Theorem 9.101. [OV3] Given a metric space (X, d) and its subset $C \subseteq X$, The following three conditions are equivalent.

- *C* is sequentially compact: every sequence (x_n) ⊂ C has a subsequence converging to an element of C.
- *C* is compact: from each family of open sets whose union covers *C*, we can choose a finite subfamily whose union covers *C*.
- *C* is complete, and is totally bounded: for every $\varepsilon > 0$ there are finite points $x_1...x_n \in C$ such that $C \subseteq \bigcup_{i=1}^n B(x_i, \varepsilon)$.