Theorem 16.47. [107] Let $f : A \subseteq \mathbb{R}^n \to \mathbb{R}$ be continuous, with A open, and let $\overline{x} = (\overline{x}', \overline{x}_n) \in A$ be such that $\partial_{x_n} f$ exists in a neighborhood of \overline{x} , is continuous in \overline{x} and $\partial_{x_n} f(\overline{x}) \neq 0$. Define $\overline{a} = f(\overline{x})$. There is then a "cylindrical" neighborhood U of \overline{x}

$$U = U' \times J$$

where

$$U'=B(\overline{x}',\alpha)$$

is the open ball in \mathbb{R}^{n-1} centered in \overline{x}' of radius $\alpha > 0$, and

$$J = (\overline{x}_n - \beta, \overline{x}_n + \beta)$$

with $\beta > 0$. Inside this neighborhood $U \cap f^{-1}(\{\overline{a}\})$ coincides with the graph $x_n = g(x')$, with $g : U' \to J$ continuous. This means that, for every $x = (x', x_n) \in U$, $f(x) = \overline{a}$ if and only if

 $x_n = g(x').$

Moreover, if f is of class C^k on A for some $k \in \mathbb{N}^*$, then g is of class C^k on U' and

$$\frac{\partial g}{\partial x_i}(x') = -\frac{\frac{\partial f}{\partial x_i}(x', g(x'))}{\frac{\partial f}{\partial x_n}(x', g(x'))} \quad \forall x' \in U', \forall i, 1 \le i \le n-1$$
(16.48)