:categories of Baire Sec. §9.k.Difficulty:*.

Show that there is no function f : R — R which is continuous on the rational
points and discontinuous on the irrational points. (Hint. Show that the set R \ Q of
irrationals is not a F; set in R, using Baire’s theorem.)

Hidden solution: [vnAcCESSIBLE UUID '153']

§13.b Uniformly continuous functions

Definition 13.14. Let A C Rand f : A — R be a function; f is called uniformly
continuous if

Ve>0,38 >0, Vx,y €A, |x—y| <= |f(x)— f(y)| <e .

More in general, given (X;,d;) and (X,, d,) metric spaces, given the function f :
X, — X,, f is uniformly continuous if

Ve >0, 36 >0, Vx,y € X;, di(x,y) < § = d,(f(x), f(¥)) <€ .

It is easy to see that a function uniformly continuous is continuous at every point.

Exercises

E13.15 prerequisites:13.14.Let f : X; — X, with (X3, d;) and (X,, d,) metric spaces.

A monotonic (weakly) increasing function w : [0, o) — [0, o], with @(0) = 0 and
lim;_, 4 w(t) = 0, such that

Vx,y € X1, dp(f(x), f(0) < w(dy(x,y)) (13.16)

91 e, there exists ¢ € R such that Vx € (0, 1] you have f(x) < ¢
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§813.b  Uniformly continuous functions

is called continuity modulus for the function f. (Note that f can have many conti-
nuity moduli).

For example, if the function f is Lipschitz, i.e. there exists L > 0 such that

Vx,y € X1, dp(f(), f(¥) < Ldi(x,y)

then f satisfies the eqz. (13.16) by placing w(t) = Lt.

We will now see that the existence of a continuity modulus is equivalent to the uni-
form continuity of f.

+ If f is uniformly continuous, show that the function

wy(t) = sup{d,(f(x), f(¥)) = X,y € Xy,di(x,y) <t} (13.17)

is the smallest continuity modulus.™?

+ Note that the modulus defined in (13.17) may not be continuous, and may be
infinite for ¢ large — find examples of this behaviour.

* Also show that if f is uniformly continuous, there is a modulus that is contin-
uous where it is finite.

 Conversely, it is easy to verify that if f has a continuity modulus, then it is
uniformly continuous.

If you don’t know metric space theory, you can prove the previous results in case
f I > RwithI C R. (See also the exercise 13.25, which shows that in this case
the modulus w defined in (13.17) is continuous and is finite).

Hidden solution:  [unAcCESSIBLE UUID '157'] [UNACCESSIBLE UUID '158'] [UNACCESSIBLE UUID
'159']
E13.18 Let (X, d) metric space and ¥ the set of uniformly continuous functions f :  [1sc

X — R, show that F is a vector space.

This is more generally true if f : X — X, where X, is a normed vector space (to
which we associate the distance derived from the norm).

Hidden solution: [unaccESSIBLE vuID '15D']

E13.19 pifficuity:+.Let (X3, dy) and (X, d,) metric spaces, with (X, d,) complete. Let  [15F]
A CX;and f : A - X, be a uniformly continuous function. Show that there is a
uniformly continuous function g : A — X, extending f; In addition, the extension
g is unique.

Note that if w is a continuity modulus for f then it is also a continuity modulus for
g. (We assume that w is continuous, or, at least, that it is upper semicontinuous).
Hidden solution: [un4ccEsSSTBLE UUID '156G'] [UNACCESSIBLE UUID '15H']

E13.20 Prerequisites:13.19.Let A C R" be bounded and f : A — R a continuous [15J]
function. Show that f is uniformly continuous if and only there exists a continuous
function g : A — R extending f; In addition, the extension g is unique.

Hidden solution: [vnACCESSIBLE UUID '15K']
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§13 CONTINUITY

E13.21 Let f : (0,1] — R be a continuous function. Prove that it is uniformly con-
tinuous, if and only if the limit lim,._,q, f(x) exists and is finite. Hidden solution:
[UNACCESSIBLE UUID '15N']

[15M]

E13.22 Letf : [0, 00) — R bea continuous function and such that the limit lim,._, ., f() r15p

exists and is finite. Show that it is uniformly continuous. Hidden solution: [unaccessiBLE

UUID '15Q']

E13.23 Let f : [0,00) — R be a continuous function, show that these two clauses are
equivalent.

* There exists g : [0,00) — R uniformly continuous and such that the limit
lim,._, o (f(x) — g(x)) exists and finite.

+ f is uniformly continuous.

Hidden solution: [vnicCESSIBLE UuID '155']

E13.24 Find an example of f : [0,00) — R continuous and bounded, but not uni-
formly continuous. Hidden solution: [uwaccessIBLE vuID '15vV']

E13.25 LetI C R be an interval, and let f : I — R be uniformly continuous. Let
w be the continuity modulus, defined by the eqz. (13.17), as in the exercise 13.15.
Show that w is subadditive i.e.

w(t) + w(s) > w(t + 5)

Knowing that lim;_, o, @(t) = 0 we conclude that w is continuous. Hidden solution:
[UNACCESSIBLE UUID '15X']

E13.26 Prerequisites:13.25. Let f : R — R be uniformly continuous; show that

lim sup |f(x)|/x < o0

xX—>+o0

or, equivalently, that there exists a constant C such that | f(x)| < C(1 + |x|) for every
x. Hidden solution: [unaccessisLe vuip '160']

E13.27 prerequisites:9.40. Let (X;, d,), (X3, d,) and (Y, &) be three metric spaces; con-
sider the product X = X; X X, equipped with the distance d(x,y) = d;(x1,);) +
dy(x,,¥,). 73 Let f : X — Ybe a function with the following properties:

« Foreach fixed x; € X; the function x, — f(x;, x,) is continuous (as a function
from X, to Y);

* There is a continuity modulus w such that
VX, ® € Xy, VX, € X, ,8(f (1, %)), (X1, %)) < @(dy(x1, %))

(We could define this property by saying that the function x; — f(x;,x,) is
uniformly continuous, with constants independent of the choice of x,).

Then show that f is continuous.

See also point 3 of the exercise 17.8.
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813.c Lipschitz and Hélder functions

§13.c Lipschitz and Holder functions

Definition 13.28. Let A C R. A function f : A — R is said Lipschitz continuous
if there exists L > 0 such that Vx,y € A,

IfFG) = fWI < Lix =yl .

Afunction f : A - R is said Hélder continuous if L > 0 and a € (0, 1] exist such
that Vx,y € A,

[f() = fOI < Llx —y|* .
The constant « is called the order.

As in the case of ”uniform continuity”, this notion extends to maps between metric
spaces.

Exercises

E13.29 prerequisites:13.15.Show that the Lipschitz functions, as well as Holder func-
tions, are uniformly continuous What can be said about their continuity modulus?

E13.30 LetI C R be an open interval. Let f : I — R be differentiable. Show that f”
is bounded on I, if and only if f is Lipschitz continuous.

E13.31 Let I C R interval. Let f : I — R such that there exists @ > 1 such that
vx,y, |f(x) — f(¥)] £ |x — y|* (i.e. f is H6lder continuous of order & > 1): Show
that f is constant.

E13.32 Let be given f : [a,b] — R and a decomposition of [a, b] into intervals
L =la, 4], I, = [t, t5], ..., I, = [t,—1, b] such that the restriction of f on each I} is
Lipschitz of constant C. Show that f is Lipschitz of constant C.

Similarly for Holder functions.

E13.33 Let f : [a,b] — R Holder with exponent & < 1. Show that f is H6lderian
with exponent (3 for every § < a.
Note that this is not technically true for f : R — R.

E13.34 Build f : [0,1] — R that is continuous but not Hélder continuous. Hidden
Soluth)n: [UNACCESSIBLE UUID '16B'] [UNACCESSIBLE UUID '16C']

E13.35 A linear function f : R" — R¥ is Lipschitz.

E13.36 For each of the following functions, say if it is continuous, uniformly continu-
ous, Holder (and with which exponent), or Lipschitz.

* f:(0,1) » R, f(x) = sin(1/x).
« £:00,1) - R, f(x) = x/~*,
s f:1(1,0) = R, f(x) = sin(x?)/x

92Note that the family on which the upper bound is calculated always contains the cases X = y, therefore
w(t) > 0.

93We know from 11.10 and 9.40 that there are several possible choices of distances, but they are equivalent
to each other.
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§13 CONTINUITY

o f:[-1,1] = R, f(x) = |x|® with 8 > 0.
« f:(0,00) = R, f(x) = sin(x?) with § > 0.
Hidden solution: [unicCESSIBLE UUID '16H']

E13.37 GivenL € (0,1)if f : R — R satisfies

IfC=fDI < Lix =yl Vx,y €R
Then there is only one *fixed point” that is a point x for which f(x) = x.

E13.38 Find a function f : R — R such that

IfC)—fWI <lx—yl Vx,y€eR

but for which there is no *fixed point” (that is a point x for which f(x) = x=.

Hidden solution: [vnACCESSIBLE UuID '161']

§13.d Discontinuous functions
Let be in the following (X, d) a metric space.

Definition 13.39. A set E is called a F; if it is a countable union of closed sets.
(See also exercise 9.48).

Exercises

E13.40 Note that every open set A C X nonempty is a F; set. (Hint: use 9.69). Hidden

solution: [UNACCESSIBLE UUID '16P']

E13.41 prerequisites:12.10,12.4.Given a generic f : X — R, show that the set E of
points where f is discontinuous is a F;. Hidden solution: [unaccessisLe vuip '16r']

E13.42 prerequisites:13.39.Difficulty:*.

Suppose (X, d) admits a subset D that is dense but has empty interior. ™*

Given a E C X which is a F;, construct a function f : X — R for which E is the set
of points of discontinuity.

Hidden solution: [vnACCESSIBLE UUID '16T']

94That is, both D and the complement X \ D are dense. X = R meets this requirement, taking as an
example D = Q.
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8§14 Convex functions and sets

We will now discuss convexity. For simplicity, all results are presented using R" as
domain; but most results hold more in general in a generic vector space.

§14.a Convex sets

Definition 14.1. Given x;, ... x; € R" , givent,, ...ty > 0 with t; + --- + t; = 1, the
sum
xltl + -+ xktk

is a convex combination of the points Xy, ... Xj.

Remark 14.2. Ifk = 2 then the convex combination is usually written as (tx+(1—t)y)
with t € [0, 1]; the set of all these points is the segment that connects x to y.

Definition 14.3. Let C C R" be a set; it is called convex if
vt €[0,1], Vx,yeC, (tx+(1 —-t)y)eC
that is, if the segment connecting each x,y € C is all inclusive in C.

(We note that @ is a convex set, and that every vector subspace or affine subspace
of R" is convex).
Convex sets enjoy a lot of interesting properties, this one below is just a small list.

Topology
Exercises

E14.4 Let C C R" be aset; show that it is convex if and only if it contains every convex
combination of its points, that is: for every k > 1, for every choice of x;, ... x, € C
, for each choice tq, ... f; > 0 with ¢y + --- + ¢, = 1, you have

X1+ -+ xt €C

E14.5 Topics:simplex.

Given xq, ... x; € R", let

k k
{Z Xit; © Z t; = 1Vi, t; > O} (]_46)
i=0 i=0

the set of all possible combinations: prove that this set is convex.

When the vectors x; — xg, X5 — Xq ... Xj — X are linearly independent, the set defined
above is a simplex of dimension k.

Show that, if n = k, then the simplex has a non-empty interior, equal to

n n
{Z Xty 1 6 =1Vi, 6 > o} (14.7)
i=0

i=0

E14.8 Let A C R" be a convex set containing at least two points, and V the small-
est affine space that contains A (show that this concept is well defined); and, view-
ing A as a subset of V, prove that A has non-empty inner part. Hidden solution:
[UNACCESSIBLE UUID '171']
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§14 CONVEX FUNCTIONS AND SETS

E149 If A C R"is convex, x € A° and y € A then the segment that links them is
contained in A°, except possibly for the extreme y, thatis, V¢ € (0,1),tx+(1—t)y €
A°. Hidden solution: [uvAccESSIBLE vuID '173']

E14.10 prerequisites:14.9,9.23.If A C R" is convex, x € A° and z € JA then the
segment that connects them is contained in A°, except possibly for the extreme z (i.e.
vVt € (0,1),tx + (1 —t)z € A°). Hidden solution: [uniccEssIBLE vuID '175']

E14.11 Given A C R" convex, show that its interior, as well as its closure, are still
convex. Hidden solution: [unaccessiBLE vuID '177']

E14.12 prerequisites:9.47,14.10.Given A C R" convex with non-empty interior, show
that A = (A°) (the closure of the interior of A). Then find a simple example of A for
which A # (A°).Hidden solution: [umaccessiaLe wip 117917

E14.13 prerequisites:7.13.Difficulty:*.
Given A C R" convex, show that A° = (Z) (the inner part of the closure of A).

Using 14.18 it is easily shown that A° 2 <Z) ; unfortunately this result is useful

in one of the possible proofs of 14.18 (!); an alternative proof uses simplexes as
neighbourhoods, cf 14.5. Hidden solution: [uwaccessIBLE vuID '17¢']

E14.14 Suppose that C; C R" are convex sets, for i € I: prove that
Ne
iel
is convex.

Definition 14.15. Let then A C R" be a non-empty set, the convex hull (or convex
envelop) co(A) of A is the intersection of all convex sets containing A. Because of
14.14, co(A) is the smallest convex sets containing A.

See also exercises 11.55, 11.70 and 11.71.

§14.a.a Projection, separation
Exercises

E14.16 Topics:projection.Difficulty:*. Note:This is the well-known ”projection theorem”, which holds for

A convex closed in a Hilbert space; if A C R™ then the proof is simpler, and it’s a useful exercise..

Given A C R” closed convex non-empty and z € R", show that there is only one
minimum point x* for the problem

min ||z — x|| .
XEA
Show that x* is the minimum if and only if

Vy € A,(z —x*,y —x*) <0 .

* VA
x* is called ”the projection of z on A”. X
(Note that this last condition is simply saying that the angle must be obtuse.)
Hidden solution: [unAccESSIBLE UUID '17G']
Copyright A. C. G. Mennucci 169

The sections comprising theory and exercises’ statements are released under License WP:CC BY-SA

[172]

[174]

[176]

[178]

[17B]

[059]

[2G4]

[17D]


https://coldoc.sns.it/UUID/EDB/172/
https://coldoc.sns.it/UUID/EDB/173
https://coldoc.sns.it/UUID/EDB/174/
https://coldoc.sns.it/UUID/EDB/175
https://coldoc.sns.it/UUID/EDB/176/
https://coldoc.sns.it/UUID/EDB/177
https://coldoc.sns.it/UUID/EDB/178/
https://coldoc.sns.it/UUID/EDB/179
https://coldoc.sns.it/UUID/EDB/17B/
https://coldoc.sns.it/UUID/EDB/17C
https://coldoc.sns.it/UUID/EDB/059/
https://coldoc.sns.it/UUID/EDB/2G4/
https://coldoc.sns.it/UUID/EDB/17D/
https://coldoc.sns.it/UUID/EDB/17G
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License

§14.a Convex sets

E14.17 Topics:separation. Prerequisites:14.16.

Given A C R" closed non-empty convex and z ¢ A, let x* be defined as in the
previous exercise 14.16; define § = ||z —x*|, v = (z—x*)/6 and a = (v, x*). Prove
that v, a and v, a + & define two parallel hyperplanes that strongly separate z from
A, in the sense that (z,v) = a + § but Vx € A, (x,v) < a.

E14.18 Topics:separation.Difficulty:*.

This result applies in very general contexts, and is a consequence of Hahn—Banach
theorem (which makes use of Zorn’s Lemma); if A C R" it can be proven in an
elementary way, I invite you to try.

Given A C R" open convex non-empty and z ¢ A, show that there is a hyperplane
P separating z from A, that is, z € P while A is entirely contained in one of the two
closed half-spaces bounded by the hyperplane P. Equivalently, in analytical form,
there exist a € R,v € R", v # 0 such that (z,v) = a but Vx € A,(x,v) < a; and

P={yeR": (y,v)=a}.

The hyperplane P thus defined is called supporting hyperplane of z for A.

There are (at least) two possible proofs. A possible proof is made by induction on
n; we can assume without loss of generality that z = e; = (1,0...0),0 € A,a = 1;
keep in mind that the intersection of a convex open sets with R*~! x {0} ¢ R" is an
open convex set in R"~!; this proof is complex but does not use any prerequisite. A
second proof uses 14.11 and 14.17 if z & 0A; if z € 0A it also uses 14.12 to find
(z,) C (A°)° with z,, — z . Hidden solution: [vnACCESSIBLE vUID '17K']

E14.19 prerequisites:14.18,11.51.If A, B are disjoint convex, with A open, show that
there is a hyperplane separating A and B, that is, there existv € R",v # Oandc € R
such that

Vx € A,(x,v) < cbut Vy € B,(y,v) > c; (14.20)

moreover show that if also B is open, then you can have strict separation (i.e. strict
inequality in the last term in (14.20)).

(Hint: given A, B C R" convex nonempty, show that
def
A-B={x—-y,x€ A,y €B}
is convex; show that if A is open then A — B is open, as in 11.51.) Hidden solution:
[UNACCESSIBLE UUID '17N']

E14.21 Find an example of open convex sets A, B C R? with A, B disjoint, and such
that there is a single hyperplane separating them (i.e. an ”unique” choice of v, c that
satisfies (14.20); “unique”, up to multiplying v, c by the same positive constant).
Hidden solution: [unaccEssSIBLE uuID '17Q']

E14.22 prerequisites:14.18.If A C R" is convex, x € A° and y € JA, then the straight
line that connects them, continuing over y, stays out of A (i.e. V¢ > 1,y +(1—1)x &
A). Hidden solution: [uwAcCESSIBLE vuID '175']

E14.23 Topics:separation,support. Prerequisites: 14.8,14.18, 14.13.
Given A C R" convex non-empty and z € 0A, prove that there existv € R"”,a € R

such that (z,v) = a and Vx € A,(x,v) < a. The hyperplane thus defined is called
support hyperplane of z for A. Hidden solution: [unaccessisLe vuip '17v']
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§14 CONVEX FUNCTIONS AND SETS

E14.24 pifticuity:x.Given a set A C R? bounded convex open nonempty, show that
0A is support of a closed simple arc (that is also Lipschitz continuous).

Hidden solution: [unaccESSIBLE vuID '17x']

§14.b Convex function

Definition 14.25. Let C C R" be a convex set, and f : C — R a function. fis
convex if

Vi €[0,1], Vx,y € C, f(tx+(1—1)y) <tf()+ 1 -0fQ) .

f is strictly convex if also

vte (0,1), Vx,y e C,x#y, ftx+@—0)y)<tfxX)+A-0fQ) .

Definition 14.26. f is said (strictly) concave if —f is (strictly) convex.

Convex functions enjoy a lot of interesting properties, this one below is just a small
list.

... equivalent definitions
Exercises

E14.27 Let C C R" be a convex set. Let f : C — R be convex; let xy,...,x, € C
and ty, ..., t, € [0, 1] be such that Zir;l t; = 1. Show that

n
Z lix; € C
i=1

and
n

f(Z tixi) < hf(x).
i=1

i=1

E14.28 Let C C R" be a convex set. Let f : C — R, show that f is convex if and
only if the epigraph
{uy)[xeC, f(x) <y}

is a convex subset of C X R.

Properties

The following is a list of properties for convex functions f : C - R with C C R".
Obviously these properties also apply when n = 1; but when n = 1 proofs are usually
easier, see the next section.
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814.b Convex function

Exercises

E14.29 Let C C R" be a convex set, and f : C — R a convex function. Given ! € R,
define the sublevel set as

Li={xeR": f(x) <1}

Show that L; is a convex (possibly empty) set. Deduce that the minimum points of
f are a convex (possibly empty) set. Show that if f is strictly convex there can be at
most one minimum point.

E14.30 Let C C R" be a convex set; suppose that f; : C — R are convex, wherei € T
(a non-empty, and arbitrary, family of indices), and we define f(x) = sup,_; fi(x),
where we suppose (for simplicity) that f(x) < oo for every i: show that f is convex.

E14.31 pPrerequisites:14.28,14.23.Difficulty:*.Let C C R" be a convex set, let f : C —
R be a convex function, we fix z € C°: show that there exists v € R" such that

Vx € C, f(x) > f(z) + (v, x—z) . (14.32)

The plane thus defined is called support plan for f in z. Note:It is preferable not to assume
that f is continuous, while proving this result, as this result is generally used to prove that f is continuous!. Hidden

solution: [UNACCESSIBLE UUID '185']

E14.33 prerequisites:11.12,11.10,14.31.Difficulty:*.

Let C C R" be an open convex set, and f : C — R a convex function, show that f
is continuous.

Note:In the case of dimension n = 1, the proof is much easier, see 14.41.

Hidden solution: [unvaccesSIBLE vuID '187']

FE14.34 Topics:subdifferential.Prerequisites:14.31.Difficulty:*.

Let C C R" be an open convex set, and f : C — R a convex function; Given z € C,
we define the subdifferential 0 f(z) as the set of v for which the relation (14.32) is
valid (i.e., df(z) contains all vectors v defining the support planes to f in z).

df(z) enjoys interesting properties.
* 9f(z) is locally bounded: if z € C and r > 0 is such that B(z,2r) C C, then

L > Oexists such that Vy € B(z,r), Yu € df(x) youhave |v] < L. In particular,
for every z € C, we have that df(z) is a bounded set.

« Show that df is upper continuous in this sense: if z € C and (z,), C C and
v, € df(z,) and if z,, —, z and v, —, v then v € df(z). In particular, for
every z € C, df(z) is a closed set.

Hidden solution: [unicCESSIBLE UUID '189']

E14.35 Topics:minimum. Prerequisites:14.34.Let CC R" be a convex set, andf C->R
a convex function. Show that z € C° is a minimum if and only if 0 € df(z).

