Exercises

E7.31 [OF4]Note:Written exam of 4th Apr 2009, exee 1.(Proposed on 2022-12-13) Given a sequence $(a_n)_n$ of strictly positive numbers, it is said that the infinite product $\prod_{n=0}^{\infty} a_n$ converges if there exists finite and strictly positive the limit of partial products, i.e.

$$\lim_{N \to +\infty} \prod_{n=0}^{N} a_n \in (0, +\infty)$$

Prove that

- (a) if $\prod_{n=0}^{\infty} a_n$ converges then $\lim_{n \to +\infty} a_n = 1$;
- (b) if the series $\sum_{n=0}^{\infty} |a_n 1|$ converges, then it also converges $\prod_{n=0}^{\infty} a_n$;

(c) find an example where the series $\sum_{n=0}^{\infty} (a_n - 1)$ converges but $\prod_{n=0}^{\infty} a_n = 0$.