Exercise 7.14. [02F]Prerequisites: [127] Let a_n, b_n be real sequences (which can have variable signs, take value zero, and are not necessarily infinitesimal); let $X = \mathbb{R}^{\mathbb{N}}$ the space of all sequences. Recall that the notation $a_n = O(b_n)$ means:

$$\exists M > 0, \ \exists \overline{n} \in \mathbb{N}, \ \forall n \in \mathbb{N}, n \ge \overline{n} \Rightarrow |a_n| \le M |b_n|.$$

Show these results:

• for $a, b \in X$, $a = (a_n)_n$, $b = (b_n)_n$ consider the relation

$$aRb \iff a_n = O(b_n)$$

prove that *R* is a preorder;

- define $x \asymp y \iff (xRy \land yRx)$ then \asymp is an equivalence relation, R is invariant for \asymp , and the projection \preceq is an order relation on X/\asymp (hint: use the Prop. [127]).
- Define (as usually done)

$$\hat{a} \prec \hat{b} \iff (\hat{a} \preceq \hat{b} \land \hat{a} \neq \hat{b})$$

for $\hat{a}, \hat{b} \in X / \asymp$, $(a_n)_n \in \hat{a}, (b_n)_n \in \hat{b}$ representatives; assuming $b_n \neq 0$ (eventually in n), prove that

$$\hat{a} \prec \hat{b} \iff 0 = \liminf_{n} \frac{a_n}{b_n} \le \limsup_{n} \frac{a_n}{b_n} < \infty$$

The above discussion is related to Definition 3.2.3 (and following) in [3].