E16.2 [108] Prerequisites: [106]. Note: Darboux properties. Let $A \subseteq \mathbb{R}$ be an open set, and suppose that $f: A \to \mathbb{R}$ is differ-

entiable. We want to show that, for each interval $I \subset A$, the image f'(I) is an interval.

So prove this result. For $x, y \in I$ with x < y, let's define a = xf'(x), b = f'(y). Let's assume for simplicity that a < b. For any

c with a < c < b, there exists $\xi \in I$ with $x < \xi < y$ such that $f'(\xi) = c$.

(Finally, show that this property actually implies that the image

Solution 1. [1C9]

f'(I) of an interval I is an interval.)

Exercises