Exercise 7.13. *[opj]*Let a_n , b_n be real sequences (which can have variable signs, take value zero, and are not necessarily infinitesimal). Recall that the notation $a_n = o(b_n)$ means:

 $\forall \varepsilon > 0, \ \exists \overline{n} \in \mathbb{N}, \ \forall n \in \mathbb{N}, n \ge \overline{n} \Rightarrow |a_n| \le \varepsilon |b_n|.$

Shown that these two clauses are equivalent.

Eventually in n we have that a_n = 0 ⇔ b_n = 0; having specified this, we have lim_n a_n/b_n = 1, where it is decided that 0/0 = 1 (in particular a_n, b_n eventually have the same sign, when they are not both null);

• we have that
$$a_n = b_n + o(b_n)$$
.

The second condition appears in Definition 3.2.7 in [3] where it is indicated by the notation $a_n \sim b_n$.

Deduct that $a_n \sim b_n$ is an equivalence relation.

Solution 1. [29Y]