E14.36 Prerequisites:14.31,14.34.Note:A vice versa of 14.30.

Let C C R" be an open convex set; suppose that f : C — R is convex; sequences
(awn € R,(vp)n € R" exist (for h € N), such that f(x) = sup,\(ap + vy - X).
Hidden solution: [unAccESSIBLE UUID '18D']
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§14 CONVEX FUNCTIONS AND SETS

§14.c Real case

Let I C R, then I is convex if and only it is an interval (see 9.80). In the following we
will consider f : I — R where I = (a, b) is an open interval.

Exercises

is mono-

E14.37 Show that f(x) is convex if and only if the map R(x,y) = %{)m

tonically weakly increasing in x. "> Moreover, f is strictly convex if and only if R

is strictly increasing. Hidden solution: [uNAcCESSIBLE UuID '18G']

E14.38 Show that for a convex function f : (a,b) — R there are only three possibili-
ties:
* f is strictly increasing
* f is strictly decreasing

* There are two values I_ < [, such that f is strictly increasing in [l, b), f is
strictly decreasing in (a, I_], and the interval [I_, [ ] are all minimum points of

f
If also f is strictly convex then there is at most only one minimum point.

E14.39 Let f : (a,b) — R be convex. Show that, for every closed interval I C
(a, b), there exists a constant C such that f|; is Lipschitz with constant C. Provide
an example of a continuous and convex function defined on a closed interval that is
not Lipschitz.

E14.40 Prove that a continuous function f : (a,b) — R is convex if and only if, for
every u,v € (a,b),

f(u;rv)s f(u);rf(v)

§14.c.a Convexity and derivatives
Exercises
E14.41 prerequisites:14.37.Let f . (a, b) — R be convex.
1. Show that, at every point, right derivative d*(x) and left derivative d ~(x) exist
(In particular f is continuous).
Show that d~(x) < d*(x),
while, for x < y, d*(x) < R(x,y) < d~(p).
hence d*(x) and d~(x) are monotonic weakly increasing.
Show that d*(x) is right continuous, while d~(x) is left continuous.

Also show that limg_,,_ d*(s) = d~(x), while limg_,,, d~(s) = d*(x). In
particular d* is continuous in x, if and only if d~ is continuous in x, if and
only if d=(x) = d*(x).

So d*,d™ are, so to speak, the same monotonic function, with the exception
that, at any point of discontinuity, d* assumes the value of the right limit while
d~ the value of the left limit.

ok~ W

95Note that R(x, y) is symmetrical.
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§14.d Additional properties and exercises

7. Use the above to show that f is differentiable in x if and only if d* is continuous
in x, if and only if d~ is continuous in x.

8. Eventually, prove that f is differentiable, except in a countable number of
points.

Hidden solution: [unaccESSIBLE UUID '18N']

E14.42 prerequisites:14.37.If f : (a,b) — R is differentiable, then f is convex if and
only if f" is weakly increasing. Hidden solution: [uvaccessisLE vuID '189']

E14.43 prerequisites:14.37,14.42.1f f : (a,b) — R is differentiable, then f is strictly
convex, if and only if f’ is strictly increasing. Hidden solution: [unaccessIBLE vuID
'185']

E14.44 prerequisites:14.37, 14.42.Suppose that f : (a,b) — R is twice differentiable.
f is convex if and only if f” > 0 at every point. Hidden solution: [unaccessisLE vuTD
'18v']

E14.45 Prerequisites:14.44.

Let J C R be an open nonempty interval, and f : J — R be a twice differentiable
and convex function. Show that the following facts are equivalent:

1. f is strictly convex,
2. theset {x € J : f”(x) = 0} has an empty interior,

3. f'is monotonic strictly increasing.
Hidden solution: [unicCESSIBLE vuID '18X']

See also the exercise 15.13 for the relationship between integral and convexity.

§14.c.b Convex functions with extended values

We consider convex functions that can also take on value +oco. Let I be an interval.

Exercises

E14.46 Let f : I - R U {oo} be convex, show thatJ = {x € I : f(x) < oo} is an
interval.

E14.47 Note:another vice versa of 14.30.

GivenI C R interval and f : I - R U{co} convex and lower semicontinuous, there
exist sequences a,, b, € R such that f(x) = sup, (a, + b,x).

Hidden solution: [unaccESSIBLE UUID '190']

§14.d Additional properties and exercises
Exercises

E14.48 Let C C R" be a convex set, f : C — R a convex function,andg : R > R a
convex and weakly increasing function: prove that fog is convex.

E14.49 Let f : [0,00) — R be concave, with f(0) = 0 and f continuous in zero.
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§14 CONVEX FUNCTIONS AND SETS

* Prove that f is subadditive, i.e.

FO+f) = ft+59)

for every t, s > 0. If moreover f is strictly concave and ¢ > 0 then
FO+f(s)> ft+59).

* Prove that, if Vx, f(x) > 0, then f is weakly increasing.
¢ The other way around? Find an example of f : [0, c0) — [0, o) with f(0) = 0,
continuous, monotonic increasing and subadditive, but not concave.

Hidden solution: [unviccESSIBLE UUID '193']

E14.50 Prove Young inequality: given a,b > O and p,q > 1 suchthat1/p+1/g =1
then

P q
<@ Y (14.51)
p q
with equality if and only if aP = b4; prove this using concavity of the logarithm.
See also 23.16. Hidden solution: [uniccessIBLE vUID '195']

E14.52 Let a € (0,1), show that x* is a-Holder (possibly using the above results).
Hidden solution: [uvAccESSIBLE UUID '197']

See also exercise 15.29.

§14.d.a Distance function

Exercises

E14.53 Topics:Distance function, convex sets. Prerequisites:9.69, 14.55.Let A C R" be a
closed nonempty set, and d4 the distance function defined in the exercise 9.69, that
is d4(x) = inf,,c4 |x — y|. Prove that A is a convex set, if and only if d4 is a convex
function.

Hidden solution: [unicCESSIBLE UUID '199']

E14.54 Topics:Distance function, convex sets. Prerequisites:9.69,14.16.

Given A C R" a closed convex set, we define the distance function d4(x) as in 9.69;
let z ¢ A and x* the projection of z on A (i.e. the point of minimum distance in
the definition of d4(z)). Having fixed v = (z — x*)/|z — x*|, show that v € df(z);
where 0f is the subdifferential defined in 14.34.

§14.d.b Strictly convex functions and sets

Exercises

E14.55 Let C C R" be a convex, f : C — R a convex function, and r € R: then
{xeC, f(x) <r}and {x € C, f(x) < r} are convex (possibly empty) sets.

Remark 14.56. The vice versa is also true: given A C R" a closed convex set, a
convex function f : R"™ — R such that A = {x : f(x) < 0} always exists: For
example, you can use f = dy, as seen in 14.54 in the previous section.
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§14.d Additional properties and exercises

One wonders now, what if f is strictly convex?

Definition 14.57. A closed convex set A C R" is said strictly convex if, for every
X,y € A with x # y and every t € (0, 1) you have

(tx+(Q -1ty eaA

(Note that a strictly convex set necessarily has a non-empty interior).
Remark 14.58. From the exercises 14.9 and 14.10 it follows that if x € A° ory € A°
then (tx + (1 — t)y) € A°: so the definition is ”interesting” when x,y € dA.
Exercises

E14.59 prerequisites:14.33.Let f : R" — R be a strictly convex function and r € R
then A = {x, f(x) < r}is a closed and strictly convex (possibly empty) set. Hidden
solution: [UNACCESSIBLE UUID '19H']
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§15 RIEMANN INTEGRAL

§15 Riemann integral

All definitions and theorems needed to solve the following exercises may be found in
Chap. 1 in [4], or Chap. 6 of [22].

Exercises

E15.1 Let p be a polynomial (with complex coefficients); fix 6 € C,8 # 0. Define
fx)=- Ox e~% p(t)dt. Show that f(x) = e~%*q(x) — q(0) where q is a polyno-
mial that has the same degree as p. Determine the linear map (i.e. the matrix) that
transforms the coefficients of p into the coefficients of g; and its inverse.

Hidden solution: [UNACCESSIBLE UUID '19N'] [UNACCESSIBLE UUID '19P']
E15.2  Note:Similar to point 8 from exercise 17.8.Suppose f;, : [a, b] — R are Riemann-integrable,
and f : [a,b] —» R a generic function.

Find an example where f,, —, f pointwise, f is bounded, but f is not Riemann
integrable.

Show that, if the convergence is uniform, then f is Riemann integrable and

b b
lirnf fndx:f fdx
n—oo a a

Hidden solution: [unacCESSIBLE UUID '19R']

E15.3 Prerequisites:15.2, 17.4.

Let I C R be an interval with extremes a, b. Let f, f,, : I — R be continuous non-
negative functions such that f,,(x) /', f pointwise (i.e. for every x and n we have
0 < fu(x) £ fry1(x) and lim,, f,,(x) = f(x)). Prove that

b b
nle/ fn(x)d]xzf fx)dx .

(Note if the interval is open or semiopen or unbounded then the Riemann integrals
are understood in a generalized sense; in this case the right term can also be +o0).
Hidden solution: [unAccESSIBLE UUID '19T']

The previous result is called Monotonic Convergence Theorem and holds in very
general hypotheses; in the case of Riemann integrals, however, it can be seen as a
consequence of the results 15.2 and 17.4.

E15.4 Suppose that f : [a,b] — R is Riemann integrable and g : R — R is continu-
ous, prove that go f is Riemann integrable.

Hidden solution: [uNACCESSIBLE UUID '19W']
E15.5 Say which of these functions f : [0,1] — R are Riemann integrable:

1. the characteristic function of the Cantor set.

2. f(0) =0, f(x) = sin(1/x)
3. f(0)=0and
FO0) = 1 — cos(x)

© X2 4 |sin(1/x)|
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4. f(x) = 0if x is irrational, f(x) = cos(1/m) if x = n/m with n, m coprime.

5. f(x) = 0if x is irrational, f(x) = sin(1/m) if x = n/m with n, m coprime.

E15.6 Prerequisites:Fundamental theorem of integral calculus.

Suppose that f : [a,b] — R is continuous and g : R — R has class C': prove that

b g(b)
f fegodi= [ f(s)ds

g(a)

Hidden solution: (unaccesszsie vuip '1p2'] Note that for this result it is not necessary
to assume that g is monotonic.
E157 Prerequisites:regulated functions Sec. §12.b.

Show that a regulated function f : [a,b] — R is Riemann integrable.

E15.8 Prerequisites:Regulated functions Sec. §12.b.
Find a Riemann integrable function f : [0,1] — R that is not regulated.
Hidden solution: [uvAccESSIBLE UUID '1B5']
E15.9 pifficuity:+.Can there be a Riemann integrable function f : [0,1] — R that

is not regulated (i.e., it does not allow right and left limits) at any point? Hidden
solution: [UNACCESSIBLE UUID '1B7']

E15.10 If f,g : [A,B] — R are Riemann integrable, then h(x) = max{f(x), g(x)} is
Riemann integrable.

E15.11 Find a lower semicontinuous function f : [0,1] — R, bounded, but not Rie-
mann integrable.

E15.12 We define the Beta function as
1
B(x,y) = / @ =Y de.
0

1. Show that the integral exists (finite) if and only if x,y > 0.
2. Note that B(x,y) = B(y, x)

3. Relate B(n,m) to B(n—1,m+ 1). Then calculate the value of B(n, m) for n,m
natural positives.

4. Use the result to calculate
7/2
f sin(t)® cos(t)” dt .
0
Hidden solution: [unAccESSIBLE vuID '1BD']

E15.13 Prerequisites:convex functions.Let] C R be an open interval, and Xg € 1. Prove
that these two facts are equivalent:
1. F : I - Ris convex.

2. There exists f : I — R monotonic (weakly) increasing, and such that F(x) =
F(xo) + J. f(s)ds,
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and verify that you can choose f be the right (or left) derivative of F.

E15.14 Exhibit an integrable function f : [0,1] — R such that the derivative of the
function F(x) = [ ax f(t)dt is not f. Hidden solution: [unaccEssIBLE vuTD '1BH']

E15.15 Calculate explicitly °° primitive formulas for

1 1 1
sin(x)2 7 (/142 2+sin(x)

Hidden solution: [unicCESSIBLE UUID '1BK']

E15.16 We define the Gamma function I" : (0, 0) — R as

[c9)
F(x):f t*le~tdt.
0

« Show that I'(x) is well defined for x > 0 real.
« Show that I'(x + 1) = xI'(x) and deduce that I'(n + 1) = n! forn € N.
* Show that I'(x) is analytic.

(You can assume that derivatives of I are I'™(x) = Sy (og t)"t*~le" dt;
those are obtained by derivation under integral sign.)

E15.17 Calculate
.1 1 1
lim =+ ——+--+ —
n»on n+1 3n
seeing it as an approximate sum of a Riemann integral.
E15.18 prerequisites:16.46.Leta € R, letIbe openinterval witha € I,andg, : I - R
continuous.

We recursively define ¢, : I — R forn > 1 via ¢,(x) = [, * ¢,_1(t) dt; show that

o= [ G- 0o (15.19

Hidden solution: [vniccESSIBLE vuID '1BQ']

E15.20 pPrerequisites:15.18.Note:See also Apostol [3].

Fix a € R, and I open interval with a € I; assuming that f : I — R is if class C"*!,
prove Taylor’s formula with integral remainder

n ( ) X
OEMOE o Dx - i [ - o

Hidden solution: [unvaccESSIBLE UUID '1BS']
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https://coldoc.sns.it/UUID/EDB/1BQ
https://coldoc.sns.it/UUID/EDB/1BR/
https://coldoc.sns.it/UUID/EDB/1BS
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E15.21 prerequisites:14.37, 15.13.Let I C R be an open interval. Suppose that g :
I - R in Riemann integrable on any bounded closed interval contained in I. Fixed
x,y € Rwith x # y, let

1 Yy
RGxy) = S f g(s)ds

(with the usual convention that fxy g(s)ds = — fyx g(s) ds, so that R(x, y) = R(y, x)).

If g is monotonic, show that R(x, y) is monotonic in each variable. If g is continuous
and R(x, y) is monotonic in each variable, show that g is monotonic.

Hidden solution: [vnAcCESSIBLE UUID '1BV']

E15.22 Let f : [a,b] — R continuous and such that

b
/ f()g(x)dx =0

forany g : [a,b] — R continuous: prove that f = 0.

E15.23 Let’s go back to the exercise 6.54: computing the Cauchy product of the series

o (=ptto L . Y . _vn-1 1
et 7 with itself, produces the series 3} (—1)"c, withc, = 3, _| s

show that ¢,, — 7.

Hidden solution: [unicCESSIBLE UUID '1BY']

E15.24 pifficuity:*.Suppose that f : R — R is continuous and bounded, show that

lim 2 G
y=0+ 7 ) x%+y?

dx = f(0)

(Hint. start with the case when f is constant.)

E15.25 Let n,m > 1 be integers, and set

1
Lim =f x"(log x)™ dx
0

relate I, ,,, with I, ,_;; use that relation to explicitly calculate

1
f x"(log x)" dx .
0
Hidden solution: [unvacceSSIBLE vuIp '1¢1']
E15.26 Prerequisites:15.25.Difficulty:*x*. Show identities

1 0
f xXdx= ) n" (=~ 1.291285997...) (15.27)

0 n=1

1 <)
/ x*dx = Z(—l)"“n_” (=~ 0.783430510712...) (15.28)

0 n=1

(Hint: use the Taylor series e?, and substitute z = xlog(x); use the exercise 15.25
above.)
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E15.29 pifficuity:+.Let f : [0,1] — R be Riemann integrable and ¢ :

convex: show that

1 1
cO( /0 f(x))dlx>s fo o(f(x)) dx

This result is known as Jensen’s inequality.

R - R

(15.30)

E15.31 pifficulty:+.Suppose that f : (0,1) — (0, c0) is continuous and decreasing

and fol f@)dt < oo then lim,_orf(r) = 0.

E15.32 pifficulty:+.Fixn € N,n > 1. Let a4, ..., a, € R: then

a; az apn
/ f f Cos(xl+x2+-~~xn)d]xld]x2"'
0 0 0

ztl: a; n . a;
= 2"cos (%) ll:Jl: sm(j)

a as apn
f / / Sin(xl+x2+--'xn)d].x1d]x2"'
0 0 0

. Zi 4G\ . /q
=2”sm( ’21 l)Hsm(j)

dx,

dx,

Other exercises regarding Riemann integration can be found in 13.8, 16.45, 17.8

(part 8).

96Taken from the book by Giaquinta and Modica [8], p. 162 and following.
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8§16 Differentiable functions

Definition 16.1. Let in the following A C R be an open set.
By saying that f : A — R is differentiable we mean differentiable at any point.
Recall that, given k > 1 integer, f is of class C¥ if f is differentiable k-times and the
k-th derivative f¥) is continuous; and f is of class C® if f is differentiable infinitely
many times. (Sometimes we may write f € C to signify that f is of class C¥, and
f € C*® ifis of class C*.)

To address the following exercises, it may be necessary to know some fundamental
results in Analysis and Differential Calculus that may be found e.g. in [22, 4]; specifi-
cally:

+ Lagrange’s Theorem ™7 : Theorem 5.10 in in [22], or [61].

» De I’Hopital’ rule, and corollaries: : Theorem 5.13 in in [22], Sec. 7.12 in [4] or

[24, 59];

+ Taylor’s Theorem, and the possible remainders: Theorem 5.15 in in [22], Chap. 7

in [4], or [66].

Exercises

E16.2 LetI C R be an open interval. Let f : I — R be differentiable, and x,y € I
with x < y. Show that if f'(x) - f'(y) < 0then £ € I exists with x < £ < y such
that f'(§) = 0. Hidden solution:  [uwaccessIsLE vuID '1¢7']

E16.3 Prerequisites:16.2.Note:Darboux properties.

Let A C R be an open set, and suppose that f : A — R is differentiable. We want
to show that, for each interval I C A, the image f’(I) is an interval.

So prove this result. For x,y € I with x < y, let’s define a = f'(x),b = f'(y). Let’s
assume for simplicity that a < b. For any ¢ with a < ¢ < b, there exists £ € I with
x < & < ysuch that f'(§) = c.

(Finally, show that this property actually implies that the image f'(I) of an interval I
is an interval.)

Hidden solution: [unaccESSIBLE vuID '1¢9']

E16.4 Prerequisites:16.3.

Let I C R be an open interval. Let f : I — R be a differentiable function such that
f'(t) # 0 for every t € I: show then that f'(t) has always the same sign.

Hidden solution: [unaccESSIBLE vuID '1cC']

E16.5 Prerequisites:16.3.Difficulty:*.

Find a bounded function f : R — R that maps intervals into intervals, but such that
there does not exist g : R — R differentiable at every point and with f = g’.

(Note that f cannot be continuous, due to the Fundamental Theorem of Calculus.)

Hidden solution: [unAcCESSIBLE UUID '1CF']
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§16 DIFFERENTIABLE FUNCTIONS

E16.6 Supposethat f : R — R be differentiable, with f* = f: prove, in an elementary
way, that that there exists A € R s.t. f(x) = Ae*. Hidden solution: [unaccessisLe vuip
"1CH']

E16.7 Find a differentiable function f : R — R whose derivative is bounded but not

continuous. Hidden solution: [unvaccessIBLE vuIp '1cK']

E16.8 Find a continuous and differentiable function f : [—1,1] — R ™ whose deriva-
tive is unbounded. Hidden solution: [unaccessiBLE vuIp '1cv']

E16.9 pifficulty:+. Describe a function f : R — R that is differentiable and such that
the image of [0, 1] using f” is f'([0,1]) = (-1, 1).

Before looking for the example, ponder on this notions. We remember the Darboux
property 16.3: the image f’'(I) of an interval I is an interval; but this does not say that
the image of f'([0, 1]) should be a closed and bounded interval. If, however, we also
knew that f” is continuous, what could we say of f'([0,1])? So what do you deduce
a priori about the sought example?

Hidden solution: [unvaccesSIBLE vuID '1¢Q']

E16.10 LetI = (a,b) C R be an open interval. Let f : I — R be differentiable: show
that f' is continuous, if and only if for every x

f'x) = lim M )

(5,£) = (x,x),5#t t—s

Hidden solution: [unaccESSIBLE vuID '1cW']

E16.11 Let f be differentiable in the interval (a, b), let x, € (a,b) and xy < a, <

Bus B — xo for n > oo. Show that if the sequence 6":;0 is bounded then
—_— a ,
F 6 = I )

ﬁn —n
Show by example that this conclusion is false if the given condition is not verified.

E16.12 Suppose that a given function f : (a,b) — R is differentiable at every point
of (a, b) except x,, and that the limit lim;_, . f(¢) exists and is finite. Show that f is
also differentiable in x, and that f(xo) = lim,_, ().

E16.13 prerequisites:9.96.Let f,g : R — R be two functions that can be differentiated
at every point. Show that max{f, g} is differentiable, except on a set that is at most
countable. Hidden solution: [uvAcCESSIBLE UUID '1D2'] [UNACCESSIBLE UUID '1D3']

E16.14 Let f : (a,b) — R be differentiable and such that, if f(¢) = 0, then f'(¢) = 0.
Show that the function g(¢) = |f(¢)| is differentiable. Hidden solution: [uwaccessisLe
UUID '1D6']

E16.15 Let p(x) = a,x" + a,_1x"~! + ... + a, a polynomial with all real roots and
coefficients all non-zero. Show that the number of positive roots (counted with mul-
tiplicity) is equal to the number of sign changes in the sequence of coefficients of
p. (Hint. Use induction on n, using the fact that between two consecutive roots of p
there exists a root of p’.)This result is known as Descartes’ rule of signs.

