Exercises

E10.53 [OQM] Let's review the exercise [OPT].

Having fixed $(X_1, d_1), \dots, (X_n, d_n)$ metric spaces, let $X = X_1 \times X_1 \times \dots \times X_n$.

Let *d* be the distance

$$d(x, y) = \max_{i=1,\dots,n} d_i(x_i, y_i) .$$

This is the same *d* defined as in eqn. [(9.26)] inside [OPT], setting $\varphi(x) = \max_{i=1...n} |x_i|$. We indicate with $B^d(x, r)$ the ball in (X, d) of center $x \in X$ and radius r > 0.

We want to show that d induces the product topology on X, using the results seen in Sec. [2B5].

Taken $t \in X_i$, r > 0 we indicate with $B^{d_i}(t, r)$ the ball in metric space (X_i, d_i) . Let \mathcal{B}_i be the family of all balls in (X_i, d_i) .

Let $\mathcal B$ be defined as

$$\mathcal{B} = \left\{ \prod_{i=1}^{n} B^{d_i}(x_i, r_i) : \forall i, x_i \in X_i, r_i > 0 \right\}$$

This is the same \mathcal{B} defined in [OM5].

Show that every ball $B^d(x, r)$ in (X, d) is the Cartesian product of balls $B^{d_i}(x_i, r)$ in (X_i, d_i) . So let \mathcal{P} be the family of balls $B^d(x, r)$ in (X, d).

From [oqJ] we know that \mathcal{P} is a base for the standard topology in the metric space (X, d).

Use [OM7] to show that \mathcal{P} and \mathcal{B} generate the same topology τ .

Use [OM5] to prove that τ is the product topology.

We conclude that the distance *d* generates the product topology.