Exercises

- E8.vii.8 [OKD] Prerequisites: [OKC]. Let X, Y be topological Hausdorff space. Let $E \subseteq X$, let $f : E \rightarrow Y$, and suppose that x_0 is an accumulation point of E in X.
 - If $\lim_{x \to x_0} f(x) = \ell$ then, for each net $\varphi : J \to X$ with $\lim_{j \in J} \varphi(j) = x_0$ we have $\lim_{j \in J} f(\varphi(j)) = \ell$.
 - Consider the filtering set *J* given by the neighborhoods of x₀; ^{*a*} consider nets φ : *J* → *X* with the property that φ(*U*) ∈ *U* \ {x₀} for each *U* ∈ *J*. We note that lim_{*j*∈*J*} φ(*j*) = x₀.
 If for each such net lim_{*j*∈*J*} f(φ(*j*)) = ℓ, then lim_{*x*→x₀} f(*x*) = ℓ.

Solution 1. [OKF]

 $^{^{}a}$ The fact that this is filtering was shown in [06V], [0GQ] and [0H5]