97a.k.a. Mean Value Theorem
981n this sense: the derivative f’(x) exists and is finite for every x € [—1, 1]; at the extremes x = —1, 1
only the right and left derivatives are calculated.
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§16.a Higher derivatives

E16.16 Let f : R — R be continuous and differentiable, and a,b € R with a < b.  [1p9]
Show that, if f'(a) = f'(b), then £ exists with a < £ < b such that

GEION

& =y

§16.a Higher derivatives (2D1]

Exercises

E16.17 Let I be an open interval and x, € I, let f : I — R be differentiable in I and  r1op
such that there exists the second derivative f” in x,: then show that the limit exists

lim fxo+ 1)+ f(xo — 1) — 2f(x0)
£>0 t2

and that it coincides with f”(x).

Find then a simple example of f differentiable in (—1,1) and such that the second
derivative f” in xo = 0 does not exist, but the previous limit exists.

Hidden solution: [unicCESSIBLE UUID '1DF']

E16.18 5Letn > 1be aninteger. Let I be an open intervaland x, € I, let f,g : I - R [1pc)
be functions n—1 times differentiable in the interval, and whose (n—1)-th derivative
is differentiable in x,.

Show that the product fg is differentiable n — 1 times in the interval, and its (n — 1)-
th derivative is differentiable in x,. Write an explicit formula for the n-th derivative
(f2)™ in x, of the product of the two functions, (formula that uses derivatives of
only f and only g).

(If you don't find it, look in Wikipedia at the General Leibniz rule [55]) .

Hidden solution: [vnACCESSIBLE UUID '1DH']

E16.19 pifficuity:*.Letn > 1beaninteger. Let I, Jbe open intervals with x, € I,y, € [1pJ]
J. Letthenbe giveng : I - Rand f : J —» Rsuchthat g(I) CJ, f,gare n—1 times
differentiable in their respective intervals, their (n — 1)-th derivative is differentiable
in xq (resp. yo) and finally g(x,) = yo.

Show that the composite function fog is differentiable n —1 times in the interval and
its derivative (n — 1)-th is differentiable in x,.

Then write an explicit formula for the nth derivative (fog)™ in
X, of the composition of the two functions, (formula that uses
derivatives of f and g).

(If you can’* find it, read the wikipedia page [54]; or, see
this presentation: https://drive.google.com/drive/ folders/
1746bdJ89ZywctaEquIMIGZTRKHWVekhb ).

Hidden solution: [unicCESSIBLE UUID '1DK']

E16.20 Prerequisites:16.19,2.326.Show that the function [1DM]
-1/x
e if x>0
Xx) = 16.21
#(x) {0 if x<0 ( )
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§16 DIFFERENTIABLE FUNCTIONS

is of class C*°, and for x > 0

= (7 S

— | m+n
o \m 1/m! x

n—1\ (n—-1)
m—-1)  (n—m)(m—1)!

whereas ¢ (x) = 0 for each n € N, x < 0.
Proceed similarly to
e VIl if x#0

16.22
0 if x=0 ( )

P(x) = {

again ¢ € C* and %™ (0) = 0 for each n € N; but in this case (x) = 0 < x =
0. Hidden solution: [uNACCESSIBLE UUID '1DN'] [UNACCESSIBLE UUID '1DP'] [UNACCESSIBLE UUID
'1DQ']
E16.23 Let it be given N positive integer. Find an example of a function C* with  [1Dg]
@(x) = 0 for x < 0 while ™ (x) > 0 for0 < n < Nand x > 0.
Hidden solution: uwccessisre vuzp '1ps'] Note however that it cannot be required
that all derivatives be positive, because of exercise 19.2.

E16.24 What can you put in place of ”???” so that the function [1DT]

77 if 0<x<1,
glx)=41 if x>1,
0 if x<0.

is C*?

More generally, how can two C* functions be connected, so that the whole function
is C®? Given fp, f; € C*®, show ™ that there is a function f € C* that satisfies

fx) = folx) if x<0 ,
fx) =) if x>1

Hidden solution: [vnAcCESSIBLE vuID '1DV']

E16.25 pisficuity:+.Let fy, fi : R = R, fy, i € C® with f, f{ > 0and fi(1) > f5(0):  [10w]
then one can interpolate with a function f € C* that satisfies

fx) = folx) if x<0
fx) = filx) if x>1

so that the interpolant has f’ > 0.
What if f1(1) = f,(0)?

Hidden solution: [unaccESSIBLE UUID '1DX']

E16.26 pPrerequisites:16.20. Find an example of function f : R — R with f € C® [z
and such that, setting A = {x : f(x) = 0}, the point 0 will be the only point of
accumulation of A, i.e. D(A) = {0}. Compare this example with Prop. 6.8.4 in the
notes [2]; and with the example 19.7. Hidden solution: [vvAccEsSIBLE vuID '1F0']
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816.b Taylor polynomial

E16.27 Difficulty:*.Note:Hadamard’s lemma.

Let f : R — R be a function of class C*, and such that f(0) = 0. Define, for

def

x # 0, g(x) = f(x)/x. Show that g can be prolonged, assigning an appropriate
value to g(0), and that the prolonged function is C*. What is the relationship between
g¢(0) and f*+1(0)?

Hidden solution: [vnAcCESSIBLE vuID '1F2']

E16.28 prerequisites:16.27.Difficulty:+.Let f : R — [0, 00) be a function of class C*
such that f(0) =0, f(x) > 0 for x # 0, and f”(0) # 0: show that

(x) = Vflx) sex>0
EX= —\/f(x) sex<0

is of class C®. Hidden solution: [vNACCESSIBLE vuID '1F5']

E16.29 pifficulty:x . Given Xy < X; < X, < ... < X, and given real numbers a; j,
(with i, h = 0, ... n) show that there is a polynomial p(x) such that p(x;,) = a;p.

This result is the starting point of the Hermit method of polynomial interpolation, see

[57].

Hidden solution: [vnAcCESSIBLE UUID '1F8']

E16.30 Prerequisites:convex functions.Note:Exercise 1, written exam March 1st, 2010.

Let’s consider the functions f : R — R of class C*, such that for every fixed
n>0,f (") (x) has constant sign (i.e. it is never zero) "%, We associate to each such
function the sequence of signs that are assumed by f, f', f” ....

What are the possible sequences of signs, and what are the impossible sequences?

(E.g. for f(x) = e*, the associated sequence is + + + + + ..., which is therefore a
possible sequence.)

See also the exercise 19.2.

See also the exercises 14.44 and 14.45 on the relationship between convexity and
properties of derivatives.

§16.b Taylor polynomial

Definition 16.31 (Landau Symbols). Let a € R and I be a neighborhood of a. Let
f,g : I - R. We will say that ” f(x) = o(g(x)) for x tending to a” if "'

Ve>0,30>0,x €IA |x—a| <= |f(x)| <elgx)]

This notation reads like ”f is small o of g”.
If g(x) # 0 for x # a, then equivalently we can write

lim@ =

gt " °

99possibly with a simple construction based on example 16.20.
T100We agree that f(®) = f.
101 Consider that J = {x € I : |x —a| < &} is a neighborhood of a.
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§16 DIFFERENTIABLE FUNCTIONS

We will say that ” f(x) = O(g(x)) for x tending to a” if if there is a constant ¢ > 0
and a neighborhood J of a for which Vx € J,|f(x)| < c|g(x)|.
Again, if g(x) # 0 for x # a, then equivalently we can write

lim sup ||£((J)3 ||

<o ,

This notation reads like ”f is big O of g”.
For further information, and more notations, see [50].
This notation is usually attributed to Landau.

In the following for simplicity we consider only the case in which lim,._,, g(x) = 0;

moreover in Taylor’s expansion we always have that g(x) = (x—a)" withn > 1 integer.
102

Remark 16.32. Attention! The symbols ”small 0” and ”big O” are used differently
from other symbols of mathematics. In fact, they can represent different functions, even
in the same context! For example, if we write

sin(x) =x+o(x) , cos(x)=1+o0(x)

the two symbols ”o(x)” on the right and left represent different functions. Particular
care must therefore be taken in showing the properties used in the calculus. When many
of such symbols are present, it is advisable to replace them with placeholder function
symbols, as in the following examples.

Let’s see two examples. Let a = 0 for simplicity.
Example 16.33. We informally state this property.
If n > m > 1 then o(x™) + o(x™) = o(x™).
To prove it, we convert it into a precise statement. First of all, let’s rewrite it like this.
If f(x) = o(x™) and g(x) = o(x™) then f(x) + g(x) = o(x™).
So let’s prove it. From the hypotheses,

lim f(x)x™™ =0and lim g(x)x™™ =0
x—0 x—0

then

lim () + g() = lim 1) + lim g(x) = lim x"—mM +0=0.
x—0 xm x—0 XM x—>0 XM x—0 xn
Example 16.34. We informally state this second property
If n > 1 then o(x” + o(x”)> = o(x™).

We rewrite it like this.

If f(x) = o(x™) and g(x) = o(x" + f(x)) then g(x) = o(x™).

T10250me authors also use the o(1) notation to indicate an infinitesimal quantity for x — a, but this can
generate confusion .
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816.b Taylor polynomial

We note that, for x # 0 small, X" + f(x) is not zero, as there is a neighborhood
in which |f(x)| < |x"/2|. As a hypothesis we have that lim,_q f(x)x™" = 0 and
lim,_, o g(x)/(x™ + f(x)) = 0 then

n
o 8 _ 800 X"+ f()
x=0 X" x-0x"+ f(x) x"
but )
. g(x
lim ———F—— =0
20 X7+ f(x)
while 0
x—0 h
Exercises
E16.35 Let a = 0 for simplicity. Rewrite the following relations, and prove them. [1FG]

* Ifn>m > 1then
o(xM+0(x™) = 0(x™), o(x™)+0(x™) = 0(x"), x"+0(x™)= 0(x™)
* If n > m > 1then
o(x™) + o(x™) = o(x™), x" + o(x™) = o(x™).

e Fornm>1

x"0(x™) = O(xn+m)
x"o(x™) = o(x"t™)
o(xmo(x™) = O(x"*™)
o(xMO(x™) = o(x"t™)

y y
/ O(x") dx = O(yn+1) f O(xn) dx = O(yn+1)
0 0

E16.36 Write the Taylor polynomial of f(x) around x, = 0, using ”Landau’s calculus  [1FJ]
of o(x™)” seen above.

f(x) = p(x)+o(x*)

(cos(x))? = +o(x%)
(cos(x))? = +o(x%)
cos(x)e* = +o(x%)
cos(sin(x)) = +o(x*%)
sin(cos(x)) = +o(x%)
log(log(e + x)) = +o(x?)
(1 +x)Vx = +o(x*)

(A little imagination is required to address the last two. To reduce the computations,
develop the last two only up to o(x?)).

Hidden solution: [uvAcCESSIBLE UUID '1FK']
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§16 DIFFERENTIABLE FUNCTIONS

E16.37 Find a rational approximation of cos(1) with error less than 1/(10!) ~ 2.10~7
Hidden solution: [uNACCESSIBLE UUID '1FN']

E16.38 Write Taylor’s polynomial of (1 + x)* with « € R\ N. (Infer a generalization
of the binomial symbol (z ). The associated Taylor series is called binomial series,
it converges for |x| < 1.

Hidden solution: [unaccESSIBLE vuID '1FQ']

E16.39 prerequisites:15.20.Note:From an idea in Apostol’s book [3], Chapter 7.3.Write Taylor’s poly-
nomial (around x, = 0) for —log(1 — x), integrating

1 x"
=14+x+x2+ .. +x"1+

1-x) 1-x)

and compare the “remainder”

(16.40)

X tn
— _dt (16.41)
L(hﬁ

thus obtained with with the ”integral remainder” of f(x) = —log(1—x) (as presented
in Exercise 15.20).

Proceed similarly for arctan(x), integrating
VA+x)=1-x2+x*+ ..+ (=1)"x¥ — (=1)"x?"*2/(1 + x*) . (16.42)
Hidden solution: [unAcCESSIBLE UUID '1FS']

E16.43 prerequisites:15.20,16.39.Difficulty: . Evaluate for which r > 0 we have that the
Taylor remainder of f(x) = —log(1 — x) is infinitesimal in n, uniformly for |x| < r;
this, using the remainder seen in (16.41), using the integral remainder or using the
Lagrange remainder.

Hidden solution: [unAcCESSIBLE vuID '1FV']

See also exercise 15.20.

§16.c Partial and total derivatives, differentials
Exercises

E16.44 Check that the following partial derivatives exist, and compute them:

;—x(4xy + 3x%y — zyz) , g—y(4xy + 3x%y — zyz)

o) Zex+W| o) Zex+W|
ax1+x2ly| * 8z 1+ x2|y|

Hidden solution: [unAcCESSIBLE UuID '1FY']

E16.45 Prerequisites:Riemann integral,i5.2.Let ] C R open interval with 0 € I. Given
. e} . .
f = f(x,y) : I x[0,1] - R continuous, and such that also P f exists and is
X
continuous, set

1
gm=ffmwm,
0
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816.c Partial and total derivatives, differentials

show that g is of class C, and that
Lo
#= | Frend.

Hidden solution: [UNACCESSIBLE UUID '1G0'] [UNACCESSIBLE UUID '1G1']

E1646 Prerequisites:Riemann integral, 13.9, 13.8, 16.45.Let

b(t)
h(t) = f(t,z)dz
a(t)

where a, b, f are C1 class functions: show that 4 is class C! and calculate the deriva-
tive.

Hidden solution: [unAcCESSIBLE UUID '1G3']

E16.47 Are the following functions differentiable in (0, 0)?

if
fl(x,y)={“y , x>0 £6y) = Va2 + )2

x+ye ™ ifx<0’
£(x,y) = (arctan(y + 1)), fa(x, y) = max{x?,y?} .
Hidden solution: [unicCESSIBLE UUID '1G5']

E16.48 prerequisites:2.326.Let f : R*¥ — R be of class C®. Recall that, by Schwarz’s
theorem, permutiation of the order of partial derivatives does not change the result.
Let N(n, k) be the number of partial (potentially different) derivatives of order n:
show that N(n, k) = ("ZI_CII) (which is a polynomial with integer coefficients in the
variable n, of order k — 1). Hidden solution: [unaccessisLe vuip '167']

E16.49 Let W C R" be an open nonempty set, fix x € W. Letthen¢ : W — R of

class C2. Let Vi)(x) be the row vector of coordinates aa—zp(i) (which is the gradient
X
of 1, a special case of the ”Jacobian matrix”); we abbreviate it to D = V(x) for

?
. 1(x); show the

simplicity; let H be the Hessian matrix of components Hy, j =

validity of Taylor’s formula at the second order
— — 1
Pp(x +v) =9P(X) + Dv + EUtHU + o(|v]?)
(note that the product Dv is a matrix 1 X 1 that we identify with a real number, and
similarly for v*Hv).

E16.50 Prerequisites:16.49.Let V, W C R" be open nonempty sets, and G : V —» W
of class C2. Fixy € Vand X = G(y) € W. Suppose that ) : W — R s of class C?;
define ¢ = 9oG, then compare Taylor’s second-order formulas for ¢ and ¢ (centered
in X and y, respectively). Assuming also that G is a diffeomorphism, verify that

« X is a stationary point for 9 if and only if y is stationary point for 3,

+ and in this case the Hessians of ¢ and 1 are similar (i.e. the matrices are equal,
up to coordinate changes).

Hidden solution: [unvaccESSIBLE vuID '1GC']
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§16 DIFFERENTIABLE FUNCTIONS

§16.d Implicit function theorem

We will use the Implicit Function Theorem, in the multivariable version (Theorem 7.7.4
in [2]). We recall it here for convenience, with some small changes in notations.

Theorem 16.51 (Implicit function theorem in R"). Let f : A C R" — R be contin-
uous, with A open, and let X = (X ,X,,) € A be such that 9, exists in a neighborhood
of X, is continuous in x and 0 f(x) # 0. Define a = f(x).

There is then a ”cylindrical” neighborhood U of x

U=U' xJ

where
U’ =B(x,a)

is the open ball in R*~! centered in X of radius a > 0, and
J =0 =B Xn + )

with 8 > 0. Inside this neighborhood UN f~'({a}) coincides with the graph x,, = g(x"),
with g : U’ — J continuous.
This means that, for every x = (X', x,,) € U, f(x) = a if and only if x,, = g(x').
Moreover, if f is of class C¥ on A for some k € N*, then g is of class C* on U’ and

of

= (x', g(x"))
Bn=-% " 7 yeuvil<i<n—-1 . (16.52)
o 91 (', gx)
ox,
Exercises

E16.53 Consider the following C* function of 2 variables
fey)=x+y*-1

Check that {f = 0} = {(x,y) € R? : f(x,y) = 0} is not empty; then, for each point
of the plane where f vanishes, discuss whether the implicit function theorem can be
applied, and therefore if the set { f = 0} is locally graph of a C* function. Also study
the set {f = 0}: is it compact? How many connected components are there?

(Please note what is shown in 16.63).

Hidden solution: [uNACCESSIBLE vUID '1GG']

E16.54 Repeat the study of the previous exercise 16.53 for the function
f(x,y) = sin(x + y) + x?

Hidden solution: [UNACCESSIBLE UUID '1GK'] [UNACCESSIBLE UUID '1GN']

E16.55 Note:Exercise 2, Written exam, June 30th 2017.Repeat the study of the previous exercise for
the function
f(x,y) =1+4x + ey +y*

Show that the zero set is not compact.
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816.d Implicit function theorem

= 2 o 2 s
Figure 5: Figure for exercise 16.57.

E16.56 Let A C R3 be an open set and suppose that f,g : A — R is differentiable,
and such that in py = (xg,V9,29) € A we have that Vf(py), Vg(p,) are linearly
independent and f(py) = g(py) = 0: show that the set E = {f = 0,g = 0} is a curve
in a neighborhood of pj.

(Hint: consider that the vector product w = V f(pg) X Vg(py) is nonzero if and only
if the vectors are linearly independent — in fact it is formed by the determinants of
the minors of the Jacobian matrix. Assuming without loss of generality that w; # 0,
show that E is locally the graph of a function (x,y) = y(z).)

Hidden solution: [unAcCESSIBLE UUID '1GR']

E16.57 Note:Written exam, July 4th 2018.The figure 5 shows the set E = {(x,y) : ye* + xe¥ =
1}.
Properly prove the following properties:
(i) at every point (xg,y,) € E the assumptions of the implicit function theorem
are satisfied;

(i) En{(x,y) : x > 0} coincides with the graph, in the form y = f(x), of a single
function f defined on (0, +o0);

(iii) E is connected;

(iv) limy_ 1o f(x) =0.
(v) Show (at least intuitively) that x, > 0 exists with the property that f is decreas-
ing for 0 < x < X, increasing for x > x,.

Hidden solution: [unAccESSIBLE vuID '1GV']
E16.58 Let E be the set of horizontal lines

E={(x0):xeR}U|( J{(x1/n): xR}

n=1
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§16 DIFFERENTIABLE FUNCTIONS

Find a function f : R? = R, f = f(x,y) class C! such that E = {(x,y) : f(x,y) =
0}

Prove that necessarily d,,f(0,0) = 0.

Set (x,y) = (0,0). Note that there is a function g : R — R such that g(0) = 0
and f(x,g(x)) = 0! In fact, the function g = 0 is the only function with such
characteristics. Thus part of the thesis in the implicit function theorem is satisfied.

So explain precisely why the thesis of the implicit function theorem is not satisfied.

§16.d.a Extensions

Now let’s see some variations of the ”standard” theorem.

Exercises

E16.59 pPrerequisites:13.28. [1GX]
We work in the hypotheses of the theorem 16.51. Show that, if f(-,y) is Lipschitz of
constant L for every fixed y, i.e.

|f (a1, y) = fOe I S LIx| — x3| Vxp,x, € U,y €7
(and L > 0 does not depend on x3, x5, ), then g is Lipschitz of constant L'. What is
the relationship between the constants L and L'?
Similarly if f is Holderian.
Hidden solution: [uNACCESSIBLE UUID '1GY']
E16.60 In the same assumptions as the previous theorem 16.51, show that there exist  [1cz]

¢ > 0 and a continuous function g : V — Rwherel = (a—¢,a+¢)and V = U’ X I
is open in R", such that

Vix',a) eV , (xX,gx',a)eU e f(x’,g(x’,a)) =a . (16.61)

Vice versa if x € U and a = f(x) and a € I then x,, = g(x', a).

Note that the previous relation means that, for each fixed x’ € U’, the function
8(x',-) is the inverse of the function f(x’,-) (when defined on appropriate open in-
tervals).

So, moreover, the function g is always differentiable with respect to a, and the partial

derivative is
1

Sa=
% 5o [0 8, a)

The other derivatives instead (obviously) are as in the theorem 16.51.

The regularity of § is the same as g: if f is Lipschitz then g is Lipschitz; if f € CX(U)
then g € CK(V).

Hidden solution: [unaccESSIBLE vuID '1HO']

E16.62 In the same hypotheses of the exercise 16.60, we also assume that f € C*(A). [1r1]

* We decompose y = (', y,), € R" as we did for x. We define the function
G:V ->R"as G(y) = (y,8y)). Let W = G(V) be the image of V, show
that W C U and that W is open.
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816.d Implicit function theorem

» Show thatis G : V — Wis a diffeomorphism; and that its inverse is the map
F(x) = (X', f(x)).
+ Let’s define f = foG. Show that f(x) = x,,.

(This exercise will be used, together with 16.50, to address constrained problems, in
Section §16.e). Hidden solution: [unAcCESSIBLE vuID '1H2']

E16.63 pPrerequisites: 7.61, 7.62, 9.96, 9.97, 16.24, 16.51, 20.7 and 20.14. [1H3]
Difficulty:*x*.
For this exercise we need definitions and results presented in the Chapter §20.

Let r > 1 integer, or r = co. Let F : R? — R of class C”, and such that VF # 0 at
every point F = 0.

We know, from 7.61, that {F = 0} is the disjoint union of connected components,
and from 7.62 that every connected component is a closed.

Show that, for every connected component K, there is an open set A D K such that
K = An{F = 0}, and that therefore there are at most countably many connected
components.

