Definition 3.135. *[or1]* Given two ordered sets (X, \leq_X) and (Y, \leq_Y) , setting $Z = X \times Y$, we define the **lexicographic order** \leq_Z on Z; let $z_1 = (x_1, y_1) \in Z$ and $z_2 = (x_2, y_2) \in Z$, then:

• in the case $x_1 \neq x_2$, then $z_1 \leq_Z z_2$ if and only if $x_1 \leq_X x_2$;

• in the case
$$x_1 = x_2$$
, then $z_1 \leq_Z z_2$ if and only if $y_1 \leq_Y y_2$.

This definition is then extended to products of more than two sets: given two vectors, if the first elements are different then we compare them, if they are equal we compare the second elements, if they are equal the thirds, etc.