Exercises

E13.16 [156]Prerequisites: [155]. Let $f : X_1 \rightarrow X_2$ with (X_1, d_1) and (X_2, d_2) metric spaces.

A monotonic (weakly) increasing function ω : $[0, \infty) \rightarrow [0, \infty]$, with $\omega(0) = 0$ and $\lim_{t\to 0+} \omega(t) = 0$, such that

$$\forall x, y \in X_1, \ d_2(f(x), f(y)) \le \omega(d_1(x, y)), \tag{13.17}$$

is called **continuity modulus** for the function f. (Note that f can have many continuity moduli).

For example, if the function f is Lipschitz, i.e. there exists L > 0 such that

$$\forall x, y \in X_1, \ d_2(f(x), f(y)) \le L d_1(x, y)$$

then *f* satisfies the eqz. (13.17) by placing $\omega(t) = Lt$.

We will now see that the existence of a continuity modulus is equivalent to the uniform continuity of f.

• If *f* is uniformly continuous, show that the function

$$\omega_f(t) = \sup\{d_2(f(x), f(y)) : x, y \in X_1, d_1(x, y) \le t\}$$
(13.18)

is the smallest continuity modulus.^a

- Note that the modulus defined in (13.18) may not be continuous, and may be infinite for *t* large — find examples of this behaviour.
- Also show that if *f* is uniformly continuous, there is a modulus that is continuous where it is finite.
- Conversely, it is easy to verify that if *f* has a continuity modulus, then it is uniformly continuous.

If you don't know metric space theory, you can prove the previous results in case $f : I \to \mathbb{R}$ with $I \subseteq \mathbb{R}$. (See also the exercise [15W], which shows that in this case the modulus ω defined in (13.18) is continuous and is finite).

Solution 1. [157]

[15B]

^{*a*}Note that the family on which the upper bound is calculated always contains the cases x = y, therefore $\omega(t) \ge 0$.