Exercises

E15.c.6 [18M] Prerequisites: [18F]. Let $f : (a, b) \rightarrow \mathbb{R}$ be convex.

- 1. Show that, at every point, right derivative $d^+(x)$ and left derivative $d^-(x)$ exist (In particular *f* is continuous).
- 2. Show that $d^{-}(x) \leq d^{+}(x)$,
- 3. while, for x < y, $d^+(x) \le R(x, y) \le d^-(y)$.
- 4. hence $d^+(x)$ and $d^-(x)$ are monotonic weakly increasing.
- 5. Show that $d^+(x)$ is right continuous, while $d^-(x)$ is left continuous.
- 6. Also show that $\lim_{s\to x^-} d^+(s) = d^-(x)$, while $\lim_{s\to x^+} d^-(s) = d^+(x)$. In particular d^+ is continuous in x, if and only if d^- is continuous in x, if and only if $d^-(x) = d^+(x)$. So d^+, d^- are, so to speak, the same monotonic function, with the exception that, at any point of discontinuity, d^+ assumes the
 - value of the right limit while d^- the value of the left limit.
- Use the above to show that *f* is differentiable in *x* if and only if *d*⁺ is continuous in *x*, if and only if *d*⁻ is continuous in *x*.
- 8. Eventually, prove that *f* is differentiable, except in a countable number of points.

Solution 1. [18N]