- **Definition 11.51.** [124] For $A, B \subseteq X$ arbitrary subsets, we recall the definition of Minkowski sum $A \oplus B = \{x + y : x \in A, y \in B\}$ defined in [11R].
- Having now fixed a set B, we define
 - the dilation of a set $A \subseteq X$ to be $A \oplus B$;
 - the erosion of a set $A \subseteq X$ as

$$A \ominus B = \{ z \in X : (B+z) \subseteq A \} \quad ;$$

- the closing $A \bullet B = (A \oplus B) \ominus B$;
- the opening $A \circ B = (A \ominus B) \oplus B$.

Where, given $B \subseteq X, z \in X$, we have indicated with $B + z = \{b + z : b \in B\}$ the translation of B in the direction z. In previous operations B it is known as "structural element", And in applications often B it's a puck or a ball.