Exercises

E8.104 [OMP]Difficulty:*. We restrict the topology described in the previous example to the set $Y = [0, 1]^{[0,1]}$ (that is, we restrict \mathbb{R} to [0, 1], and set $\Omega = [0, 1]$). Find a sequence $(f_n) \subset Y$ that does not allow a convergent subsequence.

Solution 1. [OMQ]

Let's recall the definition $[o_{J_2}]$: a space X is "compact by coverings" if, for every $(A_i)_{i \in I}$ family of open such that $\bigcup_{i \in I} A_i = X$, there is a finite subfamily $J \subset I$ such that $\bigcup_{i \in J} A_i = X$. The *Tychonoff theorem* shows that this space Y is "compact by coverings". This exercise shows you instead that Y it is not "compact by sequences".