EDB β€” 0BK

↑ ← β†’ ↓ view in whole PDF view in whole HTML

Vista

Italiano

Proposizione 43

[0BK] Nel caso \(x_ 0βˆˆβ„\) e \(lβˆˆβ„\), dividiamo la definizione in due condizioni: 1

\(\limsup _{xβ†’ x_ 0} f(x) ≀ l\)

\(\limsup _{xβ†’ x_ 0} f(x) β‰₯ l\)

\(βˆ€ \varepsilon {\gt}0, βˆƒ 𝛿 {\gt}0, βˆ€ x, |x-x_ 0|{\lt}𝛿, xβ‰  x_ 0, x∈ Iβ‡’f(x){\lt}l+\varepsilon \)

\(βˆ€ \varepsilon {\gt}0, βˆ€ 𝛿 {\gt}0, βˆƒ x, |x-x_ 0|{\lt}𝛿, xβ‰  x_ 0, x∈ I, f(x){\gt}l-\varepsilon \)

\(\limsup _{xβ†’ x_ 0^+} f(x) ≀ l\)

\(\limsup _{xβ†’ x_ 0^+} f(x) β‰₯ l\)

\(βˆ€ \varepsilon {\gt}0, βˆƒ 𝛿 {\gt}0, βˆ€ x, |x-x_ 0|{\lt}𝛿, x{\gt} x_ 0, x∈ Iβ‡’f(x){\lt}l+\varepsilon \)

\(βˆ€ \varepsilon {\gt}0, βˆ€ 𝛿 {\gt}0, βˆƒ x, |x-x_ 0|{\lt}𝛿, x{\gt} x_ 0, x∈ I, f(x){\gt}l-\varepsilon \)

\(\limsup _{xβ†’ x_ 0^-} f(x) ≀ l\)

\(\limsup _{xβ†’ x_ 0^-} f(x) β‰₯ l\)

\(βˆ€ \varepsilon {\gt}0, βˆƒ 𝛿 {\gt}0, βˆ€ x, |x-x_ 0|{\lt}𝛿, x{\lt} x_ 0, x∈ Iβ‡’f(x){\lt}l+\varepsilon \)

\(βˆ€ \varepsilon {\gt}0, βˆ€ 𝛿 {\gt}0, βˆƒ x, |x-x_ 0|{\lt}𝛿, x{\lt} x_ 0, x∈ I, f(x){\gt}l-\varepsilon \)

\(\liminf _{xβ†’ x_ 0} f(x) β‰₯ l\)

\(\liminf _{xβ†’ x_ 0} f(x) ≀ l\)

\(βˆ€ \varepsilon {\gt}0, βˆƒ 𝛿 {\gt}0, βˆ€ x, |x-x_ 0|{\lt}𝛿, xβ‰  x_ 0, x∈ Iβ‡’f(x){\gt}l-\varepsilon \)

\(βˆ€ \varepsilon {\gt}0, βˆ€ 𝛿 {\gt}0, βˆƒ x, |x-x_ 0|{\lt}𝛿, xβ‰  x_ 0, x∈ I, f(x){\lt}l+\varepsilon \)

\(\liminf _{xβ†’ x_ 0^+} f(x) β‰₯ l\)

\(\liminf _{xβ†’ x_ 0^+} f(x) ≀ l\)

\(βˆ€ \varepsilon {\gt}0, βˆƒ 𝛿 {\gt}0,βˆ€ x, |x-x_ 0|{\lt}𝛿, x{\gt} x_ 0, x∈ Iβ‡’f(x){\gt}l-\varepsilon \)

\(βˆ€ \varepsilon {\gt}0, βˆ€ 𝛿 {\gt}0, βˆƒ x, |x-x_ 0|{\lt}𝛿, x{\gt} x_ 0, x∈ I, f(x){\lt}l+\varepsilon \)

\(\liminf _{xβ†’ x_ 0^-} f(x) β‰₯ l\)

\(\liminf _{xβ†’ x_ 0^-} f(x) ≀ l\)

\(βˆ€ \varepsilon {\gt}0, βˆƒ 𝛿 {\gt}0, βˆ€ x, |x-x_ 0|{\lt}𝛿, x{\lt} x_ 0, x∈ Iβ‡’f(x){\gt}l-\varepsilon \)

