Exercises

- E3.84 [02H]Prerequisites: [01M], [026], [020]. Let *I* be a non-empty set of indexes, let A_i a family of non-empty sets indexed by $i \in I$. Recall that, by definition, the Cartesian product $\prod_{i \in I} A_i$ is the set of functions $f : I \to \bigcup_{i \in I} A_i$ such that $f(i) \in A_i$ for each $i \in I$. Show that the following are equivalent formulations of the **axiom of choice**.
 - The Cartesian product of a non-empty family of non-empty sets is non-empty.
 - Given a family A_i as above, such that the sets are not-empty and pairwise disjoint, there is a subset B of $\bigcup_{i \in I} A_i$ such that, for each $i \in I$, $B \cap A_i$ contains a single element.
 - Let *S* be a set. Then there is a function $g : \mathcal{P}(S) \to S$ such that $g(A) \in A$ for each nonempty $A \in \mathcal{P}(S)$.

Solution 1. [02J]