Exercises

- E8.16 [OGQ] Prerequisites: [O6N], [O6N], [O6V]. Difficulty:*. (Replaces 29W) Let (X, τ) be a topological space. Consider the descending ordering between sets ^{*a*}, with this ordering τ is a directed set; we note that it has minimum, given by \emptyset .
 - Now suppose the topology is Hausdorff. Then taken $x \in A$, let $\mathcal{U} = \{A \in \tau : x \in A\}$ be the family of the open sets that contain x: show that \mathcal{U} is a directed set; show that it has minimum if and only if the singleton $\{x\}$ is open (and in this case the minimum is $\{x\}$). ^{*b*}

Solution 1. [OGR]

By the exercise [06V], when $\{x\}$ is not open then \mathcal{U} is a filtering set, and therefore can be used as a family of indices to define a nontrivial "limit" (see Remark [237]). We will see applications in section [288].

^{*b*}Note that, the singleton $\{x\}$ is open iff x is an isolated point.

^{*a*}To formally reconnect to the definition seen in [06N] we define $A \leq B \iff A \supseteq B$ and associate the ordering \leq with τ .