\(βˆ€ \varepsilon {\gt}0, βˆ€ 𝛿 {\gt}0, βˆƒ x, |x-x_ 0|{\lt}𝛿, x{\lt} x_ 0, x∈ I, f(x){\lt}l+\varepsilon \)

Nel caso \(x_ 0βˆˆβ„\) e \(l=±∞\):

\(\limsup _{xβ†’ x_ 0} f(x) =∞\)

\(βˆ€ z, βˆ€ 𝛿 {\gt}0, βˆƒ x, |x-x_ 0|{\lt}𝛿, xβ‰  x_ 0, x∈ I, f(x){\gt}z \)

\(\limsup _{xβ†’ x_ 0^+} f(x) =∞\)

\(βˆ€ z, βˆ€ 𝛿 {\gt}0, βˆƒ x, |x-x_ 0|{\lt}𝛿, x{\gt} x_ 0, x∈ I, f(x){\gt}z \)

\(\limsup _{xβ†’ x_ 0^-} f(x) =∞\)

\(βˆ€ z, βˆ€ 𝛿 {\gt}0, βˆƒ x, |x-x_ 0|{\lt}𝛿, x{\lt} x_ 0, x∈ I, f(x){\gt}z \)

\(\limsup _{xβ†’ x_ 0} f(x) =-∞\)

\(βˆ€ z, βˆƒ 𝛿 {\gt}0, βˆ€ x, |x-x_ 0|{\lt}𝛿, xβ‰  x_ 0, x∈ Iβ‡’f(x){\lt}z \)

\(\limsup _{xβ†’ x_ 0^+} f(x) =-∞\)

\(βˆ€ z, βˆƒ 𝛿 {\gt}0, βˆ€ x, |x-x_ 0|{\lt}𝛿, x{\gt} x_ 0, x∈ Iβ‡’f(x){\lt}z \)

\(\limsup _{xβ†’ x_ 0^-} f(x) =-∞\)

\(βˆ€ z, βˆƒ 𝛿 {\gt}0, βˆ€ x, |x-x_ 0|{\lt}𝛿, x{\lt} x_ 0, x∈ Iβ‡’f(x){\lt}z \)

\(\liminf _{xβ†’ x_ 0} f(x) =∞\)

\(βˆ€ z, βˆƒ 𝛿 {\gt}0, βˆ€ x, |x-x_ 0|{\lt}𝛿, xβ‰  x_ 0, x∈ Iβ‡’f(x){\gt}z \)

\(\liminf _{xβ†’ x_ 0^+} f(x) =∞\)

\(βˆ€ z, βˆƒ 𝛿 {\gt}0, βˆ€ x, |x-x_ 0|{\lt}𝛿, x{\gt} x_ 0, x∈ Iβ‡’f(x){\gt}z \)

\(\liminf _{xβ†’ x_ 0^-} f(x) =∞\)

\(βˆ€ z, βˆƒ 𝛿 {\gt}0, βˆ€ x, |x-x_ 0|{\lt}𝛿, x{\lt} x_ 0, x∈ Iβ‡’f(x){\gt}z \)

\(\liminf _{xβ†’ x_ 0} f(x) =-∞\)

\(βˆ€ z, βˆ€ 𝛿 {\gt}0, βˆƒ x, |x-x_ 0|{\lt}𝛿, xβ‰  x_ 0, x∈ I, f(x){\lt}z \)

\(\liminf _{xβ†’ x_ 0^+} f(x) =-∞\)

\(βˆ€ z, βˆ€ 𝛿 {\gt}0, βˆƒ x, |x-x_ 0|{\lt}𝛿, x{\gt} x_ 0, x∈ I, f(x){\lt}z \)

\(\liminf _{xβ†’ x_ 0^-} f(x) =-∞\)

\(βˆ€ z, βˆ€ 𝛿 {\gt}0, βˆƒ x, |x-x_ 0|{\lt}𝛿, x{\lt} x_ 0, x∈ I, f(x){\lt}z \)

Nel caso \(x_ 0=±∞\) e \(l=±∞\):

\(\limsup _{xβ†’ ∞} f(x) =∞\)

\(βˆ€ z, βˆ€ y,βˆƒ x,x{\gt}y, x∈ I, f(x){\gt}z \)

