Esercizi E3.ii.47 [02D] Sia V uno spazio vettoriale reale. Sia $B \subseteq V$. Una **combinazione lineare finita** v di elementi di B è equivalentemente definita

• $v = \sum_{i=1}^n \ell_i b_i$ dove $n = n(v) \in \mathbb{N}, \, \ell_1, \dots, \ell_n \in \mathbb{R}$ e b_1, \dots, b_n

• $v = \sum_{b \in B} \lambda(b)b$ dove $\lambda : B \to \mathbb{R}$ ma inoltre $\lambda(b) \neq 0$ solo per

come

sono elementi di *B*;

Chiamiamo $\Lambda \subseteq \mathbb{R}^B$ l'insieme delle funzioni λ (come sopra usate) che

un numero finito di $b \in B$. sono non nulle solo per un numero finito di argomenti; Λ è uno spazio

vettoriale: per questo la seconda definizione è meno intuitiva ma è più facile da maneggiare.

Diremo che B **genera** V se ogni $v \in V$ si scrive come combinazione lineare finita di elementi di B. Diremo che i vettori di B sono **linearmente indipendenti** se 0 =

 $\sum_{b \in B} \lambda(b)b$ implica $\lambda \equiv 0$; o equivalentemente che, dati $n \geq 1$, $\ell_1,\dots,\ell_n\in\mathbb{R}$ e $b_1,\dots,b_n\in B$ tutti diversi, la relazione $\sum_{i=1}^n\ell_ib_i=0$

implica $\forall i \leq n, \ell_i = 0$. Diremo che *B* è una **base algebrica** (anche nota come **base di Hamel**) se valgono entrambe le proprietà.

Se B è una base allora la combinazione lineare che genera v è unica (cioè vi è un' unica funzione $\lambda \in \Lambda$ per cui $v = \sum_{b \in B} \lambda(b)b$). Mostrate che ogni spazio vettoriale ha una base algebrica. Mostrate

più in generale che per ogni $A, G \subseteq V$, con A famiglia di vettori linearmente indipendenti e G generatori, esiste una base algebrica B

 $con A \subseteq B \subseteq G$. Soluzione 1. [02G]

La dimostrazione in generale necessita del Lemma di Zorn; anzi, questo enunciato è equivalente all' Assioma della Scelta; questo è stato dimostrato da A. Blass in [8]; si veda anche Part 1 §6 [24].