Exercises E3.i.11 A well-formed formula in propositional logic is a **tautology** if for each *eval-uation* the formula is always true. Suppose *A*, *B*, *C* are well-formed formulas. Show that the following properties of connectives are tautologies. †9 | $A \Rightarrow A$ | identity law | | |---|--|----------| | $\neg(\neg A) \Leftrightarrow A$ | law of double negation | | | $A \lor A \Leftrightarrow A$, $A \land A \Leftrightarrow A$ | laws of idempotence | | | $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$ | law of opposition, | | | | or of the contrapositive †10 | (3.i.12) | | $(A \Rightarrow B) \Leftrightarrow (\neg A \lor B) \Leftrightarrow (\neg (A \land \neg B))$ | equivalence of implication, | | | | conjunction and disjunction | (3.i.13) | | $A \land B \Leftrightarrow \neg(\neg A \lor \neg B)$ | first law of De Morgan | (3.i.14) | | $A \vee B \Leftrightarrow \neg(\neg A \wedge \neg B)$ | second law of De Morgan | (3.i.15) | | $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$ | distributive property of the conjunction | | | | with respect to the disjunction | (3.i.16) | | $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$ | distributive property of the disjunction | | | | with respect to the conjunction | (3.i.17) | | $A \wedge B \Leftrightarrow B \wedge A$ | commutative property of Λ | | | $A \lor B \Leftrightarrow B \lor A$ | commutative property of V | | | $A \wedge (B \wedge C) \Leftrightarrow (A \wedge B) \wedge C$ | associative property of Λ | | | $A \lor (B \lor C) \Leftrightarrow (A \lor B) \lor C$ | associative property of V | (3.i.18) | These last two properties allow to omit parentheses in sequences of conjunctions or disjunctions. The property (3.i.13),(3.i.14),(3.i.15) they say that we could base all logic on connectives alone \neg and \land , (or on \neg , \lor). ^{†9}These lists are taken from Section 1.3 in [14], or [32]. ^{†10}The clause ($\neg B \Rightarrow \neg A$) is called "contrapositive" of ($A \Rightarrow B$). Other important tautologies, often used in logical reasoning. $$A \vee \neg A \qquad \text{excluded middle}$$ $$\neg (A \wedge \neg A) \qquad \text{law of non-contradiction}$$ $$(A \wedge (A \Rightarrow B)) \Rightarrow B \qquad \text{modus ponens} \qquad (3.\text{i.}19)$$ $$(\neg B \wedge (A \Rightarrow B)) \Rightarrow \neg A \qquad \text{modus tollens} \qquad (3.\text{i.}20)$$ $$\neg A \Rightarrow (A \Rightarrow B) \qquad \text{negation of the antecedent}$$ $$B \Rightarrow (A \Rightarrow B) \qquad \text{affirmation of the consequent}$$ $$(A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \wedge B) \Rightarrow C) \qquad \text{exporting}$$ $$((A \Rightarrow B) \wedge (A \Rightarrow C)) \Rightarrow (A \Rightarrow (B \wedge C)) \qquad \text{proof by parts}$$ $$((A \Rightarrow C) \wedge (B \Rightarrow C)) \Rightarrow ((A \vee B) \Rightarrow C) \qquad \text{proof by cases}$$ $$((A \Rightarrow B) \wedge (B \Rightarrow C)) \Rightarrow (A \Rightarrow C) \qquad \text{hypothetical syllogism, or transitivity of implication}$$ $$(A \vee (A \wedge B)) \Leftrightarrow A \wedge (A \vee B) \Leftrightarrow \qquad \text{absorption laws}$$ $$F \Rightarrow B \qquad \text{first law of Pseudo Scotus, or ex falso sequitur quodlibet}$$ $$A \Rightarrow (\neg A \Rightarrow B) \qquad \text{second law of Pseudo Scoto}$$ $$(\neg A \Rightarrow F) \Leftrightarrow A \qquad \text{proof by contradiction}$$ $$((A \wedge \neg B) \Rightarrow F) \Leftrightarrow (A \Rightarrow B) \qquad \text{proof by contradiction}$$ $$((A \wedge \neg B) \Rightarrow F) \Leftrightarrow (A \Rightarrow B) \qquad \text{proof by contradiction, with hypothesis and thesis}}$$ $$(\neg A \Rightarrow A) \Rightarrow A \qquad \text{consequentia mirabilis} \qquad (3.\text{i.}21)$$ [[00P]]