Exercises

E8.viii.11 [OM3]Prerequisites: [0J1], [OKX], [OKZ]. Let now $X_1, ..., X_n$ be topological spaces with topologies, respectively, $\tau_1, ..., \tau_n$; let $X = \prod_{i=1}^n X_i$ be the Cartesian product. We apply the above results to define the **product topology** τ : this can be described in two equivalent ways.

• Union of all Cartesian products of open sets ^a

$$\tau = \Big\{ \bigcup_{j \in J} \prod_{i=1}^{n} A_{i,j} : A_{1,j} \in \tau_1, \dots A_{n,j} \in \tau_n \forall j \in J, J \}$$

arbitrarily chosen sets of indexes { .

• τ is the smallest topology that contains Cartesian products of open sets.

Solution 1. [OM4]

^{*a*}As defined at the beginning of section 6, chapter 5, of the notes [?].