Exercises

0.146 [OXH] Prove these fundamental relation.

- (a) $|1|_p = 1$ and more generally $|n|_p \le 1$ for every nonnull integer *n*, with equality if *n* is not divisible by *p*.
- (b) Given *n* nonnull integer, we have that $|n|_p = p^{-\varphi_p(n)}$.
- (c) Given n, m integers, we have that $\varphi_p(n + m) \ge \min\{\varphi_p(n), \varphi_p(m)\}$ with equality if $\varphi_p(n) \neq \varphi_p(m)$.
- (d) Given *n*, *m* nonzero integers, we have that $\varphi_p(nm) = \varphi_p(n) + \varphi_p(m)$ and therefore $|nm|_p = |n|_p |m|_p$.
- (e) Given x = a/b with a, b nonnull integers we have that $|x|_p = p^{-\varphi_p(a)+\varphi_p(b)}$. Note that if a, b are coprime, then one of the two terms $\varphi_p(a), \varphi_p(b)$ is zero.
- (f) Prove that $|xy|_p = |x|_p |y|_p$ for $x, y \in \mathbb{Q}$.
- (g) Prove that $|x/y|_p = |x|_p/|y|_p$ for $x, y \in \mathbb{Q}$ nonzero.

[[OXJ] [[OXK]]