\(\limsup _{xβ†’ -∞} f(x) =∞\)

\(βˆ€ z, βˆ€ y,βˆƒ x,x{\lt}y, x∈ I, f(x){\gt}z \)

\(\limsup _{xβ†’ ∞} f(x) =-∞\)

\(βˆ€ z, βˆƒ y,βˆ€ x,x{\gt}y, x∈ Iβ‡’f(x){\lt}z \)

\(\limsup _{xβ†’ -∞} f(x) =-∞\)

\(βˆ€ z, βˆƒ y,βˆ€ x,x{\lt}y, x∈ Iβ‡’f(x){\lt}z \)

\(\liminf _{xβ†’ ∞} f(x) =∞\)

\(βˆ€ z, βˆƒ y,βˆ€ x,x{\gt}y, x∈ Iβ‡’f(x){\gt}z \)

\(\liminf _{xβ†’ -∞} f(x) =∞\)

\(βˆ€ z, βˆƒ y,βˆ€ x,x{\lt}y, x∈ Iβ‡’f(x){\gt}z \)

\(\liminf _{xβ†’ ∞} f(x) =-∞\)

\(βˆ€ z, βˆ€ y,βˆƒ x,x{\gt}y, x∈ I, f(x){\lt}z \)

\(\liminf _{xβ†’ -∞} f(x) =-∞\)

\(βˆ€ z, βˆ€ y,βˆƒ x,x{\lt}y, x∈ I, f(x){\lt}z \)

Nel caso \(x_ 0=±∞\) e \(lβˆˆβ„\):

\(\limsup _{xβ†’ ∞} f(x) ≀ l\)

\(\limsup _{xβ†’ ∞} f(x) β‰₯ l\)

\(βˆ€ \varepsilon {\gt}0, βˆƒ y, βˆ€ x, x{\gt}y, x∈ Iβ‡’f(x){\lt}l+\varepsilon \)

\(βˆ€ \varepsilon {\gt}0, βˆ€ y, βˆƒ x, x{\gt}y, x∈ I, f(x){\gt}l-\varepsilon \)

\(\limsup _{xβ†’ -∞} f(x) ≀ l\)

\(\limsup _{xβ†’ -∞} f(x) β‰₯ l\)

\(βˆ€ \varepsilon {\gt}0, βˆƒ y, βˆ€ x, x{\lt}y, x∈ Iβ‡’f(x){\lt}l+\varepsilon \)

\(βˆ€ \varepsilon {\gt}0, βˆ€ y, βˆƒ x, x{\lt}y, x∈ I, f(x){\gt}l-\varepsilon \)

\(\liminf _{xβ†’ ∞} f(x) ≀ l\)

\(\liminf _{xβ†’ ∞} f(x) β‰₯ l\)

\(βˆ€ \varepsilon {\gt}0, βˆ€ y, βˆƒ x, x{\gt}y, x∈ I, f(x){\lt}l+\varepsilon \)

\(βˆ€ \varepsilon {\gt}0, βˆƒ y, βˆ€ x, x{\gt}y, x∈ Iβ‡’f(x){\gt}l-\varepsilon \)

\(\liminf _{xβ†’ -∞} f(x) ≀ l\)

\(\liminf _{xβ†’ -∞} f(x) β‰₯ l\)

\(βˆ€ \varepsilon {\gt}0, βˆ€ y, βˆƒ x, x{\lt}y, x∈ I, f(x){\lt}l+\varepsilon \)

\(βˆ€ \varepsilon {\gt}0, βˆƒ y, βˆ€ x, x{\lt}y, x∈ Iβ‡’f(x){\gt}l-\varepsilon \)

  1. Nelle seguenti tabelle tutte le virgole β€œ,” dopo l’ultimo quantificatore devono essere interpretate come congiunzioni β€œ\(∧\)”, ma sono state scritte come β€œ,” per alleggerire la notazione.
Scarica PDF
Bibliografia
Indice analitico
  • liminf, di funzione
  • limsup, di funzione
  • liminf, di funzione
  • limsup, di funzione
  • retta reale
Stai gestendo il blob in: Multiple languages
Questo contenuto Γ¨ disponibile in: Italiano Inglese