Exercises

16.59 [1HD] In the same hypotheses, we see a "vice versa". Let f, φ : $A \to \mathbb{R}$ be of class C^2 in the open set A, and let $\overline{x} \in E_a$ and $\lambda \in \mathbb{R}$ be such that $\nabla f(\overline{x}) + \lambda \nabla \varphi(\overline{x}) = 0$; suppose that

$$\forall v, v \cdot \nabla \varphi(x) = 0 \Longrightarrow v \cdot Hv > 0$$

where

$$h(x) = f(x) + \lambda \varphi(x)$$

and *H* is the Hessian matrix of *h* in \overline{x} . Show that \overline{x} is a local minimum point for *f* bound to *E*_{*a*}.

Solution 1. [1HF]