Show that each connected component is the support of a simple immersed curve of
class C", of one of the following two types:

« the curve is closed, or

* The curve y : R — R? is not closed and is unbounded (i.e. lim,_, ;o [y(¢)| =

00).

The first case occurs if and only if the connected component is a compact.

(x,8(x))

(xi 1)

=

. . X; a
Hidden solution: [vNACCESSIBLE UUID '1H'] [UNACCESSIBLE UUID '1H5'] l
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§16 DIFFERENTIABLE FUNCTIONS

§16.e Constrained problems

Definition 16.64. Let now A C R" an open non-empty set, let f,¢ : A — R be real
functions of class C! on A. Having fixed a € R we then define the level set

E,={x€A: p(x)=a}

we assume that E, is non-empty, and that Vo(x) # 0 for each x € E,,.
We call local minimum point of f bound to E,, a point of E, that is a local minimum
for f|g,; and similarly for maxima.

To solve the following exercises it may be useful to apply the results seen in 16.49,
16.50, 16.62.

Exercises

E16.65 Prerequisites:16.64,16.62. Let f, @ be class C! in the open set A, and let X be a
local minimum point for f bound to E, (so ¢(x) = a). Show that 1 € R exists such
that Vf(x) + AVe(x) = 0; this A is called the Lagrange multiplier.

Hidden solution:  [unaccessIsLE vuIp '1H9']
E16.66 Prerequisites:16.64,16.50,16.65.Let f, ¢ be of class C? in the open set A, and let

X be a minimum point for f constrained to E,; let A be the Lagrange multiplier; let’s
define h = f(x) + Ap(x), then

Yu,v-Vp(x) =0=v-Hv >0

where H is the Hessian matrix of A.
Hidden solution: [uvACCESSIBLE UUID '1HC']

E16.67 In the same hypotheses, we see a vice versa”. Let f,p : A — R be of class
C? in the open set A, and let X € E, and 1 € R be such that Vf(X) + AVe(X) = 0;

suppose that
Yu,v-Ve(x) =0=v-Hv >0

where
h(x) = f(x) + Ap(x)

and H is the Hessian matrix of 4 in X. Show that X is a local minimum point for f
bound to E,.

Hidden solution: [unAcCESSIBLE UUID '1HF']

§16.e.a Constraints with inequalities
Now let’s consider a different kind of constraint.

Definition 16.68. Let
E=xeA:¢px) <ad ;

we always assume that F, is non-empty and that V(x) # 0 for each x € E,.
We call local minimum point of f bound to F, a point of F, that is of local minimum
for f|g,; and similarly for maxima.
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§16.e Constrained problems

Exercises

E16.69 prerequisites:16.68,16.64.Show that 0F, = E, and that F, coincides with the
closure of its interior. (Topological operations must be performed within A, seen as
a topological space!)

E16.70 prerequisites:16.68.Show that a necessary condition for x € A to be a local
minimum of f bound to F,, is that,
+ either ¢(x) < aand V f(x) = 0,
e or p(x) = aand Vf(x) + AVp(x) = 0 with 1 > 0.
These are the Karush—Kuhn-Tucker conditions.
Hidden solution: [unacCESSIBLE UUID '1HJ']
E16.71 prerequisites:16.68.In the case n = 1, suppose A is an open interval, show that

if (x) = a and f'(x)¢'(x) < O then the point x is a local minimum point for f
bound to F,.

E16.72 prerequisites:16.68.Find a simple example in the case n = 2 where the point x
is not a local minimum for f bound to F,, but ¢(x) = a and Vf(x) + AVp(x) = 0
with 1 > 0.

Hidden solution: [unaccESSIBLE vuID '1HN']
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§17 LIMITS OF FUNCTIONS

8§17 Limits of functions

Definition 17.1. Consider a set A, a function f : A — R and a sequence of functions
fn 1 A = R. We will say that f,, converges to f pointwise if

Vx €A, lim f,(x) = f(x)
n—>oo
We will say that f,, converges to f uniformly if
Ve>03IN e N,Vn > N,Vx € A, |f,(x)— f(x)| <¢€

Further informations on these subjects may be found in Chap. 6 of [2], Chap. 11 in
[4], or Chap. 7 of [22].

Definition 17.2. Let (X;,d,) and (X,,d,) be metric spaces. Let F be a family of
functions f : X; — X,, we will say that it is an equicontinuous family if one of these
equivalent properties holds.

*Ve>030>0VfeF
Vx,y € Xy, di(x,y) £ 5= dy(f(%), f(y) <¢

* There exists a a fixed monotonically weakly increasing function w : [0, c0) —
[0, 0], for which lim;_, o, w(t) = w(0) = 0 (w is called ”continuity modulus”
103) such that

Vf e F, Vx,y € Xy, dp(f(x), () < w(dy(x,))) - (17.3)
* There exists a fixed continuous function w : [0, c0) — [0, o] with w(0) = 0 such
that (17.3) holds.

(The result 13.11 can be useful to prove equivalence of the last two clauses.)

Exercises

E17.4 Note:This result is known as ”Dini’s lemma”.
Let (X, d) be a metric space, let I C X be a compact set, and suppose that f, f,, :
I - R are continuous and such that f,(x) \.,, f(x) pointwise (i.e. for every x € I
and n we have f(x) < f,.1(x) < f.(x) and lim,, f,(x) = f(x)). Show that f,, — f
uniformly.

Hidden solution: [uNACCESSIBLE UUID '1HT']
Hidden solution: [unAccESSIBLE UUID '1HV']
In following exercises we will see that, if even one of the hypotheses fails, then there
are counterexamples.

E17.5 Find an example of continuous and bounded functions f,, : R — R such that
Jfn(%) i, 0 pointwise, but not f,, — 0 uniformly.
Hidden solution: [unaccESSIBLE UUID '1HX']

E17.6 Find an example of continuous and bounded functions f;, : [0,1] — [0, 1] such
that f,(x) —,, 0 pointwise but not f,, — 0 uniformly.

Hidden solution: [unicCESSIBLE vuID '1HZ']

E17.7 Find an example of functions f,, : [0,1] — [0,1] continuous, bounded, and

1035ee also 13.15, regarding the notion of ”continuity modulus”.
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such that f,(x) \i,, f(x) pointwise to f : [0,1] = [0, 1] (i.e. for every x and n we
have 0 < f,,1(x) < f,(x) £ 1 and lim, f,(x) = f(x)) but f is not continuous and
the convergence f,, — f is not uniform.

Hidden solution: [unvaccesSIBLE vuID '1J2']

E17.8 LetI C R be an interval. Which of these classes F of functions f : I — R are
closed for uniform convergence? Which are closed for pointwise convergence?

1.

E17.9

The continuous and monotonic (weakly) increasing functions on I = [0, 1].
Hidden solution: [uNACCESSIBLE vuID '1J4']

. The convex functions on I = [0, 1].

Hidden solution: [unvAccEsSSIBLE vuIp '1J5']

Given w : [0, ) — [0, 00) a fixed continuous function with w(0) = 0 (which
is called ”continuity modulus™), and

F={f:10,1] >R 1 Vx,y,|f(x) - fFOI < w(lx - yD}

(this is called a family of equicontinuous functions, as explained in the definition
17.2)

Hidden solution: [unvaccEsSIBLE vuIp '1J6']

Given N > 0 fixed, the family of all polynomials of degree less than or equal
to N, seen as functions f : [0,1] — R.

Hidden solution: [vnacCESSIBLE vuID '1J7']

The regulated functions on I = [0,1]. 7104

Hidden solution: [unvACCESSIBLE vuIp '1J9']

The uniformly continuous and bounded functions on I = R.

Hidden solution: [vnicCESSIBLE UuID '1JB']

The Hoelder functions on I = [0, 1], i.e.

{£:10,11 > R|3b>0,3a € (0,1] ¥x,y € [0,1],1f(x)~ ()| < blx—y|]

Hidden solution: [uNACCESSIBLE UID '1JC'] [UNACCESSIBLE UUID '1JD']

The Riemann integrable functions on I = [0, 1].
Hidden solution: [unaccEssTBLE vuID '1JF']

We wonder if the previous classes F enjoy a “rigidity property”, that is, if from

a more “weak” convergence in the class follows a more ”strong” convergence. Prove
the following propositions.

1.

Let f,, f : I — R be continuous and monotonic (weakly) increasing functions,
defined over a closed and bounded interval I = [a, b]. Suppose there is a dense
set J in I with a,b € J, such that Vx € J, f,,(x) —, f(x), then f, -, f
uniformly. Hidden solution: [uvaccessisLe vuip '1J8']

104Regulated functions f : I — R are the functions that, at each point, have finite left limit, and finite
right limit. See Section §12.b.
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§17 LIMITS OF FUNCTIONS

2. Let A C R be open interval. Let f,, f : A — R be convex functions on A.
If there is a set J dense in A such that Vx € J, f,,(x) —, f(x), then, for every
[a,b] C A, we have that f, —, f uniformly on [a, b].

Hidden solution: [unaccessisLe vuD '177']

3. Let f,, : I - Rbea family of equicontinuous functions, "'°° defined on a closed
and bounded interval I = [a, b], and let w be their modulus of continuity. If
there is a set J dense in [a, b] such that Vx € J, f,,(x) —, f(x), then, f extends
from J to I so that it is continuous (with modulus w), and f,, —, f uniformly
on [a, b].

Hidden solution: [uNvACCESSIBLE vuIp '1JK']

4. Let f,,f : I — R be polynomials of degree less than or equal to N, seen
as functions defined on an interval I = [a, b] closed and bounded; fix N + 1
distinct points @ < x5 < X; < X, < ... < Xy < b; assume that, for each

X;, fu(x;) =5 f(x;): then f,, converge to f uniformly, and so do each of their
derivatives DX f, —, DX f uniformly.

Hidden solution: [vnACCESSIBLE uuID '1Ji']

Also look for counterexamples for similar propositions, when applied to the other
classes of functions seen in the previous exercise.

E17.10 Prerequisites:17.2, 17.8 subpoint 6.Difficulty:*.

If f,, f : I - R are uniformly continuous on a set I C R, and f,, —, f uniformly
on [, then f is uniformly continuous, and the family (f,),, is equicontinuous.

Hidden solution: [unicCESSIBLE vuID '1JP']

E17.11 Let f : R - Randlet g, : R — R be the translations of f, defined (for
t € R) by g,(x) = f(x —t). Show that g; tends pointwise to f fort — 0, if and
only if f is continuous; and that g, tends uniformly to f for t — 0, if and only if f is
uniformly continuous.

Hidden solution: [unaccESSIBLE UUID '1JR']

E17.12 LetI C R be an open set, and let £ be an accumulation point for I 1% | Let

Jfm + I = Rbe asequence of bounded functions that converge uniformly to f : I —
R when m — 0. Suppose that, for every m, there exists the limit lim,_, ; f,(x),
then

lim lim f,(x) = lim lim f,(x)

m—0o0 X—>X X=X m—>oo
in the sense that if one of the two limits exists, then the other also exists, and they
are equal. (The above result also applies to right limits or left limits.)

Show with a simple example that, if the limit is not uniform, then the previous equal-
ity does not hold.

Hidden solution: [unaccessrsre vurp 1017 (See also the exercise 6.8).

E17.13 LetI C R be a compact interval, let f,,, f : I — R be continuous. Show that
the following two facts are equivalent.

105 Definition is in 17.2
196 1ncluding also the case where I is not upper bounded, and £ = +oo0; or the case where I is not lower
bounded and X = —o0.
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§17.a On Ascoli-Arzela’s Theorem

a. For every x € X and for every sequence (x,,), C I for which x,, —, X, we have
limy,, o fn(x) = f(X);

b. f, =, f uniformly on I.

Then find an example where I = [0, 1), the first point holds, but f,, does not tend

uniformly to f.

Hidden solution: [vnAcCESSIBLE UuID '1JW']

§17.a On Ascoli-Arzela’s Theorem

Now we’ll see some exercises that reconstruct the famous Ascoli—Arzela Theorem.

Exercises

E17.14 Prerequisites:17.8 subpoint 6,17.10. LetICR be a subset. Let X be the set of
functions f : I - R bounded and uniformly continuous. We equip X with distance
doo(f,8) = |If — glles- Show that the metric space (X,d,) is complete. Hidden
solution: [unaccessiaie vurp '1Jv'] In particular, X is a closed vector subspace of the
space Cp(I) of continuous and bounded functions.

E17.15 Prerequisites:17.2,17.8.6,17.10.Difficulty:**.

Define (X, d,) as in the previous exercise 17.14. Fix now F C X a family of func-
tions, suppose J is totally bounded (as defined in 9.110): Show then that the family
F is equicontinuous.

Hidden solution: [unAcCESSIBLE vuID '1K1']

E17.16 Prerequisites:17.2,9.115, 17.9.3.Difficulty:*.

Let now I C R be a closed and bounded interval. Let f,, : I — R continuous
functions, and suppose that the sequence (f,) is equicontinuous and bounded (i.e.
sup, [[full < 00). Show that there is a subsequence f,, that converges uniformly.

Hidden solution: [unacCESSIBLE UUID '1K3']

E17.17 Prerequisites:17.2,9.110,9.121,17.16,17.15.Difficulty:**.Note:Aversion of Ascoli-Arzeld’s the-

orem.

Let I C R be a closed and bounded interval. Let C(I) be the set of continuous
functions f : I - R. We equip C(I) with distance d,(f,g) = ||f — &llco- We know
that metric space (C(I), d,) is complete.

Let ¥ C C(I): the following are equivalent.

1. Fis compact

2. Fis closed, it is equicontinuous and bounded (i.e. sup e Ifllee < 0).
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§18 POWER SERIES

8§18 Power series [1K6]

All definitions and theorems needed to solve the following exercises may be found in
Chap. 6 of [2], Sec. 11.6 in [4], or Chap. 8 of [22].

Exercises

E18.1 A power series Z:;O a,x* has a positive convergence radius, if and only if, [1k7]
3¢ > 0 for which |a,| < €* for every k > 1.
Hidden solution:  [vnaccessIBLE vUID '1K8']

E18.2 Let ¢ be complex numbers, and a; = |ci|. Note that power series Z:’:O aiz® ko

and Z:;O ¢z have the same radius of convergence R.

Setting, for t > O real, f ) = Z:; o aktk, note that this formula defines a monotonic

function f : [0, 00) = [0, o0]; show that the radius of convergence R coincides with
the upper bound of ¢ > 0 such that f(t) < .

Hidden solution: [vnsccessisLe vuip '1x8'] Hidden solution: [unvAccessIBLE vuip '1xc']

E18.3 Prerequisites:G.?O.GiVeH f(t) = ZZO:O aktk with aj > 0, such that the radius of  r1xp3
convergence is r > 0, show that lim,_,,_ f(¢t) = f(r). Hidden solution: [unaccessiBLE
UUID '1KF']

E18.4 Find two examples of series f(t) = Z:’:O at® with a; > 0 and with radius of ke
convergence r positive and finite, such that

* f(r) < oo
c fr)=c

Hidden solution: [unAcCESSIBLE UUID '1KH']

E18.5 Find an example of a series f(t) = Z:’:O ait® with a; € R and with radius of ~ [1kJ]
convergence r positive and finite, such that the limit lim,_, ,_ f(t) exists and is finite,
but the series does not converge in t = r.

Hidden solution: [uNACCESSIBLE UUID '1KK']
Note that (by Abel’s lemma) if the series converges in t = r then the limit lim;_, ,_ f(¢)
exists and lim;_, _ f(t) = f(¥).

E18.6 Letb € R, n € N. Assuming that f(t) = ZZ’ZO a;t* with radius of convergence  rixm]
r positive and ¢ € (—r, r), determine the coefficients ay so as to satisfy the following
differential equations.,

f'(®) = f(t) and f(0) = b,

f'(t) = t2f(t) and f(0) = b,

f"(t) = 2f(¢) and f(0) = b, f'(0) = 0,

L7 (0) + f/(6) + t£(t) = 0 and £(0) = b, f'(0) = 0,

2O+t () +(2—m?)f(t) = 0m > 2integer, f(0) = f'(0) = ... f"D =
0,and f(™ = b,

i s

(The last two are called Bessel equations). Hidden solution: [uniccESSIBLE UUID '1KP'] [UNACCESSIBLE
UUID '27G']

See also the exercises 19.3, 23.20, 23.22 and 23.19.
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§18.a Sum and product, composition and inverse

§18.a Sum and product, composition and inverse
Exercises

E18.7 prerequisites:18.2.Consider power series

F09= Y apx, g = Y byx™,
n=0 m=0

with non-zero radius of convergence, respectively r¢ and r.

Show that the product function h(x) = f(x)g(x) can be expressed in power series

h(x) = Z cxk
k=0

where
k

Cr = Z Cljbk_j 5
Jj=0
with radius of convergence 1, > min{rs,r,}. (Note the similarity with Cauchy’s
product, discussed in section §6.c.c)
Can it happen that r, > min{r, r,}?

Hidden solution: [uvAcCESSIBLE UUID '1KR']

E18.8 Prerequisites:18.14Difficulty:*.Let g(Z) = Zz=0 bmzm with bo = g(O) ?é 0. Ex-
press formally the reciprocal function f(x) = 1/g(x) as a power series and calculate
the coefficients starting from the coefficients b,,. If the radius of convergence of g is
non-zero show that the radius of convergence of f is non-zero and that f(x) = 1/g(x)
where the two series f(x), g(x) converge. Hidden solution: [unaccESSIBLE wuID '1KT']

E18.9 Prerequisites:18.2,16.19.Difficulty:*.

Consider the power series

=Y ax , g =Y bpx™,
m=0

n=0

with non-zero radius of convergence, respectively r; and r,. Suppose g(0) = 0 = by.
Let Ir,I; C C be disks centered in zero with radii less than ry and r,, respectively:
the previous series therefore define functions f : Iy — Cand g : I, - C. Up to
shrinking I, we assume that g(Ig) C I.

Show that the composite function h = fog : I, — C can be expressed as a power
series h(x) = EZ‘;O cixk (with radius of convergence at least Iz). Show how coef-
ficients c; can be computed from coefficients ay, by. Hidden solution: [uviccessiBLE
UUID '1KW'] [UNACCESSIBLE UUID '1KX'] [UNACCESSIBLE UUID '1KY']

E18.10 pifficulty:+.Let g(z) = Z::o b,z™ with non-zero radius of convergence r,.

Letl, C C be a zero-centered disk of radius less than Iy SO we defined a function
g : I - C. We assume g(0) = 0 and g'(0) # 0. Assuming that the inverse

f(» = g~'(y) can be expressed in Taylor series f(x) = Y° a,x", compute the

n=0
coefficients of the series of f starting from those of g.
Hidden solution: [unaccessIsLe vuip '1mo']
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§18 POWER SERIES

E18.11 Prerequisites:18.10.Difficulty:**.

Defining f(x) = Z:’: 0 a, x" where the coefficients a, were derived in the previous

exercise 18.10, Try to show that the radius of convergence f is positive. ™7

§18.b Exp,sin,cos
Exercises

E18.12 prerequisites:18.2,18.7, 5.7, 5.8.1t is customary to define

(o]
ef = Z
k=0

for z € C. We want to reflect on this definition.

| —

k
!Z

=

* First, for each z € C, we can actually define

o]

f2)= HZ

k=0
(Note that the radius of convergence is infinite — as it easily occurs using the
root criterion 6.22).
+ We note that f(0) = 1; we define e = f(1) which is Euler’s number'%
* Show that f(z + w) = f(z)f(w) for z,w € C.

* It is easy to verify that f(x) is monotonic increasing for x € (0, o); by the
previous relation, f(x) is monotonic increasing for x € R.

+ Then show that, for n,m > 0 integer, f(n/m) = "™ (for the definition of
e"'™M see 5.7).

« Deduce that, for every x € R, f(x) = e* (for the definition of e* see 5.8)
Hidden solution: [unAccESSIBLE UuID '1M)']

E18.13 Prerequisites:6.70.

Given z € C, show that
li (1+3)N— z 18.14
im N = e (18.14)

N-oo
and that the limit is uniform on compacts sets. Hidden solution: [unaccessisLe vuip
'1M6']

E18.15 If z = x + iy with x,y € R, then we can express the complex exponential
as a product e? = e*e"”Y. Use power series developments to show Euler’s identity
e =cosy+isiny.

Hidden solution: [unvaccESSIBLE vuID '1M8']

elyye~iy . ely_e~iy
, siny =

E18.16 Conversely, note then that cosy = >
1

E18.17 Use the above formula to verify the identities

107 The proof can be found in Proposition 9.1 on pg 26 in Henri Cartan’s book [7].
198K nown as numero di Nepero in Italy.
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§18.c Matrix exponential

sin(x + y) = cos xsiny + cos ysinx

cos(x +y) = cos x cosy — sin ysin x

Hidden solution: [unvaccESSIBLE vuID '1MC']

E18.18 We define the functions hyperbolic cosine ™%
e +eV
hy= ———
coshy 5
and hyperbolic sine
inh ey —e™V
sinhy = ———

* Verify that
(coshx)? — (sinhx)? =1

(which justifies the name of “hyperbolic”).

* Prove the validity of these power series expansion

— Lo, 1 a 15
cosh(x)_1+§x +Ex +ax + ...

: _ 1,1 s 15
smh(x)—x+§x +§x +ﬁx + ...

Check that
cosh’ = sinh , sinh’ = cosh

Check the formulas
sinh(x + y) = cosh x sinh y + cosh y sinh x

cosh(x + y) = cosh x cosh y + sinh ysinh x .

§18.c Matrix exponential

Definition 18.19. We define the exponential of matrices as

[¢3]

exp(4) = ),

n=0

An
n!

where we agree that A° = 1, the identity matrix.

Exercises

E1820 Prerequisites:Section . §11.d,11.35, 11.43, 11.39, 18.13.

We equip the space of the matrices C"*" with one of the norms seen in Section §11.e.

» Show that the series Z;:’: OAk/ k! converges.

