- E38
[1FG] Sia \(a=0\) per semplicità. Riscrivete le successive relazioni e dimostratele.
Se \(n≥ m≥ 1\) allora
\[ O(x^ n)+O(x^ m) = O(x^ m), \quad o(x^ n)+O(x^ m) = O(x^ m),\quad x^ n+O(x^ m) = O(x^ m)\quad . \]Se \(n{\gt} m≥ 1\) allora
\[ O(x^ n)+o(x^ m) = o(x^ m),\quad x^ n+o(x^ m) = o(x^ m). \]Per \(n,m≥ 1\)
\begin{eqnarray*} x^ n O(x^ m)& =& O(x^{n+m})\\ x^ n o(x^ m)& =& o(x^{n+m})\\ O(x^ n) O(x^ m)& =& O(x^{n+m})\\ o(x^ n) O(x^ m)& =& o(x^{n+m}) \end{eqnarray*}- \[ ∫_ 0^ y O(x^ n)\, {\mathbb {d}}x=O(y^{n+1}) \quad ∫_ 0^ y o(x^ n)\, {\mathbb {d}}x=o(y^{n+1}) \quad . \]
[ [1FH]]
EDB — 1FG
Vista
Italiano
Autori:
"Mennucci , Andrea C. G."
.
Stai gestendo il blob in: Multiple languages