Exercises

E8.5 [OGS] Note: Written exam of 25 March 2017. Let (X, τ) , (Y, θ) be two topological spaces with non-empty intersection and assume that the topologies restricted to $C = X \cap Y$ coincide (i.e. $\tau_{|C|} = \theta_{|C|}^{a}$ and that C is open in both topologies (i.e. $C \in \tau, C \in \theta$). Prove that there is only one topology σ on $Z = X \cup Y$ such that $\sigma_{|X} = \tau$ and $\sigma_{|Y} = \theta$ and that $X, Y \in \sigma$.

Solution 1. [OGT]

^{*a*}Remember that $\tau_{|C} = \{B \cap C : B \in \tau\}.$