T1095ee Wikipedia page “Derivazione delle funzioni iperboliche” [37] which explains in what sense y is an
”angle”.
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§18 POWER SERIES

» Show that N
exp(4) = lim (u+A/N) (18.21)
N-o0

where [ is the identity matrix in R">*"; and that convergence is uniform in every
compact neighborhood of A. (Hint: make good use of the similar result 18.13.)

Hidden solution: [unACCESSIBLE UUID '1MH']
E18.22 If A is invertible then [1MJ]
Aexp(B)A™! = exp(ABA™Y)

E18.23 The derivative of [1MK]
t € R — exp(tA)

is A exp(tA). Hidden solution: [unaccEssIBLE vUTD '1114']
E18.24 If A, B commute, then [1MN]
Aexp(B) = exp(B)A , exp(A + B) = exp(A) exp(B) .

In particular exp(A) is always invertible and its inverse is exp(—A).

Hidden solution: [unacCESSIBLE UUID '1MP']

E18.25 Let [1MQ]
1 0 0 1
a=(5 o)+ 2=(o o
exp(A)exp(B) , exp(B)exp(A) , exp(A+B) ;

You will get that they are all different from each other. Hidden solution: [unaccessisLe
UUID '1MR']

compute

E18.26 If A, B then the directional derivative of exp at the point A in the direction Bis  [1vs]
Bexp(A), i.e.

d
I exp(A + tB)|;—o = Bexp(A) .

E18.27 pifficulty:+.Show that [1MT]
det(exp(A)) = exp(tr(A))
Hint: use Jacobi’s formula 23.14 to calculate the derivative of det(exp(tA)). Use the

previous result 18.23 — see also 22.38. Another proof can be obtained by switching
to Jordan’s form (using 18.22).

Hidden solution: [vnAcCESSIBLE vuID '1mMv']

E18.28 pifficuity:+.In the general case (when we do not know if A, B commute) we  [1u]
proceed as follows. Let’s define [A, B] = AB — BA.

« Setting By = B and B, = [A, B,] you have

-1
B, = A"B—nA"'BA+ %A"‘ZBAZ 4.4 (=1)"BA" =
n n
= Y. (=DK |arkBak ;
k=0 k
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§18.c Matrix exponential

« let’s define now Z = Z(A, B)
z=y By (18.29)

(note that Z is linear in B): prove that the above series converges, and that
exp(A)Bexp(—A) = Z ; (18.30)
+ from this finally it is shown that
exp(A) exp(B) exp(—A) = exp(Z) .

(These formulas can be seen as consequences of the Baker—Campbell-Hausdorff
formula [48]). Hidden solution: [unaccessisLe vuip '1ix']

E18.31 prerequisites:18.20.In general (even when A, B do not commute) [1mMy]
N
exp(A + B) = lim (exp(A/N) exp(B/N))
N-oo

Hidden solution: [unicCESSIBLE vuID '1MZ']

E18.32 prerequisites:22.37.Difficulty:*+.In the general case (even when we do not know  [1n0]
if A, B commute), we can express exp(A + sB) using a power series. Define

C(t) = exp(—tA)Bexp(tA)

and (recursively) set Q, = [ (the identity matrix) and then

Quar(6) = f C(O)Qu(@) dr
0

then

[e5]

exp(—A) exp(A + sB) = Z s"Q,(1) ; (18.33)

n=0
this series converges for every s.

In particular, the directional derivative of exp at the point A in the direction B is
d 1
T exp(A + sB)|s—¢ = exp(A4)Q;(1) = / exp((1 — 7)A)Bexp(tA)drt .
0

( Hint: Use the exercise 22.37 with Y(t, s) = exp(—tA) exp(t(A + sB)) and then set
t=1.)

Hidden solution: [unaccESSIBLE vuID '1n1']

E18.34 Prerequisites:18.28.Difficulty:*. [1N2]

Prove the relations
d 1
T exp(A + tB)|i=¢ = f exp(sA)Bexp((1 —s)A)ds .
0

using the relations (18.29) and (18.30) from exercise 18.28.
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§19 ANALYTIC FUNCTIONS

8§19 Analytic functions [1n4]

All definitions and theorems needed to solve the following exercises, may be found in
Chap. 6 of [2] or Chap. 8 of [22].

Exercises

E19.1 Prerequisites:16.20. [1N5]

Verify that the functiong : R - R

e VX sex>0
0 sex<0

P(x) = {

(also seen in 16.20) is not analytic.

Hidden solution: [unAcCESSIBLE UUID '1N6']

E19.2 Note:Exercise 2, written exam March 2010. [1N7]

Let I C R be a not-empty open interval. Let f : I — R be of class C*, and such
that Vx € I, Vk > 0 we have f®)(x) > 0. Prove that f is analytic.

Hidden solution: [vvaccessisre vuip '1nv9'] See also the exercise 16.30.

E19.3 prerequisites:18.7. [1nC]

Show that f(x) = —— is analytic on all R, but the radius of convergence of the

Taylor seried centered in X, is 4/ 1 + X3.

Hidden solution:  [UNACCESSIBLE UUID 'iND'] [UNACCESSIBLE UUID '1NF']
- 5
Study similarly f(x) = Vx2 + 1 or f(x) = e/x"+1),

E19.4 Let f : R — R be a C* class function; fix x, € R and define [1NG]
(%)
80 = Zf 0) ( xqyn

using the Taylor series; suppose g has radius of convergence R > 0: Sog : J — Riis
a well-defined function, where J = (xy — R, X + R). Can it happen that f(x) # g(x)
for a point x € J?

And if f is analytic? ™1°

Hidden solution: [vnACCESSIBLE UUID 'iNH']

E19.5 Let I C R be a nonempty open interval. Let f : I — R be a C* class function. (1]
Let

by = sup |f)| = [1f Pl s
xel
if

lim sup — \/_<oo

n—oo

T110By “analytic” we mean: fixed X there is a series h(x) = E:lo: o @n(x — xo)" with non-zero radius of
convergence such that f = h in an open neighborhood of xq (neighborhood contained in the convergence
disk) .
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then f is analytic.
Show with a simple example that the request is not necessary.

Hidden solution: [UNACCESSIBLE UUID '1NK'] [UNACCESSIBLE UUID '1NM']

E19.6 Note:Exercise 1, written exam, June 30th, 2017.

Let f be a continuous function on the interval [0, 1]. Prove that the function

1
F(t)=/ Fx)et* dx
0

is analytic on R.

Hidden solution: [vnAcCESSIBLE vuID '1nP']

E19.7 LetI = (0, 1), find an example of an analytic function f : I — R not identically
zero, but such that A = {x € I : f(x) = 0} has an accumulation point in R. Compare

this example with Prop. 6.8.4 in the notes [2]; and with the example 16.26.

Hidden solution: [vnACCESSIBLE UUID '1NR']
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§20 CURVE

8§20 Curve

Let (X, d) be a metric space.
Definition 20.1. LetI C R be an interval.

* A continuous function y : I — X is called parametric curve, or more simply in
the following curve.

* Ify is injective, the curve is said to be simple.
* Ify is a homeomorphism onto its image, the curve is said to be embedded.

« If X = R"and y is of class C* and y'(t) # O for every t € I, then y is called an
immersed curve or regular curve.

We will call support or trace the image y(I) of a curve.
The term arc is also used as a synonym for curve; "1 this term is mainly used when
the curve is not (necessarily) closed.

We postpone the study of closed curves to the next section.
Here are two notions of equivalence of curves. The first was taken from an earlier
version of the the lecture notes [2].

Definition 20.2. LetI,J C R be intervals. Lety : I - Xand é . J — X be two
curves. We will write y ~ § if there exists an increasing homeomorphism "> ¢ : I — J
such that y = dog.

The second is Definition 7.5.4 from chapter 7 section 6 in the notes [2].

Definition 20.3. Let I,J C R be intervals. Lety : I - R"*and§ : J - R" be
two regular curves. We will write y ~ & if there is a diffeomorphism "3 ¢ : I — J
monotonic increasing, such that y = §og.

Exercises

E20.4 Prerequisites:20.2,20.3.
Show that the relation y ~ § is an equivalence relation.
Show that the relation y = & is an equivalence relation.
E20.5 Let A C R"beopenandlet f : A — Rbeafunction. Show that f is continuous

if and only if, for each curve y : [0,1] — A we have that foy is continuous. Hidden
SOIUtiOn.' [UNACCESSIBLE UUID '1NZ']

E20.6 Suppose Iis a closed and bounded interval; use the exercise 9.113 to show that a
simple arc y : I — Xis a homeomorphism with its image, so the curve is embedded.

Is the result still true if I is not closed? What if I is not bounded?

E20.7 Prerequisites:20.6.Difficulty:*.

T111Note that in the book [22] an arc is an injective curve.

125ee 7.73.

U3 A diffeomorphism is a bijective function ¢ : I — J of class C1, the inverse of which is class C1; in
particular ¢’ is never zero, and (when domain and codomain are intervals) it always has the same sign.
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§20.a Closed curves

Fix a curve y : I — R". We define in the following [ = {t € R : —t € I} and
7 o I — R™via p(t) = y(~t).

We want to show that, in certain hypotheses, two curves have the same support if and
only if they are equivalent.

e Lety,d : [0,1] —» R" be simple curves, but not closed, and with the same
support. Show that if y(0) = 6(¢) then t = 0 or t = 1. In case y(0) = §(0),
show that y ~ &. If instead y(0) = §(1) then 7 ~ §.

e Lety,d : [0,1] — R" be simple immersed curves, but not closed, and with
the same support, and let y(0) = 8(0): show that y ~ &. If instead y(0) = &(1)
then 7 =~ &.

(For the case of closed curves see 20.20)

Hidden solution: [unaccESSIBLE vuID '1P2']

E20.8 Show that [0, 1] and [0, 1]? are not homeomorphic. Hidden solution: [umaccessize [1p3]
UUID '1P4 ']

E20.9 Prerequisites:9.113, 20.8.Show that you can’t find a curve ¢ : [0,1] = [0,1]*> [1ps)
continuous and bijective. Therefore a curve ¢ : [0,1] — [0, 1]? that is continuous
and surjective cannot be injective; such as the Peano curve, the Hilbert curve.

Hidden solution: [unAcCESSIBLE UUID '1P6']

E20.10 wote:Nice formula taken from [67]. [1P7]
Let S = S(0,1) C R" be the unit sphere S = {x : |x| = 1}. Let v,w € S withv # w
and v # —w; let T = arccos(v - w) so that T € (0, 7r); then the geodesic (that is, the
arc-parameterized minimal length curve) y(¢) : [0, T] — S connecting v to w inside
Sis
sin(T —t¢ sin (¢
(-, 00,
sin(T) sin(T)

y(@© =
and its length is 7.
(You may assume that, when v - w = 0 that is T = 7/2, then the geodesic is y(t) =
vcos(t) + wsin(t)). Hidden solution: [uvAcCESSIBLE vuID '1P8']
§20.a Closed curves

We add other definitions to those already seen in 20.1.

Definition 20.11. Let (X, d) be a metric space. Let I = [a,b] C R be a closed and  [1pB]
bounded interval. Lety : I — X be a parametric curve.

« Ify(a) = y(b) we will say that the curve is closed;

* we also say that the curve is simple and closed if y(a) = y(b) and y is injective
when restricted to [a, b). T*

« IfX = R"andy is class C! and is closed, it is further assumed thaty'(a) = y'(b).
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§20 CURVE

Figure 6: Sets for exercise 20.12

Exercises

E20.12 Consider the subsets of the plane described in the following figures 6: which
can be the support of a simple curve? or a simple closed curve? or union of supports
of two simple curves (possibly closed)? (Prove your claims.)

E20.13 Lety : [0,1] — X be a closed curve, show that it admits an extension 7 :
R — X continuous and periodic with period 1.

E20.14 Lety : [0,1] — R" be a closed C! curve, show that it admits an extension
7 © R = R” periodic with period 1 and of class C'.
E20.15 We will use the definitions and results of the Section §9.0, in particular 9.169.

Fix # : R — X continuous and periodic (of period 1); we can define the map 7 :
S! — X through the relation

7((cos(®),sin(1))) = 7(0) -

Show that this is a good definition, and that  is continuous.

Use the exercise 9.113 to show that every closed simple arc, when viewed equiva-
lently as amap 7 : S! — X, is a homeomorphism with its image.

In the following we will use periodic maps to represent the closed curves.

Exercises

E20.16 Adapt the notion of equivalence 20.2 to the case of simple and closed arcs, but
considering them as maps y : R — X continuous and periodic (of period 1); what
hypotheses do we require from the maps ¢ : R — R?

Hidden solution: [unACCESSIBLE vuID '1PM']
E20.17 prerequisites:20.2,20.13.Let ¥, d be closed curves, but seen as maps defined on
R, continuous and periodic of period 1.

Let’s discuss a new relation: we write y ~ ¢ if there is an increasing homeomor-
phism ¢ : R — R such that ¢(t + 1) = ¢(t) + 1 for every t € R, and for which

y = dop
Show that this is an equivalence relation.
Compare it with the relation ~.

Hidden solution: [unvaccESSIBLE vuID '1PP']

T14That is, the injectivity is lost in the extremes.
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§20.a Closed curves

E20.18 prerequisites:20.3,20.14.Let y,8 curves be closed and immersed, but seen as
maps defined on R and C! and periodic. with periods 1.

Let’s see a new relation: you have y = § if there is an increasing diffeomorphism
@ : R — R such that ¢(t + 1) = ¢(t) + 1 for every ¢t € R and for which y = §ogp

Show that this is an equivalence relation.
Compare it with the relation ~.

E20.19 prerequisites:20.3,20.14,20.18.Give a simple example of closed curves immersed
for which you have y ~¢ § but not y ~ 6.

Hidden solution: [unaccESSIBLE vuID '1PS']

E20.20 Prerequisites:20.6.Difficulty:*.

Lety,5 : S' - R” be simple and immersed closed curves with the same support;
Define 7(¢) = y(—t): show that either y ~; § or y ~ 4.

Hidden solution: [unicCESSIBLE UUID '1PV']

Other exercises regarding curves are 10.21, 14.24, 16.63 and 23.4; see also Section
§22.d.
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§21 SURFACES

8§21 Surfaces

Exercises

E21.1 prerequisites:16.51.Let A C R" be open and f :A > RinCL Fixx € A
such that f(X) = 0, and V f(Xx) # 0: by the implicit function theorem 16.51 the set
E = {f = 0} is a graph in a neighborhood of X, and the plane tangent to this graph is
the set of x for which

(x—=x,Vf(x))=0 .
Compare this result to Lemma 7.7.1 in the notes [2]: ”the gradient is orthogonal to

the level sets” . Hidden solution: [uNvACCESSIBLE vuID '1Q1']

E21.2 Given m > 0, show that the relation xyz = m? defines a surface in R3. Prove
that the planes tangent to the surface at the points of the first octant {x > 0,y >
0,z > 0} form with the coordinate planes of R a tetrahedron of constant volume.

Hidden solution: [unaccessIsLe vuip '1q3']
E21.3 Let a > 0. Show that the equation /x + \Vy + \/z = +/a defines a regular
surface inside the first octant {x > 0,y > 0,z > 0}. Prove that planes tangent to

the surface cut the three coordinate axes at three points, the sum of whose distances
from the origin is constant.

Hidden solution: [unaccessIsLe vuip '1g5']
E21.4 Fixa > 0,b > 0,c > 0. Determine a plane tangent to the ellipsoid
x?/a? + y*/b? + z%/? =1

at a point with x,y,z > 0, so that the tetrahedron bounded by this plane and the
coordinated planes has minimum volume.

Hidden solution: [unvaccESSIBLE vuID '1G9']
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§22 Ordinary Differential equations [1e]

To solve the following exercises, it is imporant to know some fundamental results,
such as: the existence and uniqueness theorem "'°,Gronwall’s Lemma; and in general
some methods to analyze, solve and qualitative study Ordinary Differential Equations
(abbreviated ODE). These may be found e.g. in [25, 20, 2].

Exercises

E22.1 For each point (x, y) of the plane with x, y > 0 passes a single ellipses 4x*>+y? =  [1qc]
a (with a > 0). Describe the family of curves that at each point are orthogonal to the
ellipse passing through that point. See figure 7.

Hidden solution: [vnAcCESSIBLE UUID '1GF']

2
1.8 8
1.6 8
1.4 \ \ i
12 - -
\
1 \ ]
0.8 - \ .
[ \ ‘\
06 \ \ ‘x\ .
\ \
- \ \
0.4 N\ .
\ \\ \‘ \‘
2l V|| |
R
0 1 1 1
0 0.5 1 15 2

Figure 7: Ellipses (in red) and curves orthogonal to them.

E22.2 Prerequisites:16.4. [1QH]
Let I C R be an open interval.
Let F : I X R — (0, ) be a positive continuous function, and let f : I - R be a
differentiable function that solves the differential equation

(f'(0)? = F(x, f(x))

Prove that x is, either always increasing, in which case f'(x) = +/F(x, f(x)) for

every X, or it is always decreasing, in which case f'(x) = —/F(x, f(x)); therefore
f is of class C!.

Hidden solution: [unaccESSIBLE vuID '1GJ']
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§22 ORDINARY DIFFERENTIAL EQUATIONS

Figure 8: Figure for 22.3

E22.3 Prerequisites:22.2.

Describe all the differentiable functions f : R — R that solve
vx, (f'())P +(f(x)* =1.

Show that if —1 < f(x) < 1 for x € I open interval, then f is a sine arc, for x € I.
Show that all solutions are C', and that they are piecewise C.

Note that f =1 and f = —1 are envelopes of the other solutions, as explained in the
section §22.d.

Hidden solution: [vniccESSIBLE vuID '1qi']

E22.4 Let f : [0,1] — R be a function C? such that f(0) = f(1) = 0 and f’(x) =
fx)f"(x) for every x € [0,1].
Prove that the function f is identically zero.

Hidden solution: [unicCESSIBLE UUID '1GP'] [UNACCESSIBLE UUID '1QQ']

§22.a Autonomous problems
Exercises

E22.5 prerequisites:15.3.Let su fix xg, t{; € R, and a bounded and continuous function
f R > R, with f(x¢) = 0but f(x) > 0 for x # x,. We want to study the
autonomous problem

{x'(t) = f(x(®) ,

x(to) = xO .
Note that x = X, is a possible solution. Show that if, for £ > 0 small, "'°
Xo+€ 1
——dy=o (22.6)
/xo F»)

X0

1

xo_Em d]y = (227)

then x = x, is the only solution; while otherwise there are many class C! solutions:
describe them all.

15 k. a. Picard-Lindelsf theorem, or Cauchy—Lipschitz theorem.
16 the condition holds for a € > O then it holds for every € > 0, since f > 0 far from X,.
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§22.b Resolution

Hidden solution: [unAccESSIBLE UUID '1GS']
Conditions (22.6) and (22.7) are a special case of Osgood uniqueness condition, see
Problem 2.25 in [25].

E22.8 Set a > 1 and consider

{X’(t) = |x(O* ,
x(to) = xo

with xg,t, € R fixed. Show that there is existence and uniqueness of the solution;
calculate the maximal definition interval; Use the variable separation method to ex-

plicitly calculate solutions. (Since the equation is autonomous, one could assume
that t, = 0, but the example is perhaps clearer with a generic ;).

Hidden solution: [unaccESSIBLE vuID '1qW']

E22.9 What happens in the previous exercise in the case o € (0,1)?

Hidden solution: [unvaccESSIBLE vuID '1Qv']

E22.10 prerequisites:22.8.Let us fix > 1, and consider again

x'(t) = [x(O1* ,
x(0)=1

We have seen in 22.8 that this ODE admits a maximal solution x : I, — R. Fixed
t € R, show that ¢ € I, for a > 1 close to 1, and that lim_,, x(¢) = €’.

Note that e’ is the only solution of x'(t) = |x(¢)| with x(0) = 1.

Hidden solution: [uniccESSIBLE UUID '1R0']

§22.b Resolution
Exercises
E22.11 Let ® : R — R be a continuous function, Describe all solutions f : R - R

that solve
Vx#0, f'(x)= (9(@)

X

(Hint: change variables f(x) = xh(x) and find and solve a differential equation for
h(x).)

Hidden solution: [unAcCESSIBLE UUID '1R2']

E22.12 Find solutions to the problem

@y __y
dx x+Yy

with substitution z = y/x, and also comparing it with the problem

dx _x+y
dy y
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§22.c Qualitative discussions
For the following exercises the following simple comparison lemma may be useful.

Lemma 22.13. Let U C R? be open, let f,g : U — R be continuous with f > g; let  [1r7]
I C R be an open interval with t, € I, and let x,w : I — R solutions of

x'(0) = f(t,x(0) . w(t) = gt,w(t))

with x(ty) > w(ty): then x(t) > w(t) for t > t,. Note indeed that x'(t) > w'(t) and
therefore x(t) — w(t) is an increasing function.

(There are much more refined versions of this lemma, see for example in section
8.6 in the course notes [2]).
Exercises
E22.14 Discuss solutions of [1R8]
{y’(X) = (¥(x) — x)*
y0)=a.

Qualitatively study the existence (local or global) of solutions, and the properties of
monotonicity and convexity/concavity.

Hidden solution: [unACCESSIBLE UUID '1R9'] [UNACCESSIBLE UUID '1RB']
E22.15 Considering the Cauchy problem [1RD]

{y'(x) =
y(0)=1

1
(x)2+x2

show that there is only one global solution y : R — R, that y is bounded, and the
limits lim,,, o, y(x), lim,_, _, y(x) exist and are finite.

Hidden solution: [UNACCESSIBLE UUID '1RG'] [UNACCESSIBLE UUID '1RH']

E22.16 Discuss the differential equation [1RK]
e 1
{y @ =5
y0)=a

for a # 0, studying in a qualitative way the existence (local or global) of solutions,
and the properties of monotonicity and convexity/concavity. 7

Show that the solution exists for all positive times.
Show that for a > 0 the solution does not extend to all negative times.

