Exercises

- E8.g.8 [OKG]Prerequisites: [OK5], [OKC]. Let X, Y be Hausdorff topological spaces. Let $f : X \to Y, x_0 \in X$. The following are equivalent.
 - 1. f is continuous at x_0 ;
 - 2. for each net φ : $J \rightarrow X$ such that

$$\lim_{j\in J}\varphi(j)=x_0$$

we have

$$\lim_{j \in J} f(\varphi(j)) = f(x_0) \quad .$$

Hint, for proving that 2 implies 1. Suppose that x_0 is an accumulation point. Consider the filtering set *J* given by the neighborhoods of x_0 ; consider nets $\varphi : J \to X$ with the property that $\varphi(U) \in U$ for each $U \in J$; note that $\lim_{j \in J} \varphi(j) = x_0$.

Solution 1. [OKH]