Exercises

- E8.j.2 [OMM]^{*a*} Prerequisites: [2F7], [OKK].Difficulty:*.Let Ω be a non-empty set; let's consider $X = \mathbb{R}^{\Omega}$.
 - 1. Let

$$U^f_{E,\rho} = \{g \in X, \forall x \in E, |f(x) - g(x)| < \rho\}$$

where $f \in X$, $\rho > 0$ and $E \subset \Omega$ is finite. Show that the family of these $U_{E,\rho}^{f}$ satisfies the requirements of [okz], and is therefore a *base* for a topology τ (Hint: use [2F7]). This topology is the *product topology* of topologies of \mathbb{R} .

In particular for each $f \in X$ the sets $U_{E,\rho}^{f}$ are a fundamental system of neighborhoods.

- 2. Check that the topology is T_2 .
- 3. Note that *X* is a vector space, and show that the "sum" operation is continuous, as an operation $X \times X \to X$; to this end, show that if $f, g \in X, h = f + g$, for every neighborhood V_h of *h* there are neighborhoods V_f, V_g of f, g such that $V_f + V_g \subseteq V_h$.
- 4. Given $B_i \subset \mathbb{R}$ open and non-empty, one for each $i \in \Omega$, show that $\prod_i B_i$ is open if and only if $B_i = \mathbb{R}$ except at most finitely many *i*.

Solution 1. [OMN]

^aThese two exercises [OMM],[2BP], are taken from a text originally published by Prof. Ricci in http://dida.sns.it/dida2/cl/08-09/folde0/pdf9 in March 2014.