Definition 10.b.3. *[ONX]* For the following exercises we define that

1. a set E is open if

$$\forall x_0 \in E, \exists r > 0 : B(x_0, r) \subseteq E \quad . \tag{10.b.4}$$

It is easily seen that \emptyset , X are open sets; that the intersection of a finite number of open sets is an open set; that the union of an arbitrary number of open set is an open set. So these open sets form a topology.

2. The **interior** E° of a set E is

$$E^{\circ} = \{ x \in E : \exists r > 0, B_{r}(x) \subseteq E \};$$
(10.b.5)

It is easy to verify that $E^{\circ} \subseteq E$, and that E is open if and only if $E^{\circ} = E$ (exercise [OPB]).

- 3. A set is **closed** if the complement is open.
- 4. A point $x_0 \in X$ is **adherent** to E if

$$\forall r > 0$$
, $E \cap B_r(x_0) \neq \emptyset$

- 5. The closure \overline{E} of E is the set of adherent points; it is easy to verify that $E \subseteq \overline{E}$; It is shown that $\overline{E} = E$ if and only if E is closed (exercise [OPM]).
- 6. *A* is **dense in** *B* if $\overline{A} \supseteq B$, that is, if for every $x \in B$ and for every r > 0 the intersection $B_r(x) \cap A$ is not empty.