Definition 9.3. *[OMT]* Given a sequence $(x_n)_n \subseteq X$ and $x \in X$,

- we will say that " $(x_n)_n$ converges to x" if $\lim_n d(x_n, x) = 0$; we will also write $x_n \rightarrow_n x$ to indicate that the sequence converges to x.
- We will say that $"(x_n)_n$ is a Cauchy sequence" if

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N}, \ \forall n, m \ge N \ d(x_n, x_m) < \varepsilon .$$