Difficulty:+.Show that there is a critical & < 0 such that, for @ < a < 0 the solution
does not extend to all negative times, while for a < @ the solution exists for all
negative times; also for a = d you have lim,_, _, y(x) — x? = 0.

Hidden solution: [unAcCESSIBLE UUID '1RP']
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§22.c Qualitative discussions

In dashed purple the line of inflections. In yellow the solutions with initial data y(0) = 1 and
¥(0) = 2.

Figure 9: Exercise 22.15.
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In dotted purple the line of inflections. In dashed red the parabola where the derivative of the
solution is infinite. In yellowthe solutions with initial data y(0) = 2, y(0) = 1, y(0) = 1/1000.

Figure 10: Exercise 22.16. Solutions for a > 0
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4 . . . . !

-2 -1

In dotted purple the line of inflections. In dashed red the parabola where the derivative of the
solution is infinite. Solutions are drawn with initial data a = —1.4 ("green”), a = —1.0188 ~or-
ange”)and a = —1.019 ("yellow”) . Note that the latter two differ only by 0.0002 in their initial
data (indeed they are indistinguishable in the graph for x > —1), but then for x < —1 they move
apart quickly, and for x = —2 they are respectively 3.25696 and 2.54856, with a difference of

about 0.7 !

Figure 11: Exercise 22.16. Solutions fora < 0

a=-1,0188
a=-1,019
a=-1,4

E22.17 Note:Exercise 4, written exam 9 July 2011.Show that the Cauchy problem

Y'(x) = y()(y(x) — x?)

admits a single solution y = y(x), defined on all of R and such that

lim y(x) =400 , lim y(x)=0
X—>—00 X—> 0

T117The differential equation is taken from exercise 13 in [1].
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§22.d Envelope

§22.d Envelope

Given a family of planar curves, we want to define the envelope curve. Let’s see two
possible definitions.

Definition 22.18 (Curve Envelope).

* Suppose the curves in the plane are described by the equation in implicit form
F(x,y,a) = 0; that is, fixed the parameter a, the curve is the locus

{Cey)  F(x,y,0) =0}
Then the envelope is obtained by expliciting the variable a from the equation
:—F(x, v, a) = 0 and substituting it into the F(x, y,a) = 0.
a

For simplicity, consider curves that are functions of the abscissa. Lety = f(x,a) =
fa(x) be a family of functions, with x € I,a € J (open intervals), then y = g(x)
is the envelope of f, if the graph of g is covered by the union of the graphs of
fo and the curve g is tangent to every f, where it touches it. More precisely, for
every x € I there is a € J for which g(x) = f(x, a), and also, for every choice
of a that satisfies g(x) = f(x, a), we have g'(x) = f'(x, a).

Remark 22.19. The envelope curve has an important property in the field of differen-
tial equations. Suppose y = f,(x) are solutions of the differential equation ®(y', y, x) =
0: then also g is solution (immediate verification). ™%

We want to see that the two previous definitions are equivalent in this sense.

Exercises

E22.20 Let’s start with the first definition. Suppose we can apply the Implicit Function
Theorem to the locus

E, ={(x,a) : F(x,y,a) =0} ;
Precisely, suppose that at a point (x,y, a) we have that z—F # 0. To this we also
y
2
add the hypothesis 2—F # 0. Fixed a, you can express E, locally as a graph y =
aa

2
f(x,a) = f,(x). We also use the hypothesis % # 0 to express locally g =0as
a graph a = ®(x, y). Defining G(x, y) = F(x,y, ®(x,y)), show that G = 0 can be
represented as y = g(x). Finally, show that g is the envelope of the curves f.

Hidden solution: [unAcCESSIBLE UUID '1RW'] [UNACCESSIBLE UUID '1RX']

2
E22.21 In the above hypotheses, assuming that Z—F > 0 and Z—F > 0, show that the
y aa

envelope graph g is locally the ”edge” of the union of the graphs f, (in the sense that
g(x) > f,(x) with equality for only one a).

Hidden solution: [UNACCESSIBLE UUID '1RZ'] [UNACCESSIBLE UUID '150']

E22.22 Note:From the text [19], pg 84..Consider the curves

2
y=fxa)=ax+=

T118with equations in normal form, however, this notion is not interesting because there is local uniqueness
and then there can be no special solutions; that is, if g = f, g’ = f4 at a point X then they coincide in a
neighborhood.
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+ Find a differential equation solved by all curves. (Sugg. Eliminate a from the
systemy = f,y = %f. The result can be left in non-normal form.)

* Calculate the envelope; check that it satisfies the differential equation obtained
above.

See also the figure 12. Hidden solution: [uwaccesSIBLE vuID '152']

3 T T T
12 ——
2 — —
3x/2+9/8

1 X2+ 1/8 —
O —
R i
2 _
-3 |

6 4 2 0 2 4 6

Figure 12: Solution of 22.22: envelope.
E22.23 Consider ellipses ax? + y?/a = 2 (with a > 0). [154]

* Find the region of the plane covered by these ellipses.

+ Show that the edge of this region is the envelope of ellipses, and describe it.
Hidden solution: [unACCESSIBLE UUID '185'] [UNACCESSIBLE UUID '156']
E22.24 Let’s consider the lines ax + y/a = 1 (with a > 0). [187]

+ Find the region of the first quadrant covered by these lines.

+ Show that the edge of this region is the envelope of the lines and describe it.
Hidden solution:  [unaccessIsLeE vuip '158']
E22.25 Let’s consider the straight lines [1s9]

y —_
1—a

X
=+
a

with x, y,a € (0,1). Describe the envelope curve.

Hidden solution: [unacCESSIBLE UUID '1SB']
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§22.e Linear equations

§22.e Linear equations (with constant coefficients)

Definition 22.26. We formally indicate with D the operation ”computing of the deriva-  [232]
tive”. Given a polynomial p(x)

p(x) = an.xn + an_lxn_l + + alx + ao
(which has constants coefficients a; € C) we formally construct the linear operator
p(D) = anDn + an_an_l + alD + ao

which transforms a function f : R — C of class C"*¥ into the function p(D)f, class
at least C¥, defined pointwise by

[P(D)f1x) = anfx) + @uor fODR) + . ayf(x) + 2o f (%)

Exercises

E22.27 Given two polynomials p(x), q(x) and the product polynomial r(x) = p(x)q(x), r1isc]
show that p(D)[q(D)f] = r(D)f

E22.28 Define f(x) = e**, note that [1SD]
[p(D)f1(x) = p(D)f(x)
We can therefore consider exponentials e** as eigenvectors of p(D), with eigenvalue
p(A).
E22.29 Let f : R — C be a C" class function , let & € C be a constant, and let [1sF]
g(x) = e®*f(x). Show that, if p is a polynomial and q(x) = p(x + 8), then
p(D)g = e™[q(D)f]
Note that we can also write the relation above as a ”conjugation”

e~ ®*[p(D)[e® f]] = p(D+O)f .

Hidden solution: [unicCESSIBLE UUID '15G']

E22.30 prerequisites:22.29.Given 8 € C and k € N, define p(x) = (x —8)¥, show that  [1sx]
p(D)f = 0if and only if f(x) = e9%r(x) with r polynomial of degree at most k — 1.

Hidden solution: [vnAcCESSIBLE vuID '15J']

E22.31 prerequisites:15.1, 22.29. [1SK]
Fix 8,7 € Cwith 8 # 7, q(x) a polynomial, and k € N. Let’s define p(x) = (x—8)k.
Show that
p(D)f(x) = e™q(x)
if and only if
f0x) = e¥r(x) +e™q(x)
with 7 polynomial of degree at most k — 1 and § polynomial of the same degree as
q.
Hidden solution: [unAccESSIBLE UUID '1SM']
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E22.32 Given q;...a, € C constants, with a, # 0, and defining p(x) = a,x" +
a,_1 X" + ... a;x + ay, describe all possible solutions f of

p(D)f =0.

Show that the solution space is a vector space (based on the field C of complex
numbers) of dimension n.

( Hint. Factorize the polynomial and take advantage of previous exercises. ).

E22.33 prerequisites:22.32. With p as above, also analyze the problem

p(D)f = e**

(with a € C constant).
What happens when a approaches a root of the polynomial p?

[UNACCESSIBLE UUID '1sq'1Given parameters Yy, ...,Y,—1 € C, and also a € C, the
solution of the Cauchy problem

pD)f = e**
J(0) = yo,
fn_l(o) = Yn-1

exists for all times, and depends continuously on the parameters a, yy, ... , Y,—1 € C.

E22.34 Given h = h(x), and 6 € R, solve the differential equations
(D - 6)f(x) = h(x)
(D —6)*f(x) = h(x)
(D? + 6°)f(x) = h(x)
(D? - %) f(x) = h(x)
and special cases
(D -1Df(x) = x*
(D —-0)f(x) =e**
(with « € C, and k € N, constants).

Hidden solution: [unaccESSIBLE vuID '15V']
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822.f Matrix equations

§22.f Matrix equations

To solve the following exercises you need to know the elementary properties of the
exponential of matrices, see section §18.c.

Exercises

E22.35 Prerequisites:18.24,18.23, Section §18.c.

Given A,C € C"™" and F : R — C"™" continuous matrix valued functions, solve
the ODE
X' =AX+F ,X(0)=C,

where X : R — C"™*",
(Hint: use the method of variation of constants: replace Y(t) = exp(—tA)X(t))

Hidden solution: [unACCESSIBLE vUID '15X']

E22.36 Prerequisites:18.24,18.23, Sec. §18.c.Difficulty:*.

Given matrixes A, B, C € C™" solve the ODE
X' =AX +XB ,X(0)=C ,

where X : R — C"™Xn

Hidden solution: [unaccESSIBLE vuID '152']

E22.37 prerequisites:11.35,11.44.Difficulty:*.
Let V = C™" a matrix space, we equip it with a submultiplicative norm ||C||;-. Let
CeVandletA,B : R — Vbe continuous curves in space of matrices.

» We recursively define Q, = C, and

Quar(s) = / A@QuOB@) dr
0

show that the series

Y(6) = Y Qu(0)

n=0
is well defined, showing that, for every T > 0, it converges totally in the space
of continuous functions C° = CO([-T, T] = V), endowed with the norm

def
= max t
IQllco |t|§T”Q( lly

+ Show that the function just defined is the solution of the differential equation

%Y(t) =AMY(®)B() , Y(0)=C .
« If A, B are constant, note that

)
A"CB"
Y(t) = z tnT

n=0
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§22 ORDINARY DIFFERENTIAL EQUATIONS

Hidden solution: [unvaccesSIBLE vuIp '1T2']

E22.38 Prerequisites:22.37,22.38.Note:Abel’s identity.

Let be given C € C™", A : R —» C"™" continuous, and the solution Y(¢) of the
ODE d
EY(O =A)Y(@®) , Y(0)=C

(which has been studied in 22.37). Set a(t) = tr(A(t)), show that
det(Y (1)) = det(C)elo (D) d7

If C is invertible, it follows that Y(¢) is always invertible.

Hidden solution: [unacCESSIBLE UUID '1T4']

E22.39 prerequisites:18.24,18.23,22.37.

Let be given C € C"™", F,A : R — C™" continuous, and the solution Y(¢) of the

ODE
%Y(t)=A(t)Y(t) . YO =1d .

Solve the equation
X' =AX+F ,X(0)=C,

where X : R — C"*" using Y(¢) as an auxiliary function.

Hidden solution: [vnaccESSIBLE vuID '1T7']
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§23 Written exams and pseudo—exams [118]

Exercises

E23.1 nNote:reworked from the written exam held January 26th, 2016. [1T9]

Let (q,)n>1 be an enumeration of the rationals of (0, 1) and define

fo= 3 2

n:qp<t

and

g = Y 2

n:q,<t

fort € (0,1).

Show that f, g are strictly increasing.
* Calculate limits for ¢t | O and ¢ 1 1.

Show that f is left continuous, g is right continuous, and that

Ap @ =g0 . lim g0 =f0)

Also show that f is discontinuous in ¢ if and only if t € QN (0, 1); and similarly
for g.

» What changes if we replace 27" with the term a,, of an absolutely convergent
series?

Hidden solution: [UNACCESSIBLE UUID '1TB'] [UNACCESSIBLE UUID '1TC']

E23.2 Prerequisites:13.9.Note:written exam, June 23th, 2012. [1TD]

Let f be a C! class function on R, with f(0) # 0. Prove that x € R exists such that
the two vectors

v=(6f(x) , w=(-f(x),1

are linearly dependent. (Note that the vector w is orthogonal to the tangent of the
graph of f.) Discuss the possibility that this condition is verified for every x € R.

Hidden solution: [unAcCESSIBLE vUID '1TF']

E23.3 Note:adapted from the written exam, April 9th, 2011. [1TG]

Let f : [0, 00) — R be a continuous function such that
lim f(x)/x =+
X—+00

* Fixed a < f(0), let M, be the set of m € R such that the line y = mx + a
intersects the graph y = f(x) of the function f at least in one point: show that
M, admits minimum 1 = n(a);

+ show that i1 depends continuously on a, "'

+ and that #(a) is monotonic strictly decreasing.

TU9Tip: Rethink the exercise 13.9.
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§23 WRITTEN EXAMS AND PSEUDO-EXAMS

« If f is differentiable, show that the line y = #i(a)x + a is tangent to the graph
at all points where it encounters it.

+ Suppose further that f is of class C? and that f”(x) > 0¥x > 0 "?°, Show
that there is only one point x where the line y = Mi(a)x + a meets the graph
y = f(x); name it £ = %(a);

« and show that the functions a — X(a) and a — mi(a) are differentiable.
Hidden solution: [uNACCESSIBLE UUID '1TH']

E23.4 Topics:osculating circle. Note:adapted from the written exam, April 9th 2011.

Let f : R — R be twice differentiable in 0, with f(0) = 0 and f”(0) # 0. Prove
that there is an unique point P = (a, b) in the plane and an unique constant » > 0,
such that

d(P, (x, f(x))) = r + o(x?),

determining a, b, r as a function of f’(0), f”(0). Here d(P, Q) is the Euclidean dis-
tance between two points P, Q in the plane.

Hint. First, study the case in which also f'(0) = 0.

(The graph of the function f is a curve in the plane; by hypothesis this curve passes through
the origin. In this exercise we have determined the circle, of radius r and center P, which best
approximates the curve near the origin. This circle is called the ”osculating circle”, and its
radius is called the ”radius of curvature”, and the inverse of the radius is the ”curvature” of
the curve at the origin.)

Hidden solution: [unACCESSIBLE UUID '1TK'] [UNACCESSIBLE UUID '1TM']
E23.5 Note:Exercise 2, written exam 4 April 2009.

* Verify that for every ¢t > 1 the equation
sinx = x*

admits one and only one solution x > 0.

* Call f(¢) this solution, determine the image of the function ¢ and show that it is
strictly increasing and continuous on (1, +00).

* Prove that f is extended by continuity to ¢ = 1 and discuss the existence of the
right derivative of the prolonged function at that point.

Hidden solution: [vnicCESSIBLE vuID '1TP']

E23.6 Suppose that f : R — R is a continuous fuction such that cos(f(x)) is differ-
entiable: can it be deduced that f is differentiable? If it is true, prove it. If it is not
true, produce an example.

E23.7 Suppose that f : R — R is a function such that f > 0 and log(f(x)) is convex:
can it be deduced that f is convex? Ifit is true, prove it. If it is not true, produce an
example.

E23.8 Let f,g : R — R be class C* function, with g > 0: show that f/g is a class
C® function.
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E23.9 Let f(x) = Y.°° a,x" with radius of convergence p > 0, and let f(0) =

n=0
f/(0) = ... = fM(0) = 0; show that the function g(x) = f(x)/x" is extendable
to x = 0; show that (the extension of) g coincides with an appropriate power series
g(x) = Zf;o b, x". What can be said about the radius of convergence of g?
E23.10 note:Dirichlet criterion for integrals.

Let f,g : [0,00) — R be continuous, where f is positive and monotonic decreasing
with lim,._, o, f(x) = 0, while

X
suplf gt)dt| < oo
x>0 Jo
Then prove that
X

lim f f(t)g(t) dt

X—> 00 0
converges.

E23.11 Note:written exam 12/1/2013.
Given a subset E of N and an integer n € N, the expression

card(E n{0,1,...,n})
n+1

indicates which fraction of the segment {0, 1, ..., n} is contained in E. The notion of
”density” in N of E refers to the behavior of such fractions as n tends to infinity.

Precisely, we define the upper density d(E) of E and its lower density d(E) as

- card(E n{0,1,...,n})
d(E) = hyrln_> Sol:p P

d(E) = lim inf card(E n{0,1,...,n})
- e n+1

If d(E) = d(E) =d € [0,1], E is said to have density d. (See also [62].)

1. Prove that, for every a € R,a > 1, the set E, = [na] : n € N has density
d = 1/a (the symbol [x] indicates the integer part of x € R).

2. LetE = {mgy, my, ..., my, ...} be an infinite set, withmy < m; < ... <my < ....
Prove that d(E) = limsup, _, * and d(E) = liminfy_, o, L
my my
3. Find a set E with d(E) = d(N \ E) = 1.

E23.12 Note:exercise 6 in the written exam 13/1/2011.

Each integer n > 1 decomposes uniquely as n = 2¥d, with k € N and d odd integer.
Consider the sequence a,, = d/2¥ and compute

1. its upper and lower limit;

2. the set of limit points.

E23.13 Topics:matrix, determinant. Note:exercise 4 in the pseudo-homework of 14/3/2013.

T120yse the previous exercise 23.2!
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§23 WRITTEN EXAMS AND PSEUDO-EXAMS

1. Let A € R?*2 be a 2 by 2 matrix. Identifying R>*? with R*, calculate the
gradient of the determinant, and verify that it is nonzero if and only if the matrix
is nonzero.

2. Let Z be the set of matrices R2%2 with zero determinant. Show that it is a closed
set with an empty interior.

Hidden solution: [unvaccESSIBLE vuID '1v1']

E23.14 Topics:matrix,determinant.Difficulty:*.
Prove Jacobi’s formula:

d
Wi’j det(A) = Ci,j s

where q; ; is the element of A in row i and column j, and C'is the matrix of cofactors of
A, which is the transpose of the adjoint matrix adj(A). Consequently, if F : R —
C"*" is differentiable, then

d _ . dF(t)
E detF(t) =1r (ad](F(t)) T)
where tr(X) is the trace of X.
Hint: use Laplace’s expansion for the determinant.

Hidden solution: [unvaccESSIBLE vuID '1v3']

E23.15 Topics:matrix,determinant.Prerequisites:23.14.Difficulty:*.

We want to generalize the results of the previous exercise 23.13 to the case of matrices
nXxn.

Recall the following properties of the determinant of matrices A € R"*",
* The rank is the dimension of the image of A (considered as a linear applica-

tion from R" to R™) and is also the maximum number of linearly independent
columns in A.

* A has rank # if and only det(A) # 0.
+ If you exchange two columns in A, the determinant changes sign;

+ if you add a multiple of another column to a column, the determinant does not
change.

* The characterization of rank through minors, *The rank of A is equal to the
highest order of an invertible minor of A”.

+ Laplace’s expansion of the determinant, and Jacobi’s formula (cf 23.14).
* The determinant of A is equal to the determinant of the transpose; So every
previous result holds, if you read "row” instead of ”column”.
See also in [65, 53].
Show the following results.
1. Show that the gradient of the function det(A) is not zero, if and only if the rank
of Ais at least n — 1.

2. Let Z be the set of matrices R™*" with null determinant. Show that it is a closed
set with an empty interior.
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§23.a Functional equations

3. Fix B a matrix with rank at most n — 2, show that the thesis of the theorem is
false in the neighborhoods Uy of the matrix B, in the sense that Z N Uy is not
contained in a surface?!.

Hidden solution: [unAcCESSIBLE UUID '1V6']

E23.16 Prove Young’s inequality: fixed a,b > 0, p,q > 1 suchthat1/p+1/q =1

then
aP b1

ab< — + 7 (23.17)

with equality if and only if aP = b4, prove this using an appropriate function study.
Hidden solution: [uvAccESSIBLE UUID '1V8']
See also 14.50.

E23.18 Determine, among the triangles inscribed in the unit circle, the one of maximum
area.

§23.a Functional equations
Exercises

E23.19 Note:exercise 1, June 7th 2010.

Prove that there exists one and only one continuous function f on the interval [—1,1]
such that X
fx)=1+ Ef(xz) Vx € [-1,1]

Prove that f is representable as a power series centered at zero; and that the radius
of convergence is one.

Hidden solution: [uniccESSIBLE vuID '1VB']

E23.20 Difficulty:*.Note:exercise 3, written exam, June 30th, 2017.

Consider the problem

{y’(x) = y(x?)
y(0)=1

(this is not a Cauchy problem).
* Show that, for every r < 1, there is only one solution defined on I = (—r,r),
and deduce that the same is true for r = 1.
+ Show that the solution is representable as the sum of a power series centered in
0 and converging on the interval [—1, 1].

Hidden solution: [uniccESSIBLE vuID '1vD']

E23.21 Note:exercise 3, written exam, June 23th 2012.

Prove that there is one and only one continuous function f on interval [0, 1] that
satisfies the condition

O

I — v 0,1
x2+t2+1 x €10.1]

1
f(x) = sin(x) + f
0
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§23 WRITTEN EXAMS AND PSEUDO-EXAMS

E23.22 Note:exercise 4, written exam, June 23th, 2012.

A function f(x) = >

oo AnXpn, analytic in a neighborhood of 0, satisfies on its
domain the conditions

{f’(X) =1+ f(-x)
fO)=c
(note that this is not a Cauchy problem!).

* Determine f.

* Prove that the function found is the only solution, in the set of all functions that
can be derived in a neighborhood of 0.

E23.23

+ Show that there is an unique continuous functionf : (—1,1) — R that satisfies
J(x) = xcos(f(x)) .

