Exercises

- E9.57 [OR2] Suppose that d satisfies all distance requirements except "separation property". Consider the relation \sim on X defined as $x \sim$ $v \iff d(x, v) = 0$; show that is an equivalence relation. Let's define $Y = X/\sim$: show that the function d "passes to the quotient", that is, there exists \tilde{d} : $Y \times Y \rightarrow [0, \infty)$ such that, for every choice of classes $s, t \in Y$ and every choice of $x \in s, y \in t$ you have $\tilde{d}(s, t) = d(x, y)$. Finally, show that \tilde{d} is a distance on *Y*.
 - This procedure is the metric space equivalent of *Kolmogoroff quotient*.