Definition 7.51. [OFR] Prerequisites: [O6V], [O6Y], Sec. [1YY]. Given J a (possibly partially) ordered and filtering set, and given f: $J \to \mathbb{R}$, we want to define the concept of limit of f(j) "for $j \to \infty$ ".^a.

• We will say that

$$\lim_{j \in J} f(j) = l \in \mathbb{R}$$

if

$$\forall \varepsilon > 0 \ \exists k \in J \ \forall j \in J, \ j \ge k \Rightarrow |l - f(j)| < \varepsilon$$

Similarly limits are defined $l = \pm \infty$ (imitating the definitions used when $J = \mathbb{N}$.) (This is the definition in the course notes, chap. 4 sect. 2 in [3])

· Equivalently we can say that

$$\lim_{j\in J} f(j) = l \in \overline{\mathbb{R}}$$

if for every neighborhood U of l we have that $f(j) \in U$ eventually for $j \in J$; where eventually has been defined in [OGY].

 We recall from [231] that "a neighborhood of ∞ in J" is a subset U ⊆ J such that ∃k ∈ J∀j ∈ J, j ≥ k ⇒ j ∈ U. Then we can imitate the definition [200].

Fixed $l \in \mathbb{R}$ we have $\lim_{j \in J} f(j) = l$ when for every "full" neighborhood V of l in \mathbb{R} , there exists a neighborhood U of ∞ in J such that $f(U) \subseteq V$.

In particular, this last definition can be used to define the limits of f: $J \rightarrow E$ where E is a topological space.

^{*a*}Note that ∞ is a symbol but it is not an element of *J* : if it were it should be the maximum, but a filtering set cannot have maximum, *cf* [06V]