Remark 8.38. [OHY] Let (J, \leq) be a non-empty set with filtering order. We know from [06V] that J has no maximum. We extend (J, <) by adding a point " ∞ ": Let's set $I = J \cup \{\infty\}$ and decide that $x \leq \infty$ for every $x \in J$. It is easy to verify that (I, \leq) is a direct order, and obviously ∞ is the maximum I. ^a Let τ be the topology defined in [OHW]. We know that ∞ is an accumulation point. This topology can explain, in a topological sense, the limit already defined in [OFR], and other examples that we will see in Sec. [2B8].

^{*a*}So (I, \leq) is not a filtering order.