## Exercises

E17.a.4 Difficulty:\*.Let  $n \ge 1$  be an integer. Let I, J be open intervals with  $x_0 \in [1DJ]$  $I, y_0 \in J$ . Let then be given  $g : I \to \mathbb{R}$  and  $f : J \to \mathbb{R}$  such that  $g(I) \subseteq J$ , f, g are n-1 times differentiable in their respective intervals, their (n-1)-th derivative is differentiable in  $x_0$  (resp.  $y_0$ ) and finally  $g(x_0) = y_0$ .

Show that the composite function  $f \circ g$  is differentiable n-1 times in the interval and its derivative (n-1)-th is differentiable in  $x_0$ .

Then write an explicit formula for the nth derivative  $(f \circ g)^{(n)}$  in  $x_0$  of the composition of the two functions, (formula that uses derivatives of f and g).



(If you can't find it, read the wikipedia page [61]; or, see this presentation: https://drive.google.com/drive/folders/ 1746bdJ89ZywciaEqvIMIGZ7kKHWVekhb).

Solution 1. [1DK]