Exercises

E12.26 [14D]Prerequisites: [2CS], [118]. Let $C_h = C_h(I)$ be the space of continuous bounded functions $f : I : \rightarrow \mathbb{R}$). This is a Banach space (a complete normed space) with the norm $||f||_{\infty} = \sup_{x} |f(x)|$. Consider the map $F : [0, \infty) \times C_h \to C_h$ transforming $g = F(\varepsilon, f)$, as defined in the eqn. [(12.20)].

Show that *F* is continuous.