Exercises

E11.20 [10M] Let be given $p, q \in [1, \infty]$ such that $1/p + 1/q = 1^{a}$ and $x, y \in \mathbb{R}^{n}$; show the **Hölder inequality** in this form

$$\sum_{i=1}^{n} |x_i y_i| \le \|x\|_p \|y\|_q \quad . \tag{11.21}$$

In what cases is there equality?

Tips: Fix $x_i, y_i \ge 0$ *. For the cases with* $p, q < \infty$ *you can:*

- use Young inequality ([194] or [1V7]);
- use Lagrange multipliers;
- start from the case n = 2 and set $x_2 = tx_1$ and $y_2 = ay_1$; then, for cases $n \ge 3$ use induction.

Solution 1. [10N]

 a This means that if p=1 then $q=\infty$; and vice versa.