Proof. [090] Trace of proof. Note that the proof only uses Peano's axioms and induction. Given $m \in \mathbb{N}, m \neq 0$ we recall that $S^{-1}(m)$ is the predecessor, see [1YP] (using the arithmetic we may write

$$
S^{-1}(m) = m - 1 \, , \, S(k) = k + 1
$$

but this theorem is needed to define the arithmetic...) For any given $R \subseteq$ $N \times A$ we define the projection on the first component

$$
\pi(R) = \{ n \in \mathbb{N}, \exists x \in A, (n, x) \in R \}.
$$

Consider the family $\mathcal F$ of relations $R \subseteq \mathbb N \times A$ that satisfy

$$
(0, a) \in R \tag{*}
$$

$$
\forall n \ge 0, \forall y \in A, \ (n, y) \in R \Rightarrow (S(n), g_n(y)) \in R \qquad (*)
$$

We show that under these conditions $\pi(R) = \mathbb{N}$; we know that $0 \in \pi(R)$; if $m \in \pi(R)$, then there exists $x \in A$ for which $(m, x) \in R$ from which for ** follows $(S(m), g_m(x)) \in R$, and we obtain $S(m) \in \pi(R)$.

The family $\mathcal F$ is not empty because $\mathbb N \times A \in \mathcal F$. Let then T be the intersection of all relations in \mathcal{F} . T is therefore the least relation in \mathcal{F} .

It is possible to verify that T satisfies the previous $*$ and $**$ properties. In particular $\pi(T) = \mathbb{N}$.

We must now show that T is the graph of a function (which is the desired f function), that is, that for every *n* there is a single $x \in A$ for which $(n, x) \in T$.

Let $A_n = \{x \in A, (n, x) \in T\}$; we write $|A_n|$ to denote the number of elements in A_n ; since $\pi(T) = \mathbb{N}$ then $|A_n| \geq 1$ for every n. We will show that $|A_n| = 1$ for each *n*. We will prove it by induction. Let

$$
P(n) \doteq |A_n| = 1 \quad .
$$

Let's see the induction step.

Suppose by contradiction that $|A_m| = 1$ but $|A_{Sm}| \geq 2$; morally at *m* the graph of the function f "forks" and the function becomes "multivalued". We define for convenience $w = g_m(x)$, $k = Sm$; we may remove some elements to T (those that do not have a "predecessor" according to the relation **) defining

$$
\tilde{T} = T \setminus \{(k, y) : y \in A, y \neq w\}
$$

it is possible to show that \tilde{T} satisfies * and **, but \tilde{T} would be smaller than T , against the minimality of T . To prove that $P(0)$ holds, we define $k = 0, w = a$ and proceed in the same way.

The previous reasoning also shows that the function is unique, because if the graph G of any function satisfying to $*$ and $**$ must contain T , then $T = G$.