Exercises

E11.3 [106] Prerequisites: [0Q0].

Let again *X* be a normed vector space with norm $\|\cdot\|$. Let $B(x, r) \stackrel{\text{def}}{=}$ $\{y \in X : ||x - y|| < r\}$ be the ball. Let $D(x, r) \stackrel{\text{def}}{=} \{y \in X :$ ||x - y|| < r be the disk. Let $S(x, r) \stackrel{\text{def}}{=} \{y \in X : ||x - y|| = r\}$ be the sphere. Show that B(x,r) = D(x,r), that $B(x,r) = D(x,r)^{\circ}$, and that $\partial B(x,r) = \partial D(x,r) = S(x,r)$. Also show that B(x,r) is not closed and D(x, r) is not open.