Theorem 16.47. *[1GD]* Let $f : A \subseteq \mathbb{R}^n \to \mathbb{R}$ be continuous, with A open, and let $\overline{x} = (\overline{x}', \overline{x}_n) \in A$ be such that $\partial_{x_n} f$ exists in a neighborhood of \overline{x} , is continuous in \overline{x} and $\partial_{x_n} f(\overline{x}) \neq 0$. Define $\overline{a} = f(\overline{x})$. *There is then a "cylindrical" neighborhood* U of \overline{x}

$$
U=U'\times J
$$

where

$$
U'=B(\overline{x}',\alpha)
$$

 i s the open ball in \mathbb{R}^{n-1} centered in \overline{x}' of radius $\alpha > 0$, and

$$
J=(\overline{x}_n-\beta,\overline{x}_n+\beta)
$$

 $\mathsf{with} \beta > 0$. Inside this neighborhood $U \cap f^{-1}(\{\overline{a}\})$ coincides with the *graph* $x_n = g(x')$, with $g : U' \rightarrow J$ continuous.

This means that, for every $x = (x', x_n) \in U$, $f(x) = \overline{a}$ *if and only if* $x_n = g(x')$.

Moreover, if f is of class C^k on A for some $k \in \mathbb{N}^*$, then g is of class C^k *on* ′ *and*

$$
\frac{\partial g}{\partial x_i}(x') = -\frac{\frac{\partial f}{\partial x_i}(x', g(x'))}{\frac{\partial f}{\partial x_n}(x', g(x'))} \qquad \forall x' \in U', \forall i, 1 \le i \le n-1 \quad .
$$
\n(16.48)