Exercises

E3.88 [02M]Difficulty:*.^{*a*} Consider the following quotient of the family of all integer valued sequences

$$\mathbb{X} = \{a : \mathbb{N} \to \mathbb{N}\}/\sim$$

where we define $a \sim b$ iff $a_k = b_k$ eventually in k.

We define the ordering

$$a \leq b \iff \exists n \text{ s.t. } \forall k \geq n, a_k \leq b_k$$

that is, $a \leq b$ when $a_k \leq b_k$ eventually. This is a preorder and

$$a \sim b \iff (a \leq b \land b \leq a)$$

so it passes to the quotient were it becomes an ordering, see Prop. [127].

Let a^k be an increasing sequence of sequences, that is, $a^k \leq a^{k+1}$; we readily see that it has an upper bound *b*, by defining

$$b_n = \sup_{h,k \le n} a_h^k \,.$$

We can then apply the Zorn Lemma to assert that in the ordered set (X, \leq) there exist maximal elements.

Given *a*, *b* we define

$$a \lor b = (a_n \lor b_n)_n$$

then it is easily verified that $a \leq a \lor b$. So this a *direct* ordering, see [OGN].

We conclude that the ordered set (X, \leq) has an unique maximum, by [065].

This is though false, since for any sequence a the sequence $(a_n + 1)_n$ is larger than that.

What is the mistake in the above reasoning? What do you conclude about (X, \leq) ?

^aOriginally published in https://dida.sns.it/dida2/Members/mennucci/ curiosa/