* Fixed a, b, show that there exist a finite number of continuous f : (—a,b) - R
satisfying

f(x) = xcos(f(x)) Vx € (a,b).

Hidden solution: [unicCESSIBLE vuID '1VJ']

§23.b Vector Fields
Exercises

E23.24 Note:exercise 4, written exam 20 June 2017.

Let F be a continuous vector field on R” \ {0}, such that, for every x # 0, F(x) is a
scalar multiple of x. For r > 0, we denote with S, the sphere of radius r centered in
0.

* Prove that, for each regular arc y with support contained in a sphere S, , we
have j;,F =0.

* Prove that, if such a field F is conservative, then |F(x)| is constant on every
sphere S,, and therefore that F(x) = xp(|x|) with p : R"\{0} — R continuous.

Hidden solution: [vnAcCESSIBLE vuID '1PY']

T121This problem is simpler than you think... There are too many matrices with zero determinant close to
B..

Copyright A. C. G. Mennucci 231
The sections comprising theory and exercises’ statements are released under License WP:CC BY-SA

[1vG]

[1VH]

[1PW]

[1PX]


https://coldoc.sns.it/UUID/EDB/1VG/
https://coldoc.sns.it/UUID/EDB/1VH/
https://coldoc.sns.it/UUID/EDB/1VJ
https://coldoc.sns.it/UUID/EDB/1PW/
https://coldoc.sns.it/UUID/EDB/1PX/
https://coldoc.sns.it/UUID/EDB/1PY
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License

UUID

009, 3
00B, 4
00C, 6
00D, 6
00G, 7
00J,7
00K, 8
O0ON, 8
00Q, 10
OOR, 11
008, 11
00T, 12
00V, 12
00X, 12
00Z, 12
011, 12
013, 13
014, 17
016, 13
018, 69
019, 69
01C, 69
01F, 69
01G, 69
01J, 16
01M, 18
01N, 20
01P, 36
01R, 20
01w, 21
01y, 21
020, 21
022, 21
023, 19
024, 21
026, 17
028, 19
029, 20
02¢, 23
02D, 22
02F, 90
02H, 22
02K, 22
02M, 23
028, 50
02T, 50
02W, 50
02Y, 50
030, 50
031, 50

032, 50
034, 50
036, 51
038, 51
03¢, 51
03F, 51
03H, 51
03M, 51
03P, 51
03R, 52
03V, 52
03X, 52
03Y, 52
040, 52
043, 52
045, 52
048, 53
04B, 53
04D, 53
04G, 53
047,53
04M, 53
04P, 53
04R, 53
04V, 54
04X, 54
047, 54
051, 54
053, 54
055, 54
057, 54
059, 169
057, 55
05M, 55
05R, 55
058, 55
05T, 56
05V, 56
05X, 56
05Z, 56
060, 56
063, 57
064, 57
065, 57
067, 26
069, 27
06C, 27
06F, 27
067, 27
06M, 27

06N, 28
06P, 28
06Q, 28
068, 28
06V, 28
06X, 28
06Y, 29
06Z, 29
070, 29
071, 30
072, 30
073, 30
074, 30
076, 30
078, 31
07B, 31
07¢, 31
07D, 31
07F, 31
07H, 32
07K, 32
07N, 32
O7R, 46
078, 46
07T, 47
07V, 32
07W, 46
07X, 46
072, 48
080, 48
082, 48
084, 48
086, 48
089, 48
08C, 48
08F, 48
08H, 49
08K, 49
08M, 49
08P, 49
08T, 78
08V, 73
08X, 34
08Y, 34
08Z, 60
090, 61
091, 35
092, 35
093, 36
095, 36

232

097, 36
09G, 37
097, 37
09K, 37
09N, 57
09Q, 57
098, 120
09T, 120
09%, 75
09Y, 75
0BO, 76
0B2, 76
0B3, 77
0B4, 77
0BS, 78
0B6, 79
0B7, 79
0B9, 80
0BC, 80
OBF, 80
0BG, 77
OBH, 81
0BJ, 81
0BK, 82
0BM, 83
OBN, 83
0BP, 83
0BQ, 84
0BS, 85
0BT, 85
0BV, 85
0BW, 85
0BY, 85
oct, 85
0C3, 86
0Cs, 86
0C7, 86
0cs, 86
0C9, 86
0CB, 86
occ, 87
0CD, 87
OCF, 87
OCH, 87
OCK, 87
OCN, 88
0CP, 88
0cQ, 88
OCR, 88
0cs, 88

ocv, 88
0CX, 88
0DO, 89
0D2, 89
0D4, 89
0D6, 89
0D9, 89
0DD, 90
0DJ, 90
ODK, 91
ODN, 92
0DQ, 46
ODR, 94
ODW, 95
0DY, 95
0F0, 95
0F1, 93
0F2, 95
OF4, 95
OF5, 96
OF7, 96
OF8, 96
0F9, 97
OFH, 98
OFJ, 98
OFK, 98
OFM, 98
OFP, 98
OFR, 99
OFS, 99
OFT, 100
OFV, 100
OFW, 100
OFX, 100
0FZ, 101
0G0, 101
0G3, 101
0G5, 102
0G6, 102
0G7, 102
0G8, 102
0G9, 102
0GB, 102
0GC, 102
0GD, 102
OGF, 103
0GH, 103
0GJ, 103
0GM, 103
0GQ, 103

0GS, 104
0GW, 104
0GX, 104
0GY, 104
0GZ, 104
0HO, 105
0H1, 105
0H3, 105
0HS, 105
0H7, 105
OH9, 105
OHD, 105
OHG, 105
OHJ, 105
OHM, 106
OHP, 106
OHR, 106
OHS, 106
OHT, 107
OHW, 107
OHY, 107
0J1, 107
0J3, 107
0J4, 108
0J5, 108
0J6, 108
0J8, 108
0JB, 108
0JD, 108
0JF, 109
0JG, 109
0JH, 109
0JK, 109
0JN, 119
0JQ, 110
0JT, 110
0Jv, 110
0JY, 110
0KO, 110
0K4, 110
OKS, 111
0K, 111
0K7, 111
0KS, 111
OKB, 111
OKC, 112
OKD, 112
OKG, 112
OKK, 113
OKM, 113



0KQ, 113
0KS, 113
OKV, 113
OKX, 113
0KZ, 114
oM1, 114
oM3, 114
oMS, 114
oM7, 113
oMo, 115
OMC, 116
oMD, 116
OMF, 116
OMH, 116
OMM, 116
OMP, 117
OMR, 121
oMS, 121
OMT, 121
oMV, 121
oMW, 121
OMX, 121
oMZ, 122
ON1, 122
ON3, 122
ONS, 122
ONe, 122
ONS, 122
ONB, 28

ONC, 122
ONF, 122
ONG, 123
ONH, 123
ONM, 123
ONN, 62

oNg, 123
ONW, 123
ONX, 123
ONZ, 124
OP1, 124
0P3, 124
OP5, 124
0P8, 124
0P8, 124
OPB, 124
OPD, 124
OPG, 125
OPJ, 125
OPM, 125
OPP, 125
0PQ, 125
OPR, 125
OPS, 125
OPT, 126

OPY, 126
0Q0, 126
0Q3, 126
0G5, 126
0Q7, 126
0Qs, 127
0qc, 127
0QF, 127
0QJ, 127
oQy, 127
0QN, 128
0QP, 128
OQR, 128
0gs, 128
oqQv, 128
0QX, 129
0Qy, 129
0Qz, 129
OR2, 129
OR3, 130
OR5, 130
ORS8, 130
0R9, 130
ORC, 131
ORG, 131
ORH, 132
ORK, 132
ORP, 132
ORR, 132
ORT, 132
ORY, 132
050, 132
082, 132
04, 132
0S6, 133
0S8, 133
0SB, 133
0SD, 133
0sG, 133
0SM, 133
oSN, 133
0sQ, 134
0sV, 134
0TO, 134
0T3, 134
0T4, 134
0T5, 134
0T7, 134
0T9, 134
0TD, 134
0TG, 135
OTH, 135
0TK, 135
OTM, 135

OTP, 135
0TQ, 135
OTT, 135
OTW, 135
0TZ, 136
0V3, 136
0v4, 136
ove, 136
0v8, 136
OVB, 136
ove, 136
oVD, 136
ovG, 137
ovJ, 137
VP, 137
OVR, 137
ovs, 137
OVT, 138
ovv, 138
ovW, 138
OVX, 138
ovz, 138
ow1, 138
ow3, 139
owe, 133
owg, 139
OWB, 139
oWC, 139
OWD, 139
OWG, 139
owJ, 139
OWM, 139
OWN, 140
OWP, 140
OWR, 140
OWT, 140
OWW, 140
OWY, 140
0X0, 140
0X1, 140
0X2, 140
0X4, 140
0X6, 141
0X8, 141
0XC, 141
OXF, 141
0XG, 141
OXH, 142
0XM, 142
0XQ, 142
0XT, 142
0XW, 142
0XY, 142
0Y0, 142
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0Y3, 143
0Y4, 143
0Ys, 143
0Y7, 143
0Y9, 143
0YB, 143
0YD, 144
OYF, 144
OYH, 145
0YJ, 145
OYK, 145
OYN, 145
0YQ, 145
0YS, 145
0YV, 145
0YX, 145
0YZ, 146
071, 146
073, 146
027, 146
0ZB, 147
0ZD, 147
0ZG, 147
023, 147
0ZM, 147
0ZP, 147
0ZR, 147
0ZT, 148
0Zv, 148
0ZuW, 148
07X, 148
0ZY, 148
0ZZ, 148
100, 2

105, 149
106, 149
107, 149
109, 149
10C, 150
10D, 150
10F, 150
10J, 150
10M, 150
10P, 150
10Q, 151
108, 151
10V, 151
10%, 151
10Y, 151
110, 151
111, 151
112, 152
114, 152
116, 152

117, 152
118, 152
11B, 153
11¢, 153
11D, 153
11F, 153
116, 153
11H, 153
117, 153
11K, 153
11M, 154
11N, 154
11P, 154
11R, 154
118, 154
11T, 154
11V, 154
11V, 154
120, 154
122, 154
124, 155
125, 155
127, 155
129, 155
12¢, 155
12F, 155
126G, 156
127, 156
12M, 156
12P, 156
12R, 156
12T, 156
12V, 156
12Y, 156
130, 157
132, 157
137, 158
138, 158
139, 158
13C, 158
13D, 158
136G, 158
137, 159
13M, 159
13P, 159
13R, 159
13T, 159
13W, 159
13Y, 160
132, 160
141, 160
142, 160
143, 160
144, 160

145, 161
146, 161
147, 161
148, 161
14B, 161
14D, 161
14F, 161
147, 162
14K, 162
14M, 162
14N, 162
14P, 162
14R, 162
14T, 162
14w, 163
14Y, 163
150, 163
151, 163
152, 163
155, 163
156, 163
15C, 164
15F, 164
15J, 164
15M, 165
15P, 165
15R, 165
15T, 165
15W, 165
152, 165
161, 165
162, 166
163, 166
164, 166
165, 166
166, 166
167, 166
169, 166
16D, 166
16F, 166
166, 34
167, 167
16K, 167
16N, 167
16Q, 167
168, 167
16V, 168
16W, 168
16X, 168
16Y, 168
162, 168
170, 168
172, 169
174, 169



176, 169
178, 169
17B, 169
17D, 169
17H, 170
173,170
17M, 170
17P, 170
17R, 170
17T, 170
17w, 171
17Y, 171
172,171
180, 171
181, 171
182, 172
183, 172
184, 172
186, 172
188, 172
18B, 172
18C, 172
18F, 173
18H, 173
187, 173
18K, 173
18M, 173
18P, 174
18R, 174
18T, 174
18W, 174
18Y, 174
182, 174
191, 174
192, 174
194, 175
196, 175
198, 175
19B, 175
19¢, 175
19D, 176
19F, 176
196G, 176
19K, 177
19M, 177
19Q, 177
198, 177
19V, 177
19Y, 177
1BO, 178
1B1, 50

1B3, 178
1B4, 178
1B6, 178

1B8, 178
1B9, 178
1BC, 178
1BF, 178
1BG, 179
1BJ, 179
1BM, 179
1BN, 179
1BP, 179
1BR, 179
1BT, 180
1BW, 180
1BX, 180
1BZ, 180
1C0, 180
1C2, 180
1C3, 181
1c4, 181
1C5, 182
1C6, 182
1C8, 182
1CB, 182
1CD, 182
1CG, 183
1CJ, 183
1CM, 183
1CP, 183
1CV, 183
1CX, 183
1Cz, 183
1D1, 183
1D4, 183
1D7, 183
1D9, 184
1DD, 184
1DG, 184
1DJ, 184
1DM, 184
1DR, 185
1DT, 185
1DW, 185
1DZ, 185
1F1, 186
1F4, 186
1F6, 195
1F7, 186
1F9, 186
1FB, 186
1FC, 187
1FD, 187
1FF, 187
1FG, 188
1FJ, 188
1FM, 189

1FP, 189
1FR, 189
1FT, 189
1FX, 189
1FZ, 189
1G2, 190
1G4, 190
1G6, 190
1G8, 190
1GB, 190
1GD, 191
1GF, 191
1GJ, 191
1GP, 191
1GQ, 192
1GS, 192
1GW, 192
1GX, 193
1GZ, 193
1H1, 193
1H3, 194
1H8, 195
1HB, 195
1HD, 195
1HG, 196
1HH, 196
1HK, 196
1HM, 196
1HQ, 197
1HR, 197
1HS, 197
1HW, 197
1HY, 197
1J1, 197
1J3, 198
1J8, 209
1JG, 198
1JN, 199
1JQ, 199
1Js, 199
1JV, 199
1JX, 200
1K0, 200
1K2, 200
1K4, 200
1K6, 201
1K7, 201
1K9, 201
1KD, 201
1KG, 201
1KJ, 201
1KM, 201
1KQ, 202
1KS, 202
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1KV, 202
1KZ, 202
1M1, 203
1M3, 203
1M5, 203
1M7, 203
1M9, 203
1MB, 203
1MD, 204
1MF, 204
1MG, 204
1MJ, 205
1MK, 205
1MN, 205
1MQ, 205
1MS, 205
1MT, 205
1MW, 205
1MY, 206
1NO, 206
1N2, 206
1N4, 207
1N5, 207
1N7, 207
1NC, 207
1NG, 207
1NJ, 207
1NN, 208
1NQ, 208
ANT, 209
1NV, 209
1NW, 209
1NX, 209
1NY, 209
1P0, 209
1P1, 209
1P3, 210
1P5, 210
1P7, 210
1PB, 210
1PC, 211
1PF, 211
1P@G, 211
1PH, 211
1PK, 211
1PN, 211
1PQ, 212
1PR, 212
1PT, 212
1PW, 231
1PX, 231
1PZ, 213
1Q0, 213
1Q2, 213

1Q4, 213
1Q6, 230
1Q8, 213
1QB, 214
1Qc, 214
1QH, 214
1QK, 215
1QN, 215
1QR, 215
1QV, 216
1QX, 216
1Qz, 216
1R1, 216
1R4, 216
1R7, 217
1R8, 217
1RD, 217
1RK, 217
1RQ, 219
1RV, 220
1RY, 220
181, 220
184, 221
187, 221
189, 221
1SC, 222
18D, 222
1SF, 222
1SH, 222
1SK, 222
1SN, 223
1SP, 223
1SR, 223
188, 223
1SW, 224
1SY, 224
1T1, 224
1T3, 225
1T6, 225
1T8, 226
1T9, 226
1TD, 226
1TG, 226
1773, 227
1TN, 227
1TS, 227
1TT, 227
1TV, 227
1TW, 228
1TX, 228
1TY, 228
1TZ, 228
1V0, 228
1V2, 229

1V4, 229
1V7, 230
1V9, 230
1VC, 230
1VF, 230
1VG, 231
1VH, 231
1V, 6

1VX, 6

1VY, 8

1W0, 14
11, 14
W2, 15
1W4, 19
1W5, 24
16, 15
18, 15
19, 15
1WB, 15
1WC, 16
1WF, 15
1WH, 25
1WJ, 26
1WK, 25
1WM, 27
1WN, 27
1WP, 30
1WQ, 34
1WR, 34
1Ws, 34
1WY, 24
1X0, 25
1X1, 11

1X2, 11

1X3, 35
1X4, 35
1X5, 35
1X6, 35
1X7, 62
1X9, 59
1XB, 59
1XC, 60
1XD, 59
1XF, 60
1XG, 60
1XH, 119
1XN, 68
1XP, 68
1XR, 67
1XS, 68
1XT, 68
1XW, 119
1XY, 68
1Y0, 18



1Y1, 17
1Y2, 14
1Y3, 17
1Y4, 16
1Y5, 24
1Y6, 34
1Y7, 25
178, 13
1Y9, 19
1YD, 20
1YH, 26
1YJ, 27
1YK, 7
1YM, 40
1YP, 59
1YQ, 46
1YR, 34
1Ys, 6
1YT, 13
1YV, 24
1YW, 49
1YX, 55
1YY, 26
120, 47
171, 47
172, 57
175, 37
176, 39
127, 39
178, 39
179, 49
17D, 70
1ZF, 70
126G, 70
1ZH, 70
123,71
17K, 71
1ZM, 71
1ZP, 71
17ZR, 72
178, 72
17T, 72
12V, 72
1ZW, 71
17X, 73
17Y, 73
177, 73
200, 73
202, 73
203, 72
205, 74
2086, 32
208, 78
209, 78

20B, 79
20C, 77
20D, 80
20F, 81
20G, 82
20H, 79
207, 80
20K, 78
20M, 79
20N, 82
20P, 80
20Q, 37
20R, 71

20T, 73
20V, 75
20W, 76
20X, 76
20Y, 80
20Z, 97
210, 97
211, 37
214, 95
217,91
219, 92
21B, 92
21C, 92
21D, 93
21F, 93
21H, 91
217,98
21M, 97
21N, 162
21P, 33
21Q, 33
21R, 32
21V, 32
21W, 33
21X, 33
21Y, 33
217, 33
220, 32
222, 46
224, 25
225, 112
226, 14
227, 14
228, 7

229, 26
22B, 49
22€, 10
20F, 46
22H, 47
22K, 50
22M, 53

22P, 33
22R, 30
228, 30
22X, 77
22Y, 100
227, 99
230, 99
231, 28
232, 29
233, 29
234, 29
237, 100
238, 94
239, 40
23B, 41
23D, 95
23F, 97
23H, 6
237,6
23K, 6
23M, 37
23N, 175
23P, 168
23Q, 69
23R, 21
238, 15
23T, 19
23W, 18
23X, 24
23Y, 220
237, 222
240, 220
241, 17
242, 13
243, 41
244, 41
245, 40
246, 40
247,19
248, 19
24D, 42
24K, 25
24M, 40
24P, 16
24Q, 41
248, 41
24V, 40
24W, 24
24X, 40
24y, 31
247, 42
250, 36
251, 36
252, 19
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255, 45
257, 43
25B, 44
25C, 41
25D, 44
25G, 45
257, 43
25M, 45
25N, 44
25Q, 44
25W, 44
257, 44
263,27
265, 44
267, 65
269, 44
26F, 67
26G, 69
26H, 64
267, 42
26K, 42
26N, 43
26P, 43
268, 45
26V, 45
26X, 65
26Y, 64
271, 65
273, 68
274, 60
275, 45
276, 65
277, 65
27F, 21
27H, 54
277, 60
27K, 64
27M, 67
27N, 62
27P, 63
27Q, 63
27R, 64
278, 64
27V, 64
27W, 64
27X, 64
277, 64
280, 64
281, 64
287, 65
288, 65
289, 65
28B, 66
28C, 66

28D, 66
28G, 66
287, 66
28M, 66
28N, 66
28Q, 67
28R, 67
28T, 64
28V, 63
287, 66
290, 43
291, 41
292, 62
294, 62
297, 66
298, 66
29¢C, 71
29D, 26
29G, 69
20H, 76
297, 77
20K, 77
20M, 78
29N, 80
29P, 81
29Q, 85
29R, 84
298, 84
29T, 84
29V, 104
20X, 98
297, 119
2B0, 86
2B2, 29
2B3, 99
2B4, 111
2B5, 113
2B6, 110
2B7, 111
2B8, 111
2B9, 111
2BB, 112
2BD, 106
2BF, 107
2BG, 108
2BH, 195
2BJ, 107
2BK, 116
2BM, 116
2BN, 104
2BP, 117
2BR, 108
2BS, 109
2BT, 109

2BW, 110
2BX, 36

2BZ, 22

2c1, 121
202, 123
2¢3, 129
2¢4, 130
25, 131
206, 132
27, 133
208, 135
209, 135
2CB, 136
2cc, 121
2D, 118
2CF, 143
2CG, 141
2CH, 151
2¢J, 152
2CK, 150
2CM, 152
2CN, 153
2CP, 154
2¢Q, 155
2CR, 161
28, 161
2CT, 160
20V, 158
20X, 167
200, 182
2D1, 184
2D2, 186
2D3, 189
2D4, 191
2D5, 195
2086, 202
2D7, 203
2D8, 204
2DC, 11

2DD, 50

2DF, 51

2DH, 102
2DJ, 75

2DK, 109
2DM, 4

2DN, 162
2DP, 162
2DQ, 163
2DR, 166
208, 167
2DT, 197
2DW, 31

2DX, 18

2DY, 102



2F0, 168
2F2, 52
2F3, 129
2F5, 115
2F6, 102

2F7, 115
2F9, 115
2FB, 118
2FD, 115
2FG, 4

2FH, 30
2FJ, 27
2FN, 30
2FN, 118
2FP, 119
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2FW, 118
2FX, 118
2FY, 109
2FZ, 110
2G2, 2

