EDB — 1GB

view in whole PDF view in whole HTML

View

Italian

E54

[1GB] Prerequisiti:[1G8].Siano \(V,W⊆ ℝ^ n\) aperti non vuoti, e sia \(G:V→ W\) di classe \(C^ 2\). Sia \(\overline y∈ V\) e \(\overline x=G(\overline y)∈ W\). Sia poi \(𝜓:W→ℝ\) di classe \(C^ 2\); posto \(\tilde𝜓 = 𝜓 ◦ G\), confrontare lo sviluppo di Taylor al secondo ordine di \(𝜓\) e di \(\tilde𝜓\) (centrati rispettivamente in \(\overline x\) e \(\overline y\)). Supponendo inoltre che \(G\) sia un diffeomorfismo, verificare che

  • \(\overline x\) è un punto stazionario per \(𝜓\) se e solo se \(\overline y\) è punto stazionario anche per \(\tilde𝜓\),

  • e in questo caso gli Hessiani di \(𝜓\) e di \(\tilde𝜓\) sono simili (cioè le matrici sono uguali a meno di cambio di coordinate).

Soluzione 1

[1GC]

Download PDF
Bibliography
Book index
  • derivata, parziale
  • derivata, totale
  • differenziale
  • teorema, di Taylor, in \( ℝ ^n\)
Managing blob in: Multiple languages
This content is available in: Italian English