Definition 3.119. [OGP] Given a directed set (X, \leq_X) a subset of it $Y \subseteq X$ is called **cofinal** if

$$\forall x \in X \; \exists y \in Y, \; y \ge_X x \tag{3.120}$$

More in general, another directed set (Z, \leq_Z) is said to be **cofinal** in X if there exists a map $i : Z \to X$ monotonic weakly increasing and such that i(Z) is is cofinal in X; i.e.

$$(\forall z_1, z_2 \in Z, z_1 \leq_Z z_2 \Rightarrow i(z_1) \leq_X i(z_2)) \land (\forall x \in X \exists z \in Z, i(z) \geq_X z_2)$$

$$(3.121)$$

(This second case generalizes the first one, where we may choose $i : Y \to X$ to be the injection map, and \leq_Y to be the restriction of \leq_X to Y.)