Exercises

E11.16 [10F] Prerequisites: [1H8]. Having fixed $t, s \in [1, \infty]$ with s > t and $x \in \mathbb{R}^n$, show that $||x||_s \le ||x||_t$. Also show that $||x||_s < ||x||_t$ if $n \ge 2$ and $x \ne 0$ and x is not a multiple of one of the vectors of the canonical basis $e_1, \ldots e_n$.

Hints:

- *1.* use that $1 + t^p \le (1 + t)^p$ for $p \ge 1$ and $t \ge 0$; or
- 2. use Lagrange multipliers; or
- 3. remember that f(a + b) > f(a) + f(b) when $a \ge 0, b > 0$ f(0) = 0and $f : [0, \infty) \to \mathbb{R}$ is strictly convex and continuous in 0 (see exercise [192]), therefore derive $\frac{d}{dt}(\log ||x||_t)$ and set $f(z) = z \log(z)$).

Solution 1. [10G]

[[10H]]