Definition 6.12. *[OB2]* The deleted neighbourhoods (sometimes called punctured neighbourhoods) of points $x_0 \in \mathbb{R}$ are divided into three classes.

- Neighborhoods of $x_0 \in \mathbb{R}$, which contain a set of the type $(x_0 \delta, x_0) \cup (x_0, x_0 + \delta)$ for a $\delta > 0$;
- right neighborhoods of $x_0 \in \mathbb{R}$, which contain a set of the type $(x_0, x_0 + \delta)$ for a $\delta > 0$;
- left neighborhoods of $x_0 \in \mathbb{R}$, which contain a set of the type $(x_0 \delta, x_0)$ for a $\delta > 0$;

In any case, the deleted neighborhoods must not contain the point x_0 . The "full" neighborhoods are obtained by adding x_0 . The "full neighborhoods" are the base for the standard topology on \mathbb{R} .

To the previous ones we then add the neighborhoods of $\pm \infty$:

- neighborhoods of ∞ , which contain a set of the type (y, ∞) as $y \in \mathbb{R}$ varies;
- neighborhoods of $-\infty$, which contain a set of the type $(-\infty, y)$ as $y \in \mathbb{R}$ varies;

In this case we do not distinguish "deleted" neighborhoods and "full" neighborhoods.