Exercises

[6.54 [1cz] In the same assumptions as the previous theorem [1cD], show that there exist $\varepsilon > 0$ and a continuous function $\tilde{g} : V \to \mathbb{R}$ where $I = (\bar{a} - \varepsilon, \bar{a} + \varepsilon)$ and $V = U' \times I$ is open in \mathbb{R}^n , such that

$$\forall (x',a) \in V \quad , \quad (x',\tilde{g}(x',a)) \in U \quad \text{e} \quad f\left(x',\tilde{g}(x',a)\right) = a$$
(16.54)

Vice versa if $x \in U$ and a = f(x) and $a \in I$ then $x_n = \tilde{g}(x', a)$.

Note that the previous relation means that, for each fixed $x' \in U'$, the function $\tilde{g}(x', \cdot)$ is the inverse of the function $f(x', \cdot)$ (when defined on appropriate open intervals).

So, moreover, the function \tilde{g} is always differentiable with respect to a, and the partial derivative is

$$\frac{\partial}{\partial a}\tilde{g}(x',a) = \frac{1}{\frac{\partial}{\partial x_n}f(x',\tilde{g}(x',a))}$$

The other derivatives instead (obviously) are as in the theorem [1GD].

The regularity of \tilde{g} is the same as g: if f is Lipschitz then \tilde{g} is Lipschitz; if $f \in C^k(U)$ then $\tilde{g} \in C^k(V)$.

Solution 1. [1H0]