Definition 8.67. [OKB] ^a Let (X, τ) and (Y, σ) be two topological spaces, with (Y,σ) Hausdorff. ^b Let $E \subseteq X$ and $f : E \to Y$. Let also x_0 be an accumulation point of E in X. We define that $\lim_{x\to x_0} f(x) =$ $\ell \in Y$ if and only if, for every neighborhood V of ℓ in Y, there exists U neighbourhood of x_0 in X such that $f(U \cap E \setminus \{x_0\}) \subseteq V$.

^{*a*}Definition 5.7.2 in the notes [3].

^{*b*}To have uniqueness of the limit and therefore to give an unique meaning to $\lim_{x \to x_0} f(x)$ as an element of *Y*.