Example 16.38. [1FF] We informally state this second property

If
$$n \ge 1$$
 then $o(x^n + o(x^n)) = o(x^n)$.

We rewrite it like this.

If
$$f(x) = o(x^n)$$
 and $g(x) = o(x^n + f(x))$ then $g(x) = o(x^n)$.

We note that, for $x \neq 0$ small, $x^n + f(x)$ is not zero, as there is a neighborhood in which $|f(x)| \leq |x^n/2|$. As a hypothesis we have that $\lim_{x\to 0} f(x)x^{-n} = 0$ and $\lim_{x\to 0} g(x)/(x^n + f(x)) = 0$ then

$$\lim_{x \to 0} \frac{g(x)}{x^n} = \lim_{x \to 0} \frac{g(x)}{x^n + f(x)} \frac{x^n + f(x)}{x^n}$$

but

$$\lim_{x \to 0} \frac{g(x)}{x^n + f(x)} = 0$$

while

$$\lim_{x \to 0} \frac{x^n + f(x)}{x^n} = 1$$