Informal set theory exploits all notions previously listed, but does not investigate the fundamentals, that is, the axiomatization. For this approach we recommend the text [?]; or [?] for a brief discussion. The most widely used formal set theory is the Zermelo-Fraenkel axiomatic, that we will shortly recall in next Section. See Chap. 6 in [?] (for a brief introduction [?] can also be fine). In Zermelo–Fraenkel's axiomatic set theory, all variables represent sets, so variables do not have a meaning of truth or falsehood. For this reason, in the definitions [00g] and [00g] of well-formed formula changes the concept of "atom". A An atom is now a formula of the form  $a \in b$  that has truth/falsehood value.

<sup>a</sup>See the introduction to Chap. 6 in [?] for a discussion comparing these two approaches.

**Remark 2.53.** [013] A distinction is made between an informal set theory

and a formal set theory. a