Exercises

E16.17 [1BM] We define the Gamma function Γ : $(0, \infty) \rightarrow \mathbb{R}$ as

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \,\mathrm{d}t \;.$$

- Show that $\Gamma(x)$ is well defined for x > 0 real.
- Show that $\Gamma(x + 1) = x\Gamma(x)$ and deduce that $\Gamma(n + 1) = n!$ for $n \in \mathbb{N}$.
- Show that $\Gamma(x)$ is analytic.

(You can assume that derivatives of Γ are $\Gamma^{(n)}(x) = \int_0^\infty (\log t)^n t^{x-1} e^{-t} dt$; those are obtained by derivation under integral sign.)