Definition 18.3. [*HRJ* Let (X_1, d_1) and (X_2, d_2) be metric spaces. Let \mathcal{F} be a family of functions $f : X_1 \to X_2$, we will say that it is an **equicon-***tinuous family* if one of these equivalent properties holds.

•
$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall f \in \mathcal{F}$$

$$\forall x, y \in X_1, \ d_1(x, y) \le \delta \Rightarrow d_2(f(x), f(y)) \le \varepsilon$$

• There exists a a fixed monotonically weakly increasing function $\omega : [0, \infty) \rightarrow [0, \infty]$, for which $\lim_{t\to 0+} \omega(t) = \omega(0) = 0$ (ω is called "continuity modulus" ^{*a*}) such that

$$\forall f \in \mathcal{F}, \ \forall x, y \in X_1, \ d_2(f(x), f(y)) \le \omega(d_1(x, y)) \quad . \quad (18.4)$$

• There exists a fixed continuous function $\omega : [0, \infty) \to [0, \infty]$ with $\omega(0) = 0$ such that (18.4) holds.

(The result [150] can be useful to prove equivalence of the last two clauses.)

^{*a*}See also [156], regarding the notion of "continuity modulus".