Exercises

 $E13.16$ [\[156\]P](https://coldoc.sns.it/UUID/EDB/156/)rerequisites[:\[155\].](https://coldoc.sns.it/UUID/EDB/155) $\mathrm{Let}~f~:~X_1~\rightarrow~X_2~\text{with}~(X_1,d_1)$ and (X_2, d_2) metric spaces.

A monotonic (weakly) increasing function $\omega : [0, \infty) \to [0, \infty]$, with $\omega(0) = 0$ and $\lim_{t\to 0+} \omega(t) = 0$, such that

$$
\forall x, y \in X_1, \ d_2(f(x), f(y)) \le \omega(d_1(x, y)), \tag{13.17}
$$

is called **continuity modulus** for the function f . (Note that f can have many continuity moduli).

For example, if the function f is Lipschitz, i.e. there exists $L > 0$ such that

$$
\forall x, y \in X_1, \ d_2(f(x), f(y)) \le L d_1(x, y)
$$

then f satisfies the eqz. [\(13.17\)](#page-0-0) by placing $\omega(t) = Lt$.

We will now see that the existence of a continuity modulus is equivalent to the uniform continuity of f .

• If f is uniformly continuous, show that the function

$$
\omega_f(t) = \sup\{d_2(f(x), f(y)) : x, y \in X_1, d_1(x, y) \le t\}
$$
\n(13.18)

is the smallest continuity modulus.*[a](#page-0-1)*

- Note that the modulus defined in [\(13.18\)](#page-0-2) may not be continuous, and may be infinite for t large — find examples of this behaviour.
- Also show that if f is uniformly continuous, there is a modulus that is continuous where it is finite.
- Conversely, it is easy to verify that if f has a continuity modulus, then it is uniformly continuous.

If you don't know metric space theory, you can prove the previous results in case $f : I \to \mathbb{R}$ with $I \subseteq \mathbb{R}$. (See also the exercise [\[15W\]](https://coldoc.sns.it/UUID/EDB/15W), which shows that in this case the modulus ω defined in [\(13.18\)](#page-0-2) is continuous and is finite).

Solution 1. *[\[157\]](https://coldoc.sns.it/UUID/EDB/157)*

$[$ [\[15B\]](https://coldoc.sns.it/UUID/EDB/15B)]

^aNote that the family on which the upper bound is calculated always contains the cases $x = y$, therefore $\omega(t) \geq 0$.