2G3, 118
2G4, 169
2G6, 118
2G8, 10

2GB, 137

2GF, 22
2GH, 50
20K, 49
2GT, 181
2GV, 12



Index

Z, see closure

0A, see boundary

A€, see set, complement of
B(x,r), see ball, 123

C, see function, continuous
C, see complex numbers, 4
ck, 182

C9, see function, continuous
Ck, 193

Cy, 147, 161

D(x,r), see disk

A, see set, symmetric difference, 15
F,, see F-sigma

Gs, see G-delta

[, see identity matrix

N, see natural numbers, 4
Nzp, 42

Q, see rational numbers, 4

R, see also real line, see real numbers,

4
R/27 , 143
R, see extended line
S(x,r), see sphere
S1, see circle
T,, see Hausdorff
Z, see integer numbers, 4
.5
5
(5,30
1,5
), 5
), 5,30
N\, 197
df, see subdifferential
e, see Euler’s number
=, see equality
sin(1/x), 132
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-, 7
| - |I, see also norm
I llp
in R", 150-151
I lloo
in Cy, 147, 161
in R", 150-151
s, 7
A 4,7
Vv, 4,7
n, 14
u, 14, 17
~,209-211
~g, 211
=, 209, 210
C, 14
G 14
c, 14
N, 14
N, 19, 107
U 14
U, 115
U, 17, 44, 113
[_xj, see floor
\, see set difference
4, see concatenation, 33
(partial), 24

I', see Gamma function

Abel, 201, 225
Abel identity, 225
accumulation point, 105, 107, 128,
129, 158-160
in a topological space, 104
in metric spaces, 128
in metric spaces, 128-129, 133
in the real line, 77, 77, 81, 133,
199
adherent point, 128
in a topological space, 104



in metric space, 124
adjugate matrix, 229
algebraic number, 86
alternating series test, see Leibniz test
analytic function, 207-208
anti-discrete topology, see indiscrete
topology
antireflexiv
relation, 24, 25
antisymmetric
relation, 24, 25
arc, 209
archimedean, 71
Arzela, 200
Ascoli, 200
associative
addition, 63
atom, 7, 8, 16
axiom
first — of countability, 116, 160
of choice, 21, 22, 22
of extensionality, 13, 17
of foundation, 20, 45
of infinity, 21, 41
of power set, 17, 21
of regularity, 18, 20, 45
of replacement, 18
of specification, 18
of union, 14, 17
second — of countability, 116,
116, 126, 134
of empty set, 17
of infinity, 18
of pairing, 17
axioms
Peano’s —, 59
Zermelo—Fraenkel, 16, see
formal set theory

Babylonian method, 92
Baire, 138
Baire category, 138, 163
Baire’s
theorem, 138
ball, 123, 124, 133, 149
in ultrametric, 140
inclusion, 124
ball packing, 145
Banach, see also theorem,
Hahn-Banach —
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space, 147,152, 160, 161
base
(induction), 60
(topology), 106, 113-116, 126,
127
(vector spaces) , see basis
basis
(induction), 60
(topology), see base
(vector spaces), 22, 54, 150
belonging, 11
Bessel, 201
biconditional, 7
big O, see Landau symbols
binomial, see also theorem, binomial
coefficient, 74, 189
series, 189
Borel, 136
boundary, 102, 105, 106, 169
repeatedly, 105
bounded
totally, 136, 137
bounded above, 30
bounded below, 30
box, 147

C, see function, continuous
cancellation, 64, 66, 67
Cantor
set, 120, 141, 147, 177
intersection theorem, 80, 108,
137
cardinality, 49-55
comparison, 50
continuum —, 52, 122
countable, 51
finite —, 50, 50
of the continuum, 129
of the continuum , 52
Cartan, 203
Cartesian product, 5, 14, 21, 22, 24,
56, 114, 128
and topology, 115
of balls, 128
of groups, 141
category, see also Baire’s theorem, see
also set, first/second —
Baire, 138, 163
Cauchy, 214
condensation test, 93



product, 98, 202
sequence, see sequence, Cauchy
CH, see continuum hypothesis
chain, 37
characteristic
function, 55, 177
function, 55, 84, 117
circle, 143
closed, see set, closed —
closed curve, see curve, closed
closed simple curve, see curve, closed
simple
closed topologist’s sine curve, 132
closure, 102, 106, 113, 124, 125, 127,
169
and interior, 103, 133
in metric space, 124
repeated, 103
cluster point
in a metric space, 129, 133
codiscrete topology, see indiscrete
topology
cofactor matrix, 229
cofinal, 28, 110
Cohen, 52
commutative
group, 70
ring—, 70
compact
sequentially, 136
compact set, 107, 108, 136, 137
and net, 111
and ultrametric, 141
comparable, 26
complement
of a set, see set, complement of
set, see set,complement
complete, 140
complex numbers, 70, 98, 177, 201,
223
concatenation, 33
concrete topology, see indiscrete
topology
conjunction, 7
connected component, 110
connected set, 108
connection
in metric spaces, 132, 131-132
constant
Euler-Mascheroni, 89
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continuity modulus, 164, 164-166,
197-199
continuous function, 111, 111-113,
162-163
continuum
cardinality of the —, 52, 129
continuum hypothesis, 52, 129
contrapositive, 9
convergence
of a sequence, 121
of a series, 92-97
pointwise —, 117, 197, 197-200
uniform —, 197, 197-200
total —, 152, 152, 224
convex combination, 168
convex envelope, 157, 169
convex function, 148, 171, 171-176,
198
convex hull, see convex envelope
convex set, 168, 168
strictly —, 176
countable, 50, 53
countably infinite, 50
counterimage, 35
criterion
total convergence —, 152
curve, 209, 209-212
closed, 210
embedded, 209, 209
Hilbert —, 210
immersed —, 209
Koch, 147
parametric —, 209, 210
Peano —, 210
polygonal —, 118, 118
simple, 209
simple closed, 118, 210
trace, 209

Darboux
example, 183
Darboux property, 182
decreasing, 75
Dedekind, 53
Dedekind-infinite, 53
Dedekind—infinite, 53
deleted neighborhood, 76, 77, 81
in a topological space, 104
dense, see set, dense
in metric space, 124



derivative, 106
partial —, 189-190
total —, 189-190
Descartes
rule of signs, 183
determinant, see matrix, determinant
diffeomorphism, 209
differential, 189—-190
differential equation, see ODE
difficult exercises, 23, 32, 46, 49, 53,
54, 68, 76, 77, 84, 87-89,
101, 103, 105, 109, 111, 112,
116, 117,119, 123, 127, 129,
132-137, 139, 142,
145-148, 159, 162-164,
167,169-172, 178,
180-186, 189, 194, 199,
200, 202, 203, 205, 206,
209, 212, 217, 224, 229, 230
dilation, 155
dimension
box —, 147
Minkowski, 145
Dini, 177, 197
directed set, see order, directed, 29
Dirichlet criterion, 93
for integrals, 228
Dirichlet’s approximation theorem, 85
disconnected set, 108
discrete
distance, 121
topology, 121
discrete topology, 102, 115, 116, 127
disjunction, 7
disk, 123, 124, 126, 133, 136, 149
in ultrametric, 140
distance, 121
p-adic —, 141
discrete —, 121
distance function, 130, 130-131
and convex sets, 175

e, see Euler’s number

ear, 119

Edelstein, 135

embedded curve, see curve, embedded
empty set, 14, 17

enumeration, 51, 226

epigraph, 158, 171
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equality, 8

in set theory, 13
equations

Bessel’s —, 201
equicontinuous family, 197, 199
equicontinuous functions, 198
equinumerous, 49
equipotent, 49
equivalence relation, see relation,

equivalence

equivalent

norms, 149
erosion, 155
Euclidean division, 66
Euler, 203

identity, 203
Euler’s number, 203
Euler-Mascheroni constant, 89
evaluation

of well-formed formula, 7, 8
eventually, 23, 29, 57, 69, 77, 81, 82,

90-92, 94, 111

exchanging limits, 88
expansion

Taylor’s —, see Taylor’s theorem
exponential, 203, 222

matrix —, 204
exponentiation, 7

in a field, 73

of natural numbers, 64
extended line, 75, 106

F-sigma, 127, 167
R\ Q, 163

fattened set, 131

Faa Di Bruno, 184

field, 70
ordered —, 73
C,73
filtering property, see order, with

filtering property

finite, see set, finite
finite linear combination, 22
first axiom of countability, 116, 160
first category set, 138
fixed point, 167
floor, 85, 89
formal set theory, 16, 17-21
formula

atomic, 7



exists and is unique, 13
Leibniz’s —, see Leibniz’s
formula
Taylor’s —, see Taylor’s theorem
well-formed —, 7, 7, 8, 11, 13,
19, 56
evaluation, 7, 8
in set theory, 16
with quantifiers, 10, 12
fractional part, 85
Fraenkel, 16, 17
free variable, 10
frequently, 29, 57, 69, 77
Frobenious, 153
function, 34
absolutely homogeneous, 148
analytic, see analytic function
bi-Lipschitz, 142
bounded —, 160, 198
characteristic, 55, 177
continuous, see continuous
function
continuous —, 162
convex, see convex function
discontinuous, 163
Gamma, 179
Holder —, 166, 166—-167, 193,
198
indicator, see characteristic
function
left inverse, 22
liminf of —, see liminf
limsup of —, see limsup
Lipschitz —, 123, 130, 142, 164,
166, 166-167, 171, 173, 193
monotonic, 198
monotonic —, 161
partial, 24, 36
piecewise constant —, 160
piecewise smooth —, 215
positively homogeneous, 148
proper —, 134
regulated, see regulated function
Riemann integrable —, 162,
177-181, 198
right continuous —, 161
semi continuous, see upper/lower
semicontinuous
strictly convex, see strictly
convex function
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uniformly continuous
space of —, 200
uniformly continuous —, 163,
163-166, 198, 199
characteristic, 55, 84, 117
functional
relation, 24, 34
functions
equicontinuous, 198
fundamental system of
neighbourhoods, 104, 116,
117
funzione distanza, 130

G-delta, 127

Gamma function, 179

generate, 22, 54

graph, 34

greatest common divisor, 25
greatest element, 26

greatest lower bound, see infimum
Gronwall, 214

group, 70

Godel, 52

Hadamard, 186
Hahn, see also theorem, Hahn—Banach

Hamel basis, 22, 54

Hausdorff, 102, 108, 124

Heine, 136

Hermite, 186

Hilbert, 210

Hoelder, 198

homeomorphism, 108, 112, 120, 129,
136, 162, 209, 211

Hospital, see Hopital

Hurwitz, 71

hyperplane, 170

Hopital rule, 182

Holder, 166

Holder inequality, 150

[, see identity matrix

identity matrix, 205

image, 35

immersed curve, see curve, immersed
implication, 7

incomparable, 26

increasing, 75



indicator, see characteristic function
indiscrete topology, 102
induced norm, 152
induction, 60

strong, 68

transfinite —, 68
induction principle, 41, 60
induction principle, strong —, 68
inductive, see S-saturated

inequality
Jensen —, 181
triangle —, 121, see triangle
inequality

Young —, see Young inequality
inf, see infimum
inf-convolution, 159
infimum, 30, in the real line78, 79
infinite, see set, infinite
countably —, 50
informal set theory, 16
initial segment, 47
injective, 24
integer numbers
dense in ultrametric, 142
integer part, see floor, 85, 89
integral domain, 72
interior, 102, 103, 106, 113, 124, 125,
127,169
and closure, 103, 133
in metric space, 124
interpolation
polynomial —, 37, 186
intersection theorem, see Cantor,
intersection theorem
interval, 31, 31-32
standard —, 31
irrational numbers, 85, 138, 163, 178
approximation, 85
irreflexiv
relation, 24, 25
isolated point, 105, 129, 134, 228
in a topological space, 104
isometry, 135, 136
itersection of sets, 14

Jacobi, 190, 229
formula, 205, 229, 229
matrix, 190, 192
Jensen inequality, 181
Jordan, 118
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Karush, 196
Koch, 147
Kuhn, 196

l.s.c., see lower semicontinuous
labeled polygon, 118
Lagrange, 195
Lagrange multiplier, 150, 195
Lagrange’s theorem, 182
Landau symbols, 187, 187, 188
Laplace, 229
Laplace expansion, 229
least element, 26
least upper bound, see supremum, 78
left inverse, 22, 36
Leibniz, 184
test, 93, 94
Leibniz’s formula, 184
lemma
Abel’s —, 201
Dini’s —, 197
Gronwall’s —, 214
Hadamard’s —, 186
Zorn’s —, 21, 170
lexicographic order, see order,
lexicographic
liminf, 81, 91
of function, 81, 81-84
of sequence, 84
of sets, 57, 57, 84
limit inferior, see liminf
limit point
of a net in a topological space,
111
limit superior, see limsup
limsup, 81
of function, 81, 81-84
of sequence, 84
of sets, 57, 57, 84
Lindelof, 214
line, see also real line
extended, see extended line
linear
order, see order, total
linear isometry, 151
linearly independent, 22, 54
Lipschitz, 166, 214
locally compact, 136
logarithm, 162
lower bounds, 30



lower semicontinuous, 158-160

majorants, 30
matrix
adjugate —, 229
cofactor —, 229
determinant, 228, 229
exponential, 204
identity —, 205
maximal, 26, 28
maximum, 26, 28, 107
Mazur, 151
mean value theorem , see Lagrange’s
theorem
Mertens, 98
metric space, 121, 121-144, 159
also a group, 130
minimal, 26, 68
minimum, 26
on convex set, 172
Minkowski, 131, 145
dimension, 145
Minkowski sum, 80, 131, 154, 154
minorants, 30
monotonic, 75

Napier, 203
Napier’s constant, see Euler’s number
natural numbers, 59-69
natural numbers, order, 64
negation, 7
neighborhood
deleted, 76, 77, 81
in a topological space, 104
of infinity, 28
punctured, 76
neighbourhood, 104
fundamental system of —, 104,
116, 117
inR, 76
net, 98, 99, 100, 110, 112, 113, 117
and compact set, 111
network, 99
Newton, 74
norm, 148
Frobenious , 153
and dimension, 146
spectral, 153
normed vector space, 148-157
strictly convex —, 148
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norms
equivalent, 149

numbers, see also complex numbers,
see also integer numbers,
see also natural numbers,
see also rational numbers,
see also real numbers

numerabile, 50

numero di Nepero, see Euler’s number

ODE, 214-225
one-point compactified line, 106
open
seeset, open —, 102
open-close, 127
order, 26—33
(partial), 24
directed, 28, 27-29, 100, 106,
107, 111
of sets, 103, 113
lexicographic, 30, 30, 116
of natural numbers, 64
partial, 24
total, 24, 25, 115
type, 32
with filtering property, 27,
27-29, 110
and net, 98
strict total —, 25
total, 24
with filtering property, 28, 100
order isomorphism, 32
order relation, 24
order topology, 115, 115
order-isomorphic, 32
ordered field, 73
C, 73
ordered ring, 71, 72
ordered set, see order
ordinal, 44
ordinary differential equation, see
ODE
oscillation, 159, 160
osculating circle, 227
Osgood uniqueness condition, 216

p-adic
distance, 141
valuation, 141, 142



parametric curve, see curve,
parametric —
partial
derivative, see derivative, partial
partial function, 24, 36
partial order, see order, partial, 25
path connected set, 131
Peano, 59, 210
perfect, 120, 129, 139
Picard, 214
pointwise, see convergence, pointwise
polygon, 118, 151
ear, 119
polygonal curve, 118, 118
polynomial, 37, 51, 86-87, 177, 186,
222,223
convergence of —, 198
ring —, 86
sequence of —, 198
Taylor’s —, see Taylor’s theorem
polynomial interpolation, 37, 186
power, see also exponentiation
power series, 201-206
power set, 14, 17
predecessor, 41, 47, 59
preorder, 23, 39
product
Cartesian —, see Cartesian
product
product topology, 114, 128
product topology (of infinitely many
spaces), 115, 116
projection
theorem, 169
proper
function, 134
property, cancellation, see cancellation
proposition (logic), 12
punctured neighborhood, 76

quantified variable, 11

Raabe, 94

radius of curvature, 227

ratio test, 92

rational numbers, 70, 73, 85, 178, 226
and ultrametric, 141, 142, 142

real line, see also real numbers
one-point compactified —, 106

real number
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approximation of —, 85
real numbers, 70, 75-87, see also real
line
recursive, 91
definition, 60
reflexiv
relation, 24
regular curve, see curve, immersed
regulated function, 160, 160, 178, 198
relation, 24
antireflexiv, 25
antisymmetric, 25
equivalence —, 24, 36, 121, 122,
129, 144
between curves, 209, 211
for S, 143
in group, 130
irreflexiv, 25
order —, see order
transitive, 25
Ricci, 116
Riemann, 96, see also Riemann
integrable function, see also
Riemann integral
Riemann integral, 162, 177-181, 190
right inverse, 36
rigidity property, 198
ring, 70
of polynomials, 86
ordered —, 71, 72
root test, 92
rule of signs, 183

S-saturated, 40
second axiom of countability, 116,

116, 126, 134
second category set, 138
semicontinuous

lower, see lower semicontinuous
upper, see upper semicontinuous

separable space, 116, 126

separation, 170

sequence, 34
Cauchy —, 121, 121, 122, 137
Cauchy —, and subsequence, 122
convergence of —, see

convergence of a sequence

recursive, 60, 91

sequentially compact, 136

series



binomial —, 189
set
Cantor —, see Cantor set
closed —
in metric space, 124
in topology, 102
complement of a —, 15, 55, 57,
102, 105, 124
countable —, 53
Dedekind-infinite, 53
Dedekind—infinite, 53
derived —, 104, 128, 133, 134
empty —, 14, 17
fattened —, 131
finite —, 50
first category —, 138
infinite
Dedekind —, 53
infinite —, 50
of finite subsets, 52, 54, 96, 100
open —
in metric space, 123
in topology, 102
path connected, 131
perfect —, 120, 129, 139
power —, see power set
power —, 14
second category —, 138
strongly directed, see order, with
filtering property
boundary, see boundary, 105
closure, see closure
dense, 102
difference, 15
interior, see interior
sublevel —, 172
symmetric difference, 15
using characteristics, 55
set theory, see also axioms ...
formal, 16
informal, 16
simple closed curve, see curve, closed
simple
simple curve, see curve, simple —
simplex, 168
sin(1/x), 132
sine curve, 132
small o, see Landau symbols
snowflake, see Koch curve
space
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Hausdorff —, see Hausdorff
of uniformly continuous
functions, 200
separable, 116
totally disconnected —, 110, 127
topological, 102, 102-117
totally disconnected —, 140
span, 22, 54
sphere, 126, 133, 149, 152, 210, 231
star, see Koch curve
strict partial order, 25
strict total order, 25
strictly convex
normed vector space, 148
strictly convex function, 171
strong induction, 68
strongly directed set, see order, with
filtering property
subadditive function, 122, 165, 174
subadditive function and ultrametric,
140
subdifferential, 172, 175
sublevel set, 172
subnet, 99, 100
subscript, 7
subsequence, 89, 99
converging, 117, 136
successor
in Peano’s natural numbers, 59
in well ordered sets, 47
in Zermelo—Fraenkel set theory,
40, 67
sum
Minkowski —, 131
sup, see supremum, 78
superscript, 7
support, 170
of a curve, 209
supporting hyperplane, 170
supremum, 30, 78
surjective, 24
symmetric
relation, 24

T,, see Hausdorff
tautology, 8, 13, 56
Taylor, 182
series, 180, 202, 207
Taylor’s theorem, 182, 186-189
in R™ 190



with integral remainder, 179, 189 product — (of infinitely many

tessellation, 147 spaces), 115, 116
test discrete —, 121
alternating series —, see Leibniz in metric spaces, 123-128
test total
Cauchy condensation —, 93 derivative, see derivative, total
Leibniz —, 93, 94 relation, 24, 34
ratio —, 92 total convergence, see convergence,
root —, 92 total
theorem total convergence criterion, 152
Ascoli-Arzela’s —, 200 total order, see order, total
Baire’s —, 138 totally bounded, 136, 137
binomial —, 74 totally disconnected, see space, totally
Cauchy-Lipschitz —, 214 disconnected
dimension —, 54 trace
Dirichlet’s approximation, 85 of a curve, 209
Edelstein’s —, 135 transcendental number, 86
transfinite

existence and uniqueness —, 214 : .
Hahn-Banach —, 170 induction, 68

Hurwitz’s —, 71 transitive.
Hopital, see Hopital rule relation, 24, 25
intersection —, see Cantor, osen 42

intersection theorem triangle inequality, 76, 121, 140, 148,
Jordan —, 118 ) . 1518119
Lagrange’s — , see Lagrange’s tr%angu ated,

trichotomous

theorem lation, 24. 75

Mazur-Ulam, 151, 152 | felaton, 24, 2>
, trivial topology, see indiscrete
mean value —, see Lagrange’s
topology

theorem Tucker, 196

Mertens’ —, 98 ucKer,

Monotone convergence —, 101 Tychonoff, 117

of uniqueness of the limit, 121

PlCt?lrd—.Llndelﬁf — 214 UG, see function, uniformly
projection —, 169 continuous
Taylor’s —, see Taylor’s theorem Ulam, 151
with Lagrange remainder, see
Lagrange remainder
two ears —, 119
Tychonoff —, 117

u.s.c., see lower semicontinuous

ultrametric, 139
of sequences, dimension, 147
of sequences, 140

uniform, see convergence, uniform

Zermelo, 21 union of sets, 14, 17

implicit function —, 191 unlabeled polygon, 118
topological group, 141 upper bounds, 30
topological space, 102, 102-117 upper semicontinuous, 158160
topology, 102

discrete, 102, 115, 116, 127 valuation

indiscrete, 102 p-adic —, 141, 142

induced —, 109 variable

order —, 115, 115 free, 10

product —, 114, 128 quantified, 11
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vector space, 117, 223 Young inequality, 150, 175, 230
normed —, see normed ...

Von Neumann, 44 Zermelo, 16, 17, 21
ZF, see formal set theory, 18, 52, 53
well-formed formula, see formula, ZFC, 18,52, 53
well-formed Zorn, 21, 170
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