Exercises

E8.34 [OHR] Prerequisites: [OKX], [OKZ]. Let $X = \mathbb{R} \cup \{\infty\}$, let's consider the family \mathcal{B} of parts of X comprised of

- the open intervals (a, b) with $a, b \in \mathbb{R}$ and a < b,
- the sets $(a, +\infty) \cup (-\infty, b) \cup \{\infty\}$ with $a, b \in \mathbb{R}$ and a < b.

Show that \mathcal{B} satisfies the properties (*a*),(*b*) seen in [OKX]. Let τ therefore be the topology generated by this base. The topological space (*X*, τ) is called **one-point compactified line**. This topological space is T_2 and it is compact (Exer. [OJD]); it is homeomorphic to the circle (Exer. [OYF]); therefore it can be equipped with a distance